xref: /aosp_15_r20/external/skia/src/utils/SkPatchUtils.cpp (revision c8dee2aa9b3f27cf6c858bd81872bdeb2c07ed17)
1 /*
2  * Copyright 2014 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/utils/SkPatchUtils.h"
9 
10 #include "include/core/SkAlphaType.h"
11 #include "include/core/SkColorSpace.h"
12 #include "include/core/SkColorType.h"
13 #include "include/core/SkImageInfo.h"
14 #include "include/core/SkMatrix.h"
15 #include "include/core/SkPoint.h"
16 #include "include/core/SkScalar.h"
17 #include "include/core/SkSize.h"
18 #include "include/core/SkTypes.h"
19 #include "include/core/SkVertices.h"
20 #include "include/private/SkColorData.h"
21 #include "include/private/base/SkFloatingPoint.h"
22 #include "include/private/base/SkMath.h"
23 #include "include/private/base/SkTPin.h"
24 #include "include/private/base/SkTo.h"
25 #include "src/base/SkArenaAlloc.h"
26 #include "src/base/SkVx.h"
27 #include "src/core/SkColorSpacePriv.h"
28 #include "src/core/SkConvertPixels.h"
29 #include "src/core/SkGeometry.h"
30 
31 #include <algorithm>
32 #include <cstdint>
33 #include <cstring>
34 
35 namespace {
36     enum CubicCtrlPts {
37         kTopP0_CubicCtrlPts = 0,
38         kTopP1_CubicCtrlPts = 1,
39         kTopP2_CubicCtrlPts = 2,
40         kTopP3_CubicCtrlPts = 3,
41 
42         kRightP0_CubicCtrlPts = 3,
43         kRightP1_CubicCtrlPts = 4,
44         kRightP2_CubicCtrlPts = 5,
45         kRightP3_CubicCtrlPts = 6,
46 
47         kBottomP0_CubicCtrlPts = 9,
48         kBottomP1_CubicCtrlPts = 8,
49         kBottomP2_CubicCtrlPts = 7,
50         kBottomP3_CubicCtrlPts = 6,
51 
52         kLeftP0_CubicCtrlPts = 0,
53         kLeftP1_CubicCtrlPts = 11,
54         kLeftP2_CubicCtrlPts = 10,
55         kLeftP3_CubicCtrlPts = 9,
56     };
57 
58     // Enum for corner also clockwise.
59     enum Corner {
60         kTopLeft_Corner = 0,
61         kTopRight_Corner,
62         kBottomRight_Corner,
63         kBottomLeft_Corner
64     };
65 }  // namespace
66 
67 /**
68  * Evaluator to sample the values of a cubic bezier using forward differences.
69  * Forward differences is a method for evaluating a nth degree polynomial at a uniform step by only
70  * adding precalculated values.
71  * For a linear example we have the function f(t) = m*t+b, then the value of that function at t+h
72  * would be f(t+h) = m*(t+h)+b. If we want to know the uniform step that we must add to the first
73  * evaluation f(t) then we need to substract f(t+h) - f(t) = m*t + m*h + b - m*t + b = mh. After
74  * obtaining this value (mh) we could just add this constant step to our first sampled point
75  * to compute the next one.
76  *
77  * For the cubic case the first difference gives as a result a quadratic polynomial to which we can
78  * apply again forward differences and get linear function to which we can apply again forward
79  * differences to get a constant difference. This is why we keep an array of size 4, the 0th
80  * position keeps the sampled value while the next ones keep the quadratic, linear and constant
81  * difference values.
82  */
83 
84 class FwDCubicEvaluator {
85 
86 public:
87 
88     /**
89      * Receives the 4 control points of the cubic bezier.
90      */
91 
FwDCubicEvaluator(const SkPoint points[4])92     explicit FwDCubicEvaluator(const SkPoint points[4])
93             : fCoefs(points) {
94         memcpy(fPoints, points, 4 * sizeof(SkPoint));
95 
96         this->restart(1);
97     }
98 
99     /**
100      * Restarts the forward differences evaluator to the first value of t = 0.
101      */
restart(int divisions)102     void restart(int divisions)  {
103         fDivisions = divisions;
104         fCurrent    = 0;
105         fMax        = fDivisions + 1;
106         skvx::float2 h = 1.f / fDivisions;
107         skvx::float2 h2 = h * h;
108         skvx::float2 h3 = h2 * h;
109         skvx::float2 fwDiff3 = 6 * fCoefs.fA * h3;
110         fFwDiff[3] = to_point(fwDiff3);
111         fFwDiff[2] = to_point(fwDiff3 + times_2(fCoefs.fB) * h2);
112         fFwDiff[1] = to_point(fCoefs.fA * h3 + fCoefs.fB * h2 + fCoefs.fC * h);
113         fFwDiff[0] = to_point(fCoefs.fD);
114     }
115 
116     /**
117      * Check if the evaluator is still within the range of 0<=t<=1
118      */
done() const119     bool done() const {
120         return fCurrent > fMax;
121     }
122 
123     /**
124      * Call next to obtain the SkPoint sampled and move to the next one.
125      */
next()126     SkPoint next() {
127         SkPoint point = fFwDiff[0];
128         fFwDiff[0]    += fFwDiff[1];
129         fFwDiff[1]    += fFwDiff[2];
130         fFwDiff[2]    += fFwDiff[3];
131         fCurrent++;
132         return point;
133     }
134 
getCtrlPoints() const135     const SkPoint* getCtrlPoints() const {
136         return fPoints;
137     }
138 
139 private:
140     SkCubicCoeff fCoefs;
141     int fMax, fCurrent, fDivisions;
142     SkPoint fFwDiff[4], fPoints[4];
143 };
144 
145 ////////////////////////////////////////////////////////////////////////////////
146 
147 // size in pixels of each partition per axis, adjust this knob
148 static const int kPartitionSize = 10;
149 
150 /**
151  *  Calculate the approximate arc length given a bezier curve's control points.
152  *  Returns -1 if bad calc (i.e. non-finite)
153  */
approx_arc_length(const SkPoint points[],int count)154 static SkScalar approx_arc_length(const SkPoint points[], int count) {
155     if (count < 2) {
156         return 0;
157     }
158     SkScalar arcLength = 0;
159     for (int i = 0; i < count - 1; i++) {
160         arcLength += SkPoint::Distance(points[i], points[i + 1]);
161     }
162     return SkIsFinite(arcLength) ? arcLength : -1;
163 }
164 
bilerp(SkScalar tx,SkScalar ty,SkScalar c00,SkScalar c10,SkScalar c01,SkScalar c11)165 static SkScalar bilerp(SkScalar tx, SkScalar ty, SkScalar c00, SkScalar c10, SkScalar c01,
166                        SkScalar c11) {
167     SkScalar a = c00 * (1.f - tx) + c10 * tx;
168     SkScalar b = c01 * (1.f - tx) + c11 * tx;
169     return a * (1.f - ty) + b * ty;
170 }
171 
bilerp(SkScalar tx,SkScalar ty,const skvx::float4 & c00,const skvx::float4 & c10,const skvx::float4 & c01,const skvx::float4 & c11)172 static skvx::float4 bilerp(SkScalar tx, SkScalar ty,
173                            const skvx::float4& c00,
174                            const skvx::float4& c10,
175                            const skvx::float4& c01,
176                            const skvx::float4& c11) {
177     auto a = c00 * (1.f - tx) + c10 * tx;
178     auto b = c01 * (1.f - tx) + c11 * tx;
179     return a * (1.f - ty) + b * ty;
180 }
181 
GetLevelOfDetail(const SkPoint cubics[12],const SkMatrix * matrix)182 SkISize SkPatchUtils::GetLevelOfDetail(const SkPoint cubics[12], const SkMatrix* matrix) {
183     // Approximate length of each cubic.
184     SkPoint pts[kNumPtsCubic];
185     SkPatchUtils::GetTopCubic(cubics, pts);
186     matrix->mapPoints(pts, kNumPtsCubic);
187     SkScalar topLength = approx_arc_length(pts, kNumPtsCubic);
188 
189     SkPatchUtils::GetBottomCubic(cubics, pts);
190     matrix->mapPoints(pts, kNumPtsCubic);
191     SkScalar bottomLength = approx_arc_length(pts, kNumPtsCubic);
192 
193     SkPatchUtils::GetLeftCubic(cubics, pts);
194     matrix->mapPoints(pts, kNumPtsCubic);
195     SkScalar leftLength = approx_arc_length(pts, kNumPtsCubic);
196 
197     SkPatchUtils::GetRightCubic(cubics, pts);
198     matrix->mapPoints(pts, kNumPtsCubic);
199     SkScalar rightLength = approx_arc_length(pts, kNumPtsCubic);
200 
201     if (topLength < 0 || bottomLength < 0 || leftLength < 0 || rightLength < 0) {
202         return {0, 0};  // negative length is a sentinel for bad length (i.e. non-finite)
203     }
204 
205     // Level of detail per axis, based on the larger side between top and bottom or left and right
206     int lodX = static_cast<int>(std::max(topLength, bottomLength) / kPartitionSize);
207     int lodY = static_cast<int>(std::max(leftLength, rightLength) / kPartitionSize);
208 
209     return SkISize::Make(std::max(8, lodX), std::max(8, lodY));
210 }
211 
GetTopCubic(const SkPoint cubics[12],SkPoint points[4])212 void SkPatchUtils::GetTopCubic(const SkPoint cubics[12], SkPoint points[4]) {
213     points[0] = cubics[kTopP0_CubicCtrlPts];
214     points[1] = cubics[kTopP1_CubicCtrlPts];
215     points[2] = cubics[kTopP2_CubicCtrlPts];
216     points[3] = cubics[kTopP3_CubicCtrlPts];
217 }
218 
GetBottomCubic(const SkPoint cubics[12],SkPoint points[4])219 void SkPatchUtils::GetBottomCubic(const SkPoint cubics[12], SkPoint points[4]) {
220     points[0] = cubics[kBottomP0_CubicCtrlPts];
221     points[1] = cubics[kBottomP1_CubicCtrlPts];
222     points[2] = cubics[kBottomP2_CubicCtrlPts];
223     points[3] = cubics[kBottomP3_CubicCtrlPts];
224 }
225 
GetLeftCubic(const SkPoint cubics[12],SkPoint points[4])226 void SkPatchUtils::GetLeftCubic(const SkPoint cubics[12], SkPoint points[4]) {
227     points[0] = cubics[kLeftP0_CubicCtrlPts];
228     points[1] = cubics[kLeftP1_CubicCtrlPts];
229     points[2] = cubics[kLeftP2_CubicCtrlPts];
230     points[3] = cubics[kLeftP3_CubicCtrlPts];
231 }
232 
GetRightCubic(const SkPoint cubics[12],SkPoint points[4])233 void SkPatchUtils::GetRightCubic(const SkPoint cubics[12], SkPoint points[4]) {
234     points[0] = cubics[kRightP0_CubicCtrlPts];
235     points[1] = cubics[kRightP1_CubicCtrlPts];
236     points[2] = cubics[kRightP2_CubicCtrlPts];
237     points[3] = cubics[kRightP3_CubicCtrlPts];
238 }
239 
skcolor_to_float(SkPMColor4f * dst,const SkColor * src,int count,SkColorSpace * dstCS)240 static void skcolor_to_float(SkPMColor4f* dst, const SkColor* src, int count, SkColorSpace* dstCS) {
241     SkImageInfo srcInfo = SkImageInfo::Make(count, 1, kBGRA_8888_SkColorType,
242                                             kUnpremul_SkAlphaType, SkColorSpace::MakeSRGB());
243     SkImageInfo dstInfo = SkImageInfo::Make(count, 1, kRGBA_F32_SkColorType,
244                                             kPremul_SkAlphaType, sk_ref_sp(dstCS));
245     SkAssertResult(SkConvertPixels(dstInfo, dst, 0, srcInfo, src, 0));
246 }
247 
float_to_skcolor(SkColor * dst,const SkPMColor4f * src,int count,SkColorSpace * srcCS)248 static void float_to_skcolor(SkColor* dst, const SkPMColor4f* src, int count, SkColorSpace* srcCS) {
249     SkImageInfo srcInfo = SkImageInfo::Make(count, 1, kRGBA_F32_SkColorType,
250                                             kPremul_SkAlphaType, sk_ref_sp(srcCS));
251     SkImageInfo dstInfo = SkImageInfo::Make(count, 1, kBGRA_8888_SkColorType,
252                                             kUnpremul_SkAlphaType, SkColorSpace::MakeSRGB());
253     SkAssertResult(SkConvertPixels(dstInfo, dst, 0, srcInfo, src, 0));
254 }
255 
MakeVertices(const SkPoint cubics[12],const SkColor srcColors[4],const SkPoint srcTexCoords[4],int lodX,int lodY,SkColorSpace * colorSpace)256 sk_sp<SkVertices> SkPatchUtils::MakeVertices(const SkPoint cubics[12], const SkColor srcColors[4],
257                                              const SkPoint srcTexCoords[4], int lodX, int lodY,
258                                              SkColorSpace* colorSpace) {
259     if (lodX < 1 || lodY < 1 || nullptr == cubics) {
260         return nullptr;
261     }
262 
263     // check for overflow in multiplication
264     const int64_t lodX64 = (lodX + 1),
265     lodY64 = (lodY + 1),
266     mult64 = lodX64 * lodY64;
267     if (mult64 > SK_MaxS32) {
268         return nullptr;
269     }
270 
271     // Treat null interpolation space as sRGB.
272     if (!colorSpace) {
273         colorSpace = sk_srgb_singleton();
274     }
275 
276     int vertexCount = SkToS32(mult64);
277     // it is recommended to generate draw calls of no more than 65536 indices, so we never generate
278     // more than 60000 indices. To accomplish that we resize the LOD and vertex count
279     if (vertexCount > 10000 || lodX > 200 || lodY > 200) {
280         float weightX = static_cast<float>(lodX) / (lodX + lodY);
281         float weightY = static_cast<float>(lodY) / (lodX + lodY);
282 
283         // 200 comes from the 100 * 2 which is the max value of vertices because of the limit of
284         // 60000 indices ( sqrt(60000 / 6) that comes from data->fIndexCount = lodX * lodY * 6)
285         // Need a min of 1 since we later divide by lod
286         lodX = std::max(1, sk_float_floor2int_no_saturate(weightX * 200));
287         lodY = std::max(1, sk_float_floor2int_no_saturate(weightY * 200));
288         vertexCount = (lodX + 1) * (lodY + 1);
289     }
290     const int indexCount = lodX * lodY * 6;
291     uint32_t flags = 0;
292     if (srcTexCoords) {
293         flags |= SkVertices::kHasTexCoords_BuilderFlag;
294     }
295     if (srcColors) {
296         flags |= SkVertices::kHasColors_BuilderFlag;
297     }
298 
299     SkSTArenaAlloc<2048> alloc;
300     SkPMColor4f* cornerColors = srcColors ? alloc.makeArray<SkPMColor4f>(4) : nullptr;
301     SkPMColor4f* tmpColors = srcColors ? alloc.makeArray<SkPMColor4f>(vertexCount) : nullptr;
302 
303     SkVertices::Builder builder(SkVertices::kTriangles_VertexMode, vertexCount, indexCount, flags);
304     SkPoint* pos = builder.positions();
305     SkPoint* texs = builder.texCoords();
306     uint16_t* indices = builder.indices();
307 
308     if (cornerColors) {
309         skcolor_to_float(cornerColors, srcColors, kNumCorners, colorSpace);
310     }
311 
312     SkPoint pts[kNumPtsCubic];
313     SkPatchUtils::GetBottomCubic(cubics, pts);
314     FwDCubicEvaluator fBottom(pts);
315     SkPatchUtils::GetTopCubic(cubics, pts);
316     FwDCubicEvaluator fTop(pts);
317     SkPatchUtils::GetLeftCubic(cubics, pts);
318     FwDCubicEvaluator fLeft(pts);
319     SkPatchUtils::GetRightCubic(cubics, pts);
320     FwDCubicEvaluator fRight(pts);
321 
322     fBottom.restart(lodX);
323     fTop.restart(lodX);
324 
325     SkScalar u = 0.0f;
326     int stride = lodY + 1;
327     for (int x = 0; x <= lodX; x++) {
328         SkPoint bottom = fBottom.next(), top = fTop.next();
329         fLeft.restart(lodY);
330         fRight.restart(lodY);
331         SkScalar v = 0.f;
332         for (int y = 0; y <= lodY; y++) {
333             int dataIndex = x * (lodY + 1) + y;
334 
335             SkPoint left = fLeft.next(), right = fRight.next();
336 
337             SkPoint s0 = SkPoint::Make((1.0f - v) * top.x() + v * bottom.x(),
338                                        (1.0f - v) * top.y() + v * bottom.y());
339             SkPoint s1 = SkPoint::Make((1.0f - u) * left.x() + u * right.x(),
340                                        (1.0f - u) * left.y() + u * right.y());
341             SkPoint s2 = SkPoint::Make(
342                                        (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].x()
343                                                      + u * fTop.getCtrlPoints()[3].x())
344                                        + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].x()
345                                               + u * fBottom.getCtrlPoints()[3].x()),
346                                        (1.0f - v) * ((1.0f - u) * fTop.getCtrlPoints()[0].y()
347                                                      + u * fTop.getCtrlPoints()[3].y())
348                                        + v * ((1.0f - u) * fBottom.getCtrlPoints()[0].y()
349                                               + u * fBottom.getCtrlPoints()[3].y()));
350             pos[dataIndex] = s0 + s1 - s2;
351 
352             if (cornerColors) {
353                 bilerp(u, v, skvx::float4::Load(cornerColors[kTopLeft_Corner].vec()),
354                              skvx::float4::Load(cornerColors[kTopRight_Corner].vec()),
355                              skvx::float4::Load(cornerColors[kBottomLeft_Corner].vec()),
356                              skvx::float4::Load(cornerColors[kBottomRight_Corner].vec()))
357                     .store(tmpColors[dataIndex].vec());
358             }
359 
360             if (texs) {
361                 texs[dataIndex] = SkPoint::Make(bilerp(u, v, srcTexCoords[kTopLeft_Corner].x(),
362                                                        srcTexCoords[kTopRight_Corner].x(),
363                                                        srcTexCoords[kBottomLeft_Corner].x(),
364                                                        srcTexCoords[kBottomRight_Corner].x()),
365                                                 bilerp(u, v, srcTexCoords[kTopLeft_Corner].y(),
366                                                        srcTexCoords[kTopRight_Corner].y(),
367                                                        srcTexCoords[kBottomLeft_Corner].y(),
368                                                        srcTexCoords[kBottomRight_Corner].y()));
369 
370             }
371 
372             if(x < lodX && y < lodY) {
373                 int i = 6 * (x * lodY + y);
374                 indices[i] = x * stride + y;
375                 indices[i + 1] = x * stride + 1 + y;
376                 indices[i + 2] = (x + 1) * stride + 1 + y;
377                 indices[i + 3] = indices[i];
378                 indices[i + 4] = indices[i + 2];
379                 indices[i + 5] = (x + 1) * stride + y;
380             }
381             v = SkTPin(v + 1.f / lodY, 0.0f, 1.0f);
382         }
383         u = SkTPin(u + 1.f / lodX, 0.0f, 1.0f);
384     }
385 
386     if (tmpColors) {
387         float_to_skcolor(builder.colors(), tmpColors, vertexCount, colorSpace);
388     }
389     return builder.detach();
390 }
391