1 /*
2 * Copyright 2020 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/sksl/SkSLInliner.h"
9
10 #ifndef SK_ENABLE_OPTIMIZE_SIZE
11
12 #include "include/core/SkSpan.h"
13 #include "include/core/SkTypes.h"
14 #include "include/private/base/SkTArray.h"
15 #include "src/base/SkEnumBitMask.h"
16 #include "src/sksl/SkSLAnalysis.h"
17 #include "src/sksl/SkSLDefines.h"
18 #include "src/sksl/SkSLErrorReporter.h"
19 #include "src/sksl/SkSLOperator.h"
20 #include "src/sksl/SkSLPosition.h"
21 #include "src/sksl/analysis/SkSLProgramUsage.h"
22 #include "src/sksl/ir/SkSLBinaryExpression.h"
23 #include "src/sksl/ir/SkSLBreakStatement.h"
24 #include "src/sksl/ir/SkSLChildCall.h"
25 #include "src/sksl/ir/SkSLConstructor.h"
26 #include "src/sksl/ir/SkSLConstructorArray.h"
27 #include "src/sksl/ir/SkSLConstructorArrayCast.h"
28 #include "src/sksl/ir/SkSLConstructorCompound.h"
29 #include "src/sksl/ir/SkSLConstructorCompoundCast.h"
30 #include "src/sksl/ir/SkSLConstructorDiagonalMatrix.h"
31 #include "src/sksl/ir/SkSLConstructorMatrixResize.h"
32 #include "src/sksl/ir/SkSLConstructorScalarCast.h"
33 #include "src/sksl/ir/SkSLConstructorSplat.h"
34 #include "src/sksl/ir/SkSLConstructorStruct.h"
35 #include "src/sksl/ir/SkSLContinueStatement.h"
36 #include "src/sksl/ir/SkSLDiscardStatement.h"
37 #include "src/sksl/ir/SkSLDoStatement.h"
38 #include "src/sksl/ir/SkSLEmptyExpression.h"
39 #include "src/sksl/ir/SkSLExpressionStatement.h"
40 #include "src/sksl/ir/SkSLFieldAccess.h"
41 #include "src/sksl/ir/SkSLForStatement.h"
42 #include "src/sksl/ir/SkSLFunctionCall.h"
43 #include "src/sksl/ir/SkSLFunctionDeclaration.h"
44 #include "src/sksl/ir/SkSLFunctionDefinition.h"
45 #include "src/sksl/ir/SkSLIRNode.h"
46 #include "src/sksl/ir/SkSLIfStatement.h"
47 #include "src/sksl/ir/SkSLIndexExpression.h"
48 #include "src/sksl/ir/SkSLModifierFlags.h"
49 #include "src/sksl/ir/SkSLNop.h"
50 #include "src/sksl/ir/SkSLPostfixExpression.h"
51 #include "src/sksl/ir/SkSLPrefixExpression.h"
52 #include "src/sksl/ir/SkSLProgramElement.h"
53 #include "src/sksl/ir/SkSLReturnStatement.h"
54 #include "src/sksl/ir/SkSLSetting.h"
55 #include "src/sksl/ir/SkSLStatement.h"
56 #include "src/sksl/ir/SkSLSwitchCase.h"
57 #include "src/sksl/ir/SkSLSwitchStatement.h"
58 #include "src/sksl/ir/SkSLSwizzle.h"
59 #include "src/sksl/ir/SkSLSymbolTable.h"
60 #include "src/sksl/ir/SkSLTernaryExpression.h"
61 #include "src/sksl/ir/SkSLType.h"
62 #include "src/sksl/ir/SkSLVarDeclarations.h"
63 #include "src/sksl/ir/SkSLVariable.h"
64 #include "src/sksl/ir/SkSLVariableReference.h"
65 #include "src/sksl/transform/SkSLTransform.h"
66
67 #include <algorithm>
68 #include <climits>
69 #include <cstddef>
70 #include <memory>
71 #include <string>
72 #include <string_view>
73 #include <utility>
74
75 using namespace skia_private;
76
77 namespace SkSL {
78 namespace {
79
80 static constexpr int kInlinedStatementLimit = 2500;
81
is_scopeless_block(Statement * stmt)82 static bool is_scopeless_block(Statement* stmt) {
83 return stmt->is<Block>() && !stmt->as<Block>().isScope();
84 }
85
find_parent_statement(const std::vector<std::unique_ptr<Statement> * > & stmtStack)86 static std::unique_ptr<Statement>* find_parent_statement(
87 const std::vector<std::unique_ptr<Statement>*>& stmtStack) {
88 SkASSERT(!stmtStack.empty());
89
90 // Walk the statement stack from back to front, ignoring the last element (which is the
91 // enclosing statement).
92 auto iter = stmtStack.rbegin();
93 ++iter;
94
95 // Anything counts as a parent statement other than a scopeless Block.
96 for (; iter != stmtStack.rend(); ++iter) {
97 std::unique_ptr<Statement>* stmt = *iter;
98 if (!is_scopeless_block(stmt->get())) {
99 return stmt;
100 }
101 }
102
103 // There wasn't any parent statement to be found.
104 return nullptr;
105 }
106
clone_with_ref_kind(const Expression & expr,VariableReference::RefKind refKind,Position pos)107 std::unique_ptr<Expression> clone_with_ref_kind(const Expression& expr,
108 VariableReference::RefKind refKind,
109 Position pos) {
110 std::unique_ptr<Expression> clone = expr.clone(pos);
111 Analysis::UpdateVariableRefKind(clone.get(), refKind);
112 return clone;
113 }
114
115 } // namespace
116
RemapVariable(const Variable * variable,const VariableRewriteMap * varMap)117 const Variable* Inliner::RemapVariable(const Variable* variable,
118 const VariableRewriteMap* varMap) {
119 std::unique_ptr<Expression>* remap = varMap->find(variable);
120 if (!remap) {
121 SkDEBUGFAILF("rewrite map does not contain variable '%.*s'",
122 (int)variable->name().size(), variable->name().data());
123 return variable;
124 }
125 Expression* expr = remap->get();
126 SkASSERT(expr);
127 if (!expr->is<VariableReference>()) {
128 SkDEBUGFAILF("rewrite map contains non-variable replacement for '%.*s'",
129 (int)variable->name().size(), variable->name().data());
130 return variable;
131 }
132 return expr->as<VariableReference>().variable();
133 }
134
ensureScopedBlocks(Statement * inlinedBody,Statement * parentStmt)135 void Inliner::ensureScopedBlocks(Statement* inlinedBody, Statement* parentStmt) {
136 // No changes necessary if this statement isn't actually a block.
137 if (!inlinedBody || !inlinedBody->is<Block>()) {
138 return;
139 }
140
141 // No changes necessary if the parent statement doesn't require a scope.
142 if (!parentStmt || !(parentStmt->is<IfStatement>() || parentStmt->is<ForStatement>() ||
143 parentStmt->is<DoStatement>() || is_scopeless_block(parentStmt))) {
144 return;
145 }
146
147 Block& block = inlinedBody->as<Block>();
148
149 // The inliner will create inlined function bodies as a Block containing multiple statements,
150 // but no scope. Normally, this is fine, but if this block is used as the statement for a
151 // do/for/if/while, the block needs to be scoped for the generated code to match the intent.
152 // In the case of Blocks nested inside other Blocks, we add the scope to the outermost block if
153 // needed.
154 for (Block* nestedBlock = █; ) {
155 if (nestedBlock->isScope()) {
156 // We found an explicit scope; all is well.
157 return;
158 }
159 if (nestedBlock->children().size() == 1 && nestedBlock->children()[0]->is<Block>()) {
160 // This block wraps another unscoped block; we need to go deeper.
161 nestedBlock = &nestedBlock->children()[0]->as<Block>();
162 continue;
163 }
164 // We found a block containing real statements (not just more blocks), but no scope.
165 // Let's add a scope to the outermost block.
166 block.setBlockKind(Block::Kind::kBracedScope);
167 return;
168 }
169 }
170
inlineExpression(Position pos,VariableRewriteMap * varMap,SymbolTable * symbolTableForExpression,const Expression & expression)171 std::unique_ptr<Expression> Inliner::inlineExpression(Position pos,
172 VariableRewriteMap* varMap,
173 SymbolTable* symbolTableForExpression,
174 const Expression& expression) {
175 auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> {
176 if (e) {
177 return this->inlineExpression(pos, varMap, symbolTableForExpression, *e);
178 }
179 return nullptr;
180 };
181 auto argList = [&](const ExpressionArray& originalArgs) -> ExpressionArray {
182 ExpressionArray args;
183 args.reserve_exact(originalArgs.size());
184 for (const std::unique_ptr<Expression>& arg : originalArgs) {
185 args.push_back(expr(arg));
186 }
187 return args;
188 };
189 auto childRemap = [&](const Variable& var) -> const Variable& {
190 // If our variable remapping table contains the passed-in variable...
191 if (std::unique_ptr<Expression>* remap = varMap->find(&var)) {
192 // ... the remapped expression _must_ be another variable reference.
193 // SkSL doesn't allow opaque types to participate in complex expressions.
194 if ((*remap)->is<VariableReference>()) {
195 const VariableReference& remappedRef = (*remap)->as<VariableReference>();
196 return *remappedRef.variable();
197 } else {
198 SkDEBUGFAILF("Child effect '%.*s' remaps to unexpected expression '%s'",
199 (int)var.name().size(), var.name().data(),
200 (*remap)->description().c_str());
201 }
202 }
203
204 // There's no remapping for this; return it as-is.
205 return var;
206 };
207
208 switch (expression.kind()) {
209 case Expression::Kind::kBinary: {
210 const BinaryExpression& binaryExpr = expression.as<BinaryExpression>();
211 return BinaryExpression::Make(*fContext,
212 pos,
213 expr(binaryExpr.left()),
214 binaryExpr.getOperator(),
215 expr(binaryExpr.right()));
216 }
217 case Expression::Kind::kEmpty:
218 return expression.clone(pos);
219 case Expression::Kind::kLiteral:
220 return expression.clone(pos);
221 case Expression::Kind::kChildCall: {
222 const ChildCall& childCall = expression.as<ChildCall>();
223 return ChildCall::Make(*fContext,
224 pos,
225 childCall.type().clone(*fContext, symbolTableForExpression),
226 childRemap(childCall.child()),
227 argList(childCall.arguments()));
228 }
229 case Expression::Kind::kConstructorArray: {
230 const ConstructorArray& ctor = expression.as<ConstructorArray>();
231 return ConstructorArray::Make(*fContext,
232 pos,
233 *ctor.type().clone(*fContext, symbolTableForExpression),
234 argList(ctor.arguments()));
235 }
236 case Expression::Kind::kConstructorArrayCast: {
237 const ConstructorArrayCast& ctor = expression.as<ConstructorArrayCast>();
238 return ConstructorArrayCast::Make(
239 *fContext,
240 pos,
241 *ctor.type().clone(*fContext, symbolTableForExpression),
242 expr(ctor.argument()));
243 }
244 case Expression::Kind::kConstructorCompound: {
245 const ConstructorCompound& ctor = expression.as<ConstructorCompound>();
246 return ConstructorCompound::Make(
247 *fContext,
248 pos,
249 *ctor.type().clone(*fContext, symbolTableForExpression),
250 argList(ctor.arguments()));
251 }
252 case Expression::Kind::kConstructorCompoundCast: {
253 const ConstructorCompoundCast& ctor = expression.as<ConstructorCompoundCast>();
254 return ConstructorCompoundCast::Make(
255 *fContext,
256 pos,
257 *ctor.type().clone(*fContext, symbolTableForExpression),
258 expr(ctor.argument()));
259 }
260 case Expression::Kind::kConstructorDiagonalMatrix: {
261 const ConstructorDiagonalMatrix& ctor = expression.as<ConstructorDiagonalMatrix>();
262 return ConstructorDiagonalMatrix::Make(
263 *fContext,
264 pos,
265 *ctor.type().clone(*fContext, symbolTableForExpression),
266 expr(ctor.argument()));
267 }
268 case Expression::Kind::kConstructorMatrixResize: {
269 const ConstructorMatrixResize& ctor = expression.as<ConstructorMatrixResize>();
270 return ConstructorMatrixResize::Make(
271 *fContext,
272 pos,
273 *ctor.type().clone(*fContext, symbolTableForExpression),
274 expr(ctor.argument()));
275 }
276 case Expression::Kind::kConstructorScalarCast: {
277 const ConstructorScalarCast& ctor = expression.as<ConstructorScalarCast>();
278 return ConstructorScalarCast::Make(
279 *fContext,
280 pos,
281 *ctor.type().clone(*fContext, symbolTableForExpression),
282 expr(ctor.argument()));
283 }
284 case Expression::Kind::kConstructorSplat: {
285 const ConstructorSplat& ctor = expression.as<ConstructorSplat>();
286 return ConstructorSplat::Make(*fContext,
287 pos,
288 *ctor.type().clone(*fContext, symbolTableForExpression),
289 expr(ctor.argument()));
290 }
291 case Expression::Kind::kConstructorStruct: {
292 const ConstructorStruct& ctor = expression.as<ConstructorStruct>();
293 return ConstructorStruct::Make(*fContext,
294 pos,
295 *ctor.type().clone(*fContext, symbolTableForExpression),
296 argList(ctor.arguments()));
297 }
298 case Expression::Kind::kFieldAccess: {
299 const FieldAccess& f = expression.as<FieldAccess>();
300 return FieldAccess::Make(*fContext, pos, expr(f.base()), f.fieldIndex(), f.ownerKind());
301 }
302 case Expression::Kind::kFunctionCall: {
303 const FunctionCall& funcCall = expression.as<FunctionCall>();
304 return FunctionCall::Make(*fContext,
305 pos,
306 funcCall.type().clone(*fContext, symbolTableForExpression),
307 funcCall.function(),
308 argList(funcCall.arguments()));
309 }
310 case Expression::Kind::kFunctionReference:
311 return expression.clone(pos);
312 case Expression::Kind::kIndex: {
313 const IndexExpression& idx = expression.as<IndexExpression>();
314 return IndexExpression::Make(*fContext, pos, expr(idx.base()), expr(idx.index()));
315 }
316 case Expression::Kind::kMethodReference:
317 return expression.clone(pos);
318 case Expression::Kind::kPrefix: {
319 const PrefixExpression& p = expression.as<PrefixExpression>();
320 return PrefixExpression::Make(*fContext, pos, p.getOperator(), expr(p.operand()));
321 }
322 case Expression::Kind::kPostfix: {
323 const PostfixExpression& p = expression.as<PostfixExpression>();
324 return PostfixExpression::Make(*fContext, pos, expr(p.operand()), p.getOperator());
325 }
326 case Expression::Kind::kSetting: {
327 const Setting& s = expression.as<Setting>();
328 return Setting::Make(*fContext, pos, s.capsPtr());
329 }
330 case Expression::Kind::kSwizzle: {
331 const Swizzle& s = expression.as<Swizzle>();
332 return Swizzle::Make(*fContext, pos, expr(s.base()), s.components());
333 }
334 case Expression::Kind::kTernary: {
335 const TernaryExpression& t = expression.as<TernaryExpression>();
336 return TernaryExpression::Make(*fContext, pos, expr(t.test()),
337 expr(t.ifTrue()), expr(t.ifFalse()));
338 }
339 case Expression::Kind::kTypeReference:
340 return expression.clone(pos);
341 case Expression::Kind::kVariableReference: {
342 const VariableReference& v = expression.as<VariableReference>();
343 std::unique_ptr<Expression>* remap = varMap->find(v.variable());
344 if (remap) {
345 return clone_with_ref_kind(**remap, v.refKind(), pos);
346 }
347 return expression.clone(pos);
348 }
349 default:
350 SkDEBUGFAILF("unsupported expression: %s", expression.description().c_str());
351 return nullptr;
352 }
353 }
354
inlineStatement(Position pos,VariableRewriteMap * varMap,SymbolTable * symbolTableForStatement,std::unique_ptr<Expression> * resultExpr,Analysis::ReturnComplexity returnComplexity,const Statement & statement,const ProgramUsage & usage,bool isBuiltinCode)355 std::unique_ptr<Statement> Inliner::inlineStatement(Position pos,
356 VariableRewriteMap* varMap,
357 SymbolTable* symbolTableForStatement,
358 std::unique_ptr<Expression>* resultExpr,
359 Analysis::ReturnComplexity returnComplexity,
360 const Statement& statement,
361 const ProgramUsage& usage,
362 bool isBuiltinCode) {
363 auto stmt = [&](const std::unique_ptr<Statement>& s) -> std::unique_ptr<Statement> {
364 if (s) {
365 return this->inlineStatement(pos, varMap, symbolTableForStatement, resultExpr,
366 returnComplexity, *s, usage, isBuiltinCode);
367 }
368 return nullptr;
369 };
370 auto expr = [&](const std::unique_ptr<Expression>& e) -> std::unique_ptr<Expression> {
371 if (e) {
372 return this->inlineExpression(pos, varMap, symbolTableForStatement, *e);
373 }
374 return nullptr;
375 };
376 auto variableModifiers = [&](const Variable& variable,
377 const Expression* initialValue) -> ModifierFlags {
378 return Transform::AddConstToVarModifiers(variable, initialValue, &usage);
379 };
380 auto makeWithChildSymbolTable = [&](auto callback) -> std::unique_ptr<Statement> {
381 SymbolTable* origSymbolTable = symbolTableForStatement;
382 auto childSymbols = std::make_unique<SymbolTable>(origSymbolTable, isBuiltinCode);
383 symbolTableForStatement = childSymbols.get();
384
385 std::unique_ptr<Statement> stmt = callback(std::move(childSymbols));
386
387 symbolTableForStatement = origSymbolTable;
388 return stmt;
389 };
390
391 ++fInlinedStatementCounter;
392
393 switch (statement.kind()) {
394 case Statement::Kind::kBlock:
395 return makeWithChildSymbolTable([&](std::unique_ptr<SymbolTable> symbolTable) {
396 const Block& block = statement.as<Block>();
397 StatementArray statements;
398 statements.reserve_exact(block.children().size());
399 for (const std::unique_ptr<Statement>& child : block.children()) {
400 statements.push_back(stmt(child));
401 }
402 return Block::Make(pos,
403 std::move(statements),
404 block.blockKind(),
405 std::move(symbolTable));
406 });
407
408 case Statement::Kind::kBreak:
409 return BreakStatement::Make(pos);
410
411 case Statement::Kind::kContinue:
412 return ContinueStatement::Make(pos);
413
414 case Statement::Kind::kDiscard:
415 return DiscardStatement::Make(*fContext, pos);
416
417 case Statement::Kind::kDo: {
418 const DoStatement& d = statement.as<DoStatement>();
419 return DoStatement::Make(*fContext, pos, stmt(d.statement()), expr(d.test()));
420 }
421 case Statement::Kind::kExpression: {
422 const ExpressionStatement& e = statement.as<ExpressionStatement>();
423 return ExpressionStatement::Make(*fContext, expr(e.expression()));
424 }
425 case Statement::Kind::kFor:
426 return makeWithChildSymbolTable([&](std::unique_ptr<SymbolTable> symbolTable) {
427 const ForStatement& f = statement.as<ForStatement>();
428 // We need to ensure `initializer` is evaluated first, so that we've already
429 // remapped its declaration by the time we evaluate `test` and `next`.
430 std::unique_ptr<Statement> initializerStmt = stmt(f.initializer());
431 std::unique_ptr<Expression> testExpr = expr(f.test());
432 std::unique_ptr<Expression> nextExpr = expr(f.next());
433 std::unique_ptr<Statement> bodyStmt = stmt(f.statement());
434
435 std::unique_ptr<LoopUnrollInfo> unrollInfo;
436 if (f.unrollInfo()) {
437 // The for loop's unroll-info points to the Variable in the initializer as the
438 // index. This variable has been rewritten into a clone by the inliner, so we
439 // need to update the loop-unroll info to point to the clone.
440 unrollInfo = std::make_unique<LoopUnrollInfo>(*f.unrollInfo());
441 unrollInfo->fIndex = RemapVariable(unrollInfo->fIndex, varMap);
442 }
443
444 return ForStatement::Make(*fContext, pos, ForLoopPositions{},
445 std::move(initializerStmt),
446 std::move(testExpr),
447 std::move(nextExpr),
448 std::move(bodyStmt),
449 std::move(unrollInfo),
450 std::move(symbolTable));
451 });
452
453 case Statement::Kind::kIf: {
454 const IfStatement& i = statement.as<IfStatement>();
455 return IfStatement::Make(*fContext, pos, expr(i.test()),
456 stmt(i.ifTrue()), stmt(i.ifFalse()));
457 }
458 case Statement::Kind::kNop:
459 return Nop::Make();
460
461 case Statement::Kind::kReturn: {
462 const ReturnStatement& r = statement.as<ReturnStatement>();
463 if (!r.expression()) {
464 // This function doesn't return a value. We won't inline functions with early
465 // returns, so a return statement is a no-op and can be treated as such.
466 return Nop::Make();
467 }
468
469 // If a function only contains a single return, and it doesn't reference variables from
470 // inside an Block's scope, we don't need to store the result in a variable at all. Just
471 // replace the function-call expression with the function's return expression.
472 SkASSERT(resultExpr);
473 if (returnComplexity <= Analysis::ReturnComplexity::kSingleSafeReturn) {
474 *resultExpr = expr(r.expression());
475 return Nop::Make();
476 }
477
478 // For more complex functions, we assign their result into a variable. We refuse to
479 // inline anything with early returns, so this should be safe to do; that is, on this
480 // control path, this is the last statement that will occur.
481 SkASSERT(*resultExpr);
482 return ExpressionStatement::Make(
483 *fContext,
484 BinaryExpression::Make(
485 *fContext,
486 pos,
487 clone_with_ref_kind(**resultExpr, VariableRefKind::kWrite, pos),
488 Operator::Kind::EQ,
489 expr(r.expression())));
490 }
491 case Statement::Kind::kSwitch: {
492 const SwitchStatement& ss = statement.as<SwitchStatement>();
493 return SwitchStatement::Make(*fContext, pos, expr(ss.value()), stmt(ss.caseBlock()));
494 }
495 case Statement::Kind::kSwitchCase: {
496 const SwitchCase& sc = statement.as<SwitchCase>();
497 return sc.isDefault() ? SwitchCase::MakeDefault(pos, stmt(sc.statement()))
498 : SwitchCase::Make(pos, sc.value(), stmt(sc.statement()));
499 }
500 case Statement::Kind::kVarDeclaration: {
501 const VarDeclaration& decl = statement.as<VarDeclaration>();
502 std::unique_ptr<Expression> initialValue = expr(decl.value());
503 const Variable* variable = decl.var();
504
505 // We assign unique names to inlined variables--scopes hide most of the problems in this
506 // regard, but see `InlinerAvoidsVariableNameOverlap` for a counterexample where unique
507 // names are important.
508 const std::string* name = symbolTableForStatement->takeOwnershipOfString(
509 fMangler.uniqueName(variable->name(), symbolTableForStatement));
510 auto clonedVar =
511 Variable::Make(pos,
512 variable->modifiersPosition(),
513 variable->layout(),
514 variableModifiers(*variable, initialValue.get()),
515 variable->type().clone(*fContext, symbolTableForStatement),
516 name->c_str(),
517 /*mangledName=*/"",
518 isBuiltinCode,
519 variable->storage());
520 varMap->set(variable, VariableReference::Make(pos, clonedVar.get()));
521 std::unique_ptr<Statement> result =
522 VarDeclaration::Make(*fContext,
523 clonedVar.get(),
524 decl.baseType().clone(*fContext, symbolTableForStatement),
525 decl.arraySize(),
526 std::move(initialValue));
527 symbolTableForStatement->add(*fContext, std::move(clonedVar));
528 return result;
529 }
530 default:
531 SkASSERT(false);
532 return nullptr;
533 }
534 }
535
argument_needs_scratch_variable(const Expression * arg,const Variable * param,const ProgramUsage & usage)536 static bool argument_needs_scratch_variable(const Expression* arg,
537 const Variable* param,
538 const ProgramUsage& usage) {
539 // If the parameter isn't written to within the inline function ...
540 const ProgramUsage::VariableCounts& paramUsage = usage.get(*param);
541 if (!paramUsage.fWrite) {
542 // ... and it can be inlined trivially (e.g. a swizzle, or a constant array index),
543 // or it is any expression without side effects that is only accessed at most once...
544 if ((paramUsage.fRead > 1) ? Analysis::IsTrivialExpression(*arg)
545 : !Analysis::HasSideEffects(*arg)) {
546 // ... we don't need to copy it at all! We can just use the existing expression.
547 return false;
548 }
549 }
550 // We need a scratch variable.
551 return true;
552 }
553
inlineCall(const FunctionCall & call,SymbolTable * symbolTable,const ProgramUsage & usage,const FunctionDeclaration * caller)554 Inliner::InlinedCall Inliner::inlineCall(const FunctionCall& call,
555 SymbolTable* symbolTable,
556 const ProgramUsage& usage,
557 const FunctionDeclaration* caller) {
558 using ScratchVariable = Variable::ScratchVariable;
559
560 // Inlining is more complicated here than in a typical compiler, because we have to have a
561 // high-level IR and can't just drop statements into the middle of an expression or even use
562 // gotos.
563 //
564 // Since we can't insert statements into an expression, we run the inline function as extra
565 // statements before the statement we're currently processing, relying on a lack of execution
566 // order guarantees.
567 SkASSERT(fContext);
568 SkASSERT(this->isSafeToInline(call.function().definition(), usage));
569
570 const ExpressionArray& arguments = call.arguments();
571 const Position pos = call.fPosition;
572 const FunctionDefinition& function = *call.function().definition();
573 const Block& body = function.body()->as<Block>();
574 const Analysis::ReturnComplexity returnComplexity = Analysis::GetReturnComplexity(function);
575
576 StatementArray inlineStatements;
577 int expectedStmtCount = 1 + // Result variable
578 arguments.size() + // Function argument temp-vars
579 body.children().size(); // Inlined code
580
581 inlineStatements.reserve_exact(expectedStmtCount);
582
583 std::unique_ptr<Expression> resultExpr;
584 if (returnComplexity > Analysis::ReturnComplexity::kSingleSafeReturn &&
585 !function.declaration().returnType().isVoid()) {
586 // Create a variable to hold the result in the extra statements. We don't need to do this
587 // for void-return functions, or in cases that are simple enough that we can just replace
588 // the function-call node with the result expression.
589 ScratchVariable var = Variable::MakeScratchVariable(*fContext,
590 fMangler,
591 function.declaration().name(),
592 &function.declaration().returnType(),
593 symbolTable,
594 /*initialValue=*/nullptr);
595 inlineStatements.push_back(std::move(var.fVarDecl));
596 resultExpr = VariableReference::Make(Position(), var.fVarSymbol);
597 }
598
599 // Create variables in the extra statements to hold the arguments, and assign the arguments to
600 // them.
601 VariableRewriteMap varMap;
602 for (int i = 0; i < arguments.size(); ++i) {
603 const Expression* arg = arguments[i].get();
604 const Variable* param = function.declaration().parameters()[i];
605 if (!argument_needs_scratch_variable(arg, param, usage)) {
606 varMap.set(param, arg->clone());
607 continue;
608 }
609 ScratchVariable var = Variable::MakeScratchVariable(*fContext,
610 fMangler,
611 param->name(),
612 &arg->type(),
613 symbolTable,
614 arg->clone());
615 inlineStatements.push_back(std::move(var.fVarDecl));
616 varMap.set(param, VariableReference::Make(Position(), var.fVarSymbol));
617 }
618
619 for (const std::unique_ptr<Statement>& stmt : body.children()) {
620 inlineStatements.push_back(this->inlineStatement(pos, &varMap, symbolTable,
621 &resultExpr, returnComplexity, *stmt,
622 usage, caller->isBuiltin()));
623 }
624
625 SkASSERT(inlineStatements.size() <= expectedStmtCount);
626
627 // Wrap all of the generated statements in a block. We need a real Block here, because we need
628 // to add another child statement to the Block later.
629 InlinedCall inlinedCall;
630 inlinedCall.fInlinedBody = Block::MakeBlock(pos, std::move(inlineStatements),
631 Block::Kind::kUnbracedBlock);
632 if (resultExpr) {
633 // Return our result expression as-is.
634 inlinedCall.fReplacementExpr = std::move(resultExpr);
635 } else if (function.declaration().returnType().isVoid()) {
636 // It's a void function, so its result is the empty expression.
637 inlinedCall.fReplacementExpr = EmptyExpression::Make(pos, *fContext);
638 } else {
639 // It's a non-void function, but it never created a result expression--that is, it never
640 // returned anything on any path! This should have been detected in the function finalizer.
641 // Still, discard our output and generate an error.
642 SkDEBUGFAIL("inliner found non-void function that fails to return a value on any path");
643 fContext->fErrors->error(function.fPosition, "inliner found non-void function '" +
644 std::string(function.declaration().name()) +
645 "' that fails to return a value on any path");
646 inlinedCall = {};
647 }
648
649 return inlinedCall;
650 }
651
isSafeToInline(const FunctionDefinition * functionDef,const ProgramUsage & usage)652 bool Inliner::isSafeToInline(const FunctionDefinition* functionDef, const ProgramUsage& usage) {
653 // A threshold of zero indicates that the inliner is completely disabled, so we can just return.
654 if (this->settings().fInlineThreshold <= 0) {
655 return false;
656 }
657
658 // Enforce a limit on inlining to avoid pathological cases. (inliner/ExponentialGrowth.sksl)
659 if (fInlinedStatementCounter >= kInlinedStatementLimit) {
660 return false;
661 }
662
663 if (functionDef == nullptr) {
664 // Can't inline something if we don't actually have its definition.
665 return false;
666 }
667
668 if (functionDef->declaration().modifierFlags().isNoInline()) {
669 // Refuse to inline functions decorated with `noinline`.
670 return false;
671 }
672
673 for (const Variable* param : functionDef->declaration().parameters()) {
674 // We don't allow inlining functions with parameters that are written-to, if they...
675 // - are `out` parameters (see skia:11326 for rationale.)
676 // - are arrays or structures (introducing temporary copies is non-trivial)
677 if ((param->modifierFlags() & ModifierFlag::kOut) ||
678 param->type().isArray() ||
679 param->type().isStruct()) {
680 ProgramUsage::VariableCounts counts = usage.get(*param);
681 if (counts.fWrite > 0) {
682 return false;
683 }
684 }
685 }
686
687 // We don't have a mechanism to simulate early returns, so we can't inline if there is one.
688 return Analysis::GetReturnComplexity(*functionDef) < Analysis::ReturnComplexity::kEarlyReturns;
689 }
690
691 // A candidate function for inlining, containing everything that `inlineCall` needs.
692 struct InlineCandidate {
693 SymbolTable* fSymbols; // the SymbolTable of the candidate
694 std::unique_ptr<Statement>* fParentStmt; // the parent Statement of the enclosing stmt
695 std::unique_ptr<Statement>* fEnclosingStmt; // the Statement containing the candidate
696 std::unique_ptr<Expression>* fCandidateExpr; // the candidate FunctionCall to be inlined
697 FunctionDefinition* fEnclosingFunction; // the Function containing the candidate
698 };
699
700 struct InlineCandidateList {
701 std::vector<InlineCandidate> fCandidates;
702 };
703
704 class InlineCandidateAnalyzer {
705 public:
706 // A list of all the inlining candidates we found during analysis.
707 InlineCandidateList* fCandidateList;
708
709 // A stack of the symbol tables; since most nodes don't have one, expected to be shallower than
710 // the enclosing-statement stack.
711 std::vector<SymbolTable*> fSymbolTableStack;
712 // A stack of "enclosing" statements--these would be suitable for the inliner to use for adding
713 // new instructions. Not all statements are suitable (e.g. a for-loop's initializer). The
714 // inliner might replace a statement with a block containing the statement.
715 std::vector<std::unique_ptr<Statement>*> fEnclosingStmtStack;
716 // The function that we're currently processing (i.e. inlining into).
717 FunctionDefinition* fEnclosingFunction = nullptr;
718
visit(const std::vector<std::unique_ptr<ProgramElement>> & elements,SymbolTable * symbols,InlineCandidateList * candidateList)719 void visit(const std::vector<std::unique_ptr<ProgramElement>>& elements,
720 SymbolTable* symbols,
721 InlineCandidateList* candidateList) {
722 fCandidateList = candidateList;
723 fSymbolTableStack.push_back(symbols);
724
725 for (const std::unique_ptr<ProgramElement>& pe : elements) {
726 this->visitProgramElement(pe.get());
727 }
728
729 fSymbolTableStack.pop_back();
730 fCandidateList = nullptr;
731 }
732
visitProgramElement(ProgramElement * pe)733 void visitProgramElement(ProgramElement* pe) {
734 switch (pe->kind()) {
735 case ProgramElement::Kind::kFunction: {
736 FunctionDefinition& funcDef = pe->as<FunctionDefinition>();
737
738 // If this function has parameter names that would shadow globally-scoped names, we
739 // don't scan it for inline candidates, because it's too late to mangle the names.
740 bool foundShadowingParameterName = false;
741 for (const Variable* param : funcDef.declaration().parameters()) {
742 if (fSymbolTableStack.front()->find(param->name())) {
743 foundShadowingParameterName = true;
744 break;
745 }
746 }
747
748 if (!foundShadowingParameterName) {
749 fEnclosingFunction = &funcDef;
750 this->visitStatement(&funcDef.body());
751 }
752 break;
753 }
754 default:
755 // The inliner can't operate outside of a function's scope.
756 break;
757 }
758 }
759
visitStatement(std::unique_ptr<Statement> * stmt,bool isViableAsEnclosingStatement=true)760 void visitStatement(std::unique_ptr<Statement>* stmt,
761 bool isViableAsEnclosingStatement = true) {
762 if (!*stmt) {
763 return;
764 }
765
766 Analysis::SymbolTableStackBuilder scopedStackBuilder(stmt->get(), &fSymbolTableStack);
767 // If this statement contains symbols that would shadow globally-scoped names, we don't look
768 // for any inline candidates, because it's too late to mangle the names.
769 if (scopedStackBuilder.foundSymbolTable() &&
770 fSymbolTableStack.back()->wouldShadowSymbolsFrom(fSymbolTableStack.front())) {
771 return;
772 }
773
774 size_t oldEnclosingStmtStackSize = fEnclosingStmtStack.size();
775
776 if (isViableAsEnclosingStatement) {
777 fEnclosingStmtStack.push_back(stmt);
778 }
779
780 switch ((*stmt)->kind()) {
781 case Statement::Kind::kBreak:
782 case Statement::Kind::kContinue:
783 case Statement::Kind::kDiscard:
784 case Statement::Kind::kNop:
785 break;
786
787 case Statement::Kind::kBlock: {
788 Block& block = (*stmt)->as<Block>();
789 for (std::unique_ptr<Statement>& blockStmt : block.children()) {
790 this->visitStatement(&blockStmt);
791 }
792 break;
793 }
794 case Statement::Kind::kDo: {
795 DoStatement& doStmt = (*stmt)->as<DoStatement>();
796 // The loop body is a candidate for inlining.
797 this->visitStatement(&doStmt.statement());
798 // The inliner isn't smart enough to inline the test-expression for a do-while
799 // loop at this time. There are two limitations:
800 // - We would need to insert the inlined-body block at the very end of the do-
801 // statement's inner fStatement. We don't support that today, but it's doable.
802 // - We cannot inline the test expression if the loop uses `continue` anywhere; that
803 // would skip over the inlined block that evaluates the test expression. There
804 // isn't a good fix for this--any workaround would be more complex than the cost
805 // of a function call. However, loops that don't use `continue` would still be
806 // viable candidates for inlining.
807 break;
808 }
809 case Statement::Kind::kExpression: {
810 ExpressionStatement& expr = (*stmt)->as<ExpressionStatement>();
811 this->visitExpression(&expr.expression());
812 break;
813 }
814 case Statement::Kind::kFor: {
815 ForStatement& forStmt = (*stmt)->as<ForStatement>();
816 // The initializer and loop body are candidates for inlining.
817 this->visitStatement(&forStmt.initializer(),
818 /*isViableAsEnclosingStatement=*/false);
819 this->visitStatement(&forStmt.statement());
820
821 // The inliner isn't smart enough to inline the test- or increment-expressions
822 // of a for loop loop at this time. There are a handful of limitations:
823 // - We would need to insert the test-expression block at the very beginning of the
824 // for-loop's inner fStatement, and the increment-expression block at the very
825 // end. We don't support that today, but it's doable.
826 // - The for-loop's built-in test-expression would need to be dropped entirely,
827 // and the loop would be halted via a break statement at the end of the inlined
828 // test-expression. This is again something we don't support today, but it could
829 // be implemented.
830 // - We cannot inline the increment-expression if the loop uses `continue` anywhere;
831 // that would skip over the inlined block that evaluates the increment expression.
832 // There isn't a good fix for this--any workaround would be more complex than the
833 // cost of a function call. However, loops that don't use `continue` would still
834 // be viable candidates for increment-expression inlining.
835 break;
836 }
837 case Statement::Kind::kIf: {
838 IfStatement& ifStmt = (*stmt)->as<IfStatement>();
839 this->visitExpression(&ifStmt.test());
840 this->visitStatement(&ifStmt.ifTrue());
841 this->visitStatement(&ifStmt.ifFalse());
842 break;
843 }
844 case Statement::Kind::kReturn: {
845 ReturnStatement& returnStmt = (*stmt)->as<ReturnStatement>();
846 this->visitExpression(&returnStmt.expression());
847 break;
848 }
849 case Statement::Kind::kSwitch: {
850 SwitchStatement& switchStmt = (*stmt)->as<SwitchStatement>();
851 this->visitExpression(&switchStmt.value());
852 for (const std::unique_ptr<Statement>& switchCase : switchStmt.cases()) {
853 // The switch-case's fValue cannot be a FunctionCall; skip it.
854 this->visitStatement(&switchCase->as<SwitchCase>().statement());
855 }
856 break;
857 }
858 case Statement::Kind::kVarDeclaration: {
859 VarDeclaration& varDeclStmt = (*stmt)->as<VarDeclaration>();
860 // Don't need to scan the declaration's sizes; those are always literals.
861 this->visitExpression(&varDeclStmt.value());
862 break;
863 }
864 default:
865 SkUNREACHABLE;
866 }
867
868 // Pop our symbol and enclosing-statement stacks.
869 fEnclosingStmtStack.resize(oldEnclosingStmtStackSize);
870 }
871
visitExpression(std::unique_ptr<Expression> * expr)872 void visitExpression(std::unique_ptr<Expression>* expr) {
873 if (!*expr) {
874 return;
875 }
876
877 switch ((*expr)->kind()) {
878 case Expression::Kind::kFieldAccess:
879 case Expression::Kind::kFunctionReference:
880 case Expression::Kind::kLiteral:
881 case Expression::Kind::kMethodReference:
882 case Expression::Kind::kSetting:
883 case Expression::Kind::kTypeReference:
884 case Expression::Kind::kVariableReference:
885 // Nothing to scan here.
886 break;
887
888 case Expression::Kind::kBinary: {
889 BinaryExpression& binaryExpr = (*expr)->as<BinaryExpression>();
890 this->visitExpression(&binaryExpr.left());
891
892 // Logical-and and logical-or binary expressions do not inline the right side,
893 // because that would invalidate short-circuiting. That is, when evaluating
894 // expressions like these:
895 // (false && x()) // always false
896 // (true || y()) // always true
897 // It is illegal for side-effects from x() or y() to occur. The simplest way to
898 // enforce that rule is to avoid inlining the right side entirely. However, it is
899 // safe for other types of binary expression to inline both sides.
900 Operator op = binaryExpr.getOperator();
901 bool shortCircuitable = (op.kind() == Operator::Kind::LOGICALAND ||
902 op.kind() == Operator::Kind::LOGICALOR);
903 if (!shortCircuitable) {
904 this->visitExpression(&binaryExpr.right());
905 }
906 break;
907 }
908 case Expression::Kind::kChildCall: {
909 ChildCall& childCallExpr = (*expr)->as<ChildCall>();
910 for (std::unique_ptr<Expression>& arg : childCallExpr.arguments()) {
911 this->visitExpression(&arg);
912 }
913 break;
914 }
915 case Expression::Kind::kConstructorArray:
916 case Expression::Kind::kConstructorArrayCast:
917 case Expression::Kind::kConstructorCompound:
918 case Expression::Kind::kConstructorCompoundCast:
919 case Expression::Kind::kConstructorDiagonalMatrix:
920 case Expression::Kind::kConstructorMatrixResize:
921 case Expression::Kind::kConstructorScalarCast:
922 case Expression::Kind::kConstructorSplat:
923 case Expression::Kind::kConstructorStruct: {
924 AnyConstructor& constructorExpr = (*expr)->asAnyConstructor();
925 for (std::unique_ptr<Expression>& arg : constructorExpr.argumentSpan()) {
926 this->visitExpression(&arg);
927 }
928 break;
929 }
930 case Expression::Kind::kFunctionCall: {
931 FunctionCall& funcCallExpr = (*expr)->as<FunctionCall>();
932 for (std::unique_ptr<Expression>& arg : funcCallExpr.arguments()) {
933 this->visitExpression(&arg);
934 }
935 this->addInlineCandidate(expr);
936 break;
937 }
938 case Expression::Kind::kIndex: {
939 IndexExpression& indexExpr = (*expr)->as<IndexExpression>();
940 this->visitExpression(&indexExpr.base());
941 this->visitExpression(&indexExpr.index());
942 break;
943 }
944 case Expression::Kind::kPostfix: {
945 PostfixExpression& postfixExpr = (*expr)->as<PostfixExpression>();
946 this->visitExpression(&postfixExpr.operand());
947 break;
948 }
949 case Expression::Kind::kPrefix: {
950 PrefixExpression& prefixExpr = (*expr)->as<PrefixExpression>();
951 this->visitExpression(&prefixExpr.operand());
952 break;
953 }
954 case Expression::Kind::kSwizzle: {
955 Swizzle& swizzleExpr = (*expr)->as<Swizzle>();
956 this->visitExpression(&swizzleExpr.base());
957 break;
958 }
959 case Expression::Kind::kTernary: {
960 TernaryExpression& ternaryExpr = (*expr)->as<TernaryExpression>();
961 // The test expression is a candidate for inlining.
962 this->visitExpression(&ternaryExpr.test());
963 // The true- and false-expressions cannot be inlined, because we are only allowed to
964 // evaluate one side.
965 break;
966 }
967 default:
968 SkUNREACHABLE;
969 }
970 }
971
addInlineCandidate(std::unique_ptr<Expression> * candidate)972 void addInlineCandidate(std::unique_ptr<Expression>* candidate) {
973 fCandidateList->fCandidates.push_back(
974 InlineCandidate{fSymbolTableStack.back(),
975 find_parent_statement(fEnclosingStmtStack),
976 fEnclosingStmtStack.back(),
977 candidate,
978 fEnclosingFunction});
979 }
980 };
981
candidate_func(const InlineCandidate & candidate)982 static const FunctionDeclaration& candidate_func(const InlineCandidate& candidate) {
983 return (*candidate.fCandidateExpr)->as<FunctionCall>().function();
984 }
985
functionCanBeInlined(const FunctionDeclaration & funcDecl,const ProgramUsage & usage,InlinabilityCache * cache)986 bool Inliner::functionCanBeInlined(const FunctionDeclaration& funcDecl,
987 const ProgramUsage& usage,
988 InlinabilityCache* cache) {
989 if (const bool* cachedInlinability = cache->find(&funcDecl)) {
990 return *cachedInlinability;
991 }
992 bool inlinability = this->isSafeToInline(funcDecl.definition(), usage);
993 cache->set(&funcDecl, inlinability);
994 return inlinability;
995 }
996
candidateCanBeInlined(const InlineCandidate & candidate,const ProgramUsage & usage,InlinabilityCache * cache)997 bool Inliner::candidateCanBeInlined(const InlineCandidate& candidate,
998 const ProgramUsage& usage,
999 InlinabilityCache* cache) {
1000 // Check the cache to see if this function is safe to inline.
1001 const FunctionDeclaration& funcDecl = candidate_func(candidate);
1002 if (!this->functionCanBeInlined(funcDecl, usage, cache)) {
1003 return false;
1004 }
1005
1006 // Even if the function is safe, the arguments we are passing may not be. In particular, we
1007 // can't make copies of opaque values, so we need to reject inline candidates that would need to
1008 // do this. Every call has different arguments, so this part is not cacheable. (skia:13824)
1009 const FunctionCall& call = candidate.fCandidateExpr->get()->as<FunctionCall>();
1010 const ExpressionArray& arguments = call.arguments();
1011 for (int i = 0; i < arguments.size(); ++i) {
1012 const Expression* arg = arguments[i].get();
1013 if (arg->type().isOpaque()) {
1014 const Variable* param = funcDecl.parameters()[i];
1015 if (argument_needs_scratch_variable(arg, param, usage)) {
1016 return false;
1017 }
1018 }
1019 }
1020
1021 return true;
1022 }
1023
getFunctionSize(const FunctionDeclaration & funcDecl,FunctionSizeCache * cache)1024 int Inliner::getFunctionSize(const FunctionDeclaration& funcDecl, FunctionSizeCache* cache) {
1025 if (const int* cachedSize = cache->find(&funcDecl)) {
1026 return *cachedSize;
1027 }
1028 int size = Analysis::NodeCountUpToLimit(*funcDecl.definition(),
1029 this->settings().fInlineThreshold);
1030 cache->set(&funcDecl, size);
1031 return size;
1032 }
1033
buildCandidateList(const std::vector<std::unique_ptr<ProgramElement>> & elements,SymbolTable * symbols,ProgramUsage * usage,InlineCandidateList * candidateList)1034 void Inliner::buildCandidateList(const std::vector<std::unique_ptr<ProgramElement>>& elements,
1035 SymbolTable* symbols,
1036 ProgramUsage* usage,
1037 InlineCandidateList* candidateList) {
1038 // This is structured much like a ProgramVisitor, but does not actually use ProgramVisitor.
1039 // The analyzer needs to keep track of the `unique_ptr<T>*` of statements and expressions so
1040 // that they can later be replaced, and ProgramVisitor does not provide this; it only provides a
1041 // `const T&`.
1042 InlineCandidateAnalyzer analyzer;
1043 analyzer.visit(elements, symbols, candidateList);
1044
1045 // Early out if there are no inlining candidates.
1046 std::vector<InlineCandidate>& candidates = candidateList->fCandidates;
1047 if (candidates.empty()) {
1048 return;
1049 }
1050
1051 // Remove candidates that are not safe to inline.
1052 InlinabilityCache cache;
1053 candidates.erase(std::remove_if(candidates.begin(),
1054 candidates.end(),
1055 [&](const InlineCandidate& candidate) {
1056 return !this->candidateCanBeInlined(
1057 candidate, *usage, &cache);
1058 }),
1059 candidates.end());
1060
1061 // If the inline threshold is unlimited, or if we have no candidates left, our candidate list is
1062 // complete.
1063 if (this->settings().fInlineThreshold == INT_MAX || candidates.empty()) {
1064 return;
1065 }
1066
1067 // Remove candidates on a per-function basis if the effect of inlining would be to make more
1068 // than `inlineThreshold` nodes. (i.e. if Func() would be inlined six times and its size is
1069 // 10 nodes, it should be inlined if the inlineThreshold is 60 or higher.)
1070 FunctionSizeCache functionSizeCache;
1071 FunctionSizeCache candidateTotalCost;
1072 for (InlineCandidate& candidate : candidates) {
1073 const FunctionDeclaration& fnDecl = candidate_func(candidate);
1074 candidateTotalCost[&fnDecl] += this->getFunctionSize(fnDecl, &functionSizeCache);
1075 }
1076
1077 candidates.erase(std::remove_if(candidates.begin(), candidates.end(),
1078 [&](const InlineCandidate& candidate) {
1079 const FunctionDeclaration& fnDecl = candidate_func(candidate);
1080 if (fnDecl.modifierFlags().isInline()) {
1081 // Functions marked `inline` ignore size limitations.
1082 return false;
1083 }
1084 if (usage->get(fnDecl) == 1) {
1085 // If a function is only used once, it's cost-free to inline.
1086 return false;
1087 }
1088 if (candidateTotalCost[&fnDecl] <= this->settings().fInlineThreshold) {
1089 // We won't exceed the inline threshold by inlining this.
1090 return false;
1091 }
1092 // Inlining this function will add too many IRNodes.
1093 return true;
1094 }),
1095 candidates.end());
1096 }
1097
analyze(const std::vector<std::unique_ptr<ProgramElement>> & elements,SymbolTable * symbols,ProgramUsage * usage)1098 bool Inliner::analyze(const std::vector<std::unique_ptr<ProgramElement>>& elements,
1099 SymbolTable* symbols,
1100 ProgramUsage* usage) {
1101 // A threshold of zero indicates that the inliner is completely disabled, so we can just return.
1102 if (this->settings().fInlineThreshold <= 0) {
1103 return false;
1104 }
1105
1106 // Enforce a limit on inlining to avoid pathological cases. (inliner/ExponentialGrowth.sksl)
1107 if (fInlinedStatementCounter >= kInlinedStatementLimit) {
1108 return false;
1109 }
1110
1111 InlineCandidateList candidateList;
1112 this->buildCandidateList(elements, symbols, usage, &candidateList);
1113
1114 // Inline the candidates where we've determined that it's safe to do so.
1115 using StatementRemappingTable = THashMap<std::unique_ptr<Statement>*,
1116 std::unique_ptr<Statement>*>;
1117 StatementRemappingTable statementRemappingTable;
1118
1119 bool madeChanges = false;
1120 for (const InlineCandidate& candidate : candidateList.fCandidates) {
1121 const FunctionCall& funcCall = (*candidate.fCandidateExpr)->as<FunctionCall>();
1122
1123 // Convert the function call to its inlined equivalent.
1124 InlinedCall inlinedCall = this->inlineCall(funcCall, candidate.fSymbols, *usage,
1125 &candidate.fEnclosingFunction->declaration());
1126
1127 // Stop if an error was detected during the inlining process.
1128 if (!inlinedCall.fInlinedBody && !inlinedCall.fReplacementExpr) {
1129 break;
1130 }
1131
1132 // Ensure that the inlined body has a scope if it needs one.
1133 this->ensureScopedBlocks(inlinedCall.fInlinedBody.get(), candidate.fParentStmt->get());
1134
1135 // Add references within the inlined body
1136 usage->add(inlinedCall.fInlinedBody.get());
1137
1138 // Look up the enclosing statement; remap it if necessary.
1139 std::unique_ptr<Statement>* enclosingStmt = candidate.fEnclosingStmt;
1140 for (;;) {
1141 std::unique_ptr<Statement>** remappedStmt = statementRemappingTable.find(enclosingStmt);
1142 if (!remappedStmt) {
1143 break;
1144 }
1145 enclosingStmt = *remappedStmt;
1146 }
1147
1148 // Move the enclosing statement to the end of the unscoped Block containing the inlined
1149 // function, then replace the enclosing statement with that Block.
1150 // Before:
1151 // fInlinedBody = Block{ stmt1, stmt2, stmt3 }
1152 // fEnclosingStmt = stmt4
1153 // After:
1154 // fInlinedBody = null
1155 // fEnclosingStmt = Block{ stmt1, stmt2, stmt3, stmt4 }
1156 inlinedCall.fInlinedBody->children().push_back(std::move(*enclosingStmt));
1157 *enclosingStmt = std::move(inlinedCall.fInlinedBody);
1158
1159 // Replace the candidate function call with our replacement expression.
1160 usage->remove(candidate.fCandidateExpr->get());
1161 usage->add(inlinedCall.fReplacementExpr.get());
1162 *candidate.fCandidateExpr = std::move(inlinedCall.fReplacementExpr);
1163 madeChanges = true;
1164
1165 // If anything else pointed at our enclosing statement, it's now pointing at a Block
1166 // containing many other statements as well. Maintain a fix-up table to account for this.
1167 statementRemappingTable.set(enclosingStmt,&(*enclosingStmt)->as<Block>().children().back());
1168
1169 // Stop inlining if we've reached our hard cap on new statements.
1170 if (fInlinedStatementCounter >= kInlinedStatementLimit) {
1171 break;
1172 }
1173
1174 // Note that nothing was destroyed except for the FunctionCall. All other nodes should
1175 // remain valid.
1176 }
1177
1178 return madeChanges;
1179 }
1180
1181 } // namespace SkSL
1182
1183 #endif // SK_ENABLE_OPTIMIZE_SIZE
1184