xref: /aosp_15_r20/external/skia/src/core/SkCubicClipper.cpp (revision c8dee2aa9b3f27cf6c858bd81872bdeb2c07ed17)
1 /*
2  * Copyright 2009 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/core/SkCubicClipper.h"
9 
10 #include "include/core/SkPoint.h"
11 #include "src/core/SkGeometry.h"
12 
13 #include <cstring>
14 #include <utility>
15 
SkCubicClipper()16 SkCubicClipper::SkCubicClipper() {
17     fClip.setEmpty();
18 }
19 
setClip(const SkIRect & clip)20 void SkCubicClipper::setClip(const SkIRect& clip) {
21     // conver to scalars, since that's where we'll see the points
22     fClip.set(clip);
23 }
24 
25 
ChopMonoAtY(const SkPoint pts[4],SkScalar y,SkScalar * t)26 bool SkCubicClipper::ChopMonoAtY(const SkPoint pts[4], SkScalar y, SkScalar* t) {
27     SkScalar ycrv[4];
28     ycrv[0] = pts[0].fY - y;
29     ycrv[1] = pts[1].fY - y;
30     ycrv[2] = pts[2].fY - y;
31     ycrv[3] = pts[3].fY - y;
32 
33 #ifdef NEWTON_RAPHSON    // Quadratic convergence, typically <= 3 iterations.
34     // Initial guess.
35     // TODO(turk): Check for zero denominator? Shouldn't happen unless the curve
36     // is not only monotonic but degenerate.
37     SkScalar t1 = ycrv[0] / (ycrv[0] - ycrv[3]);
38 
39     // Newton's iterations.
40     const SkScalar tol = SK_Scalar1 / 16384;  // This leaves 2 fixed noise bits.
41     SkScalar t0;
42     const int maxiters = 5;
43     int iters = 0;
44     bool converged;
45     do {
46         t0 = t1;
47         SkScalar y01   = SkScalarInterp(ycrv[0], ycrv[1], t0);
48         SkScalar y12   = SkScalarInterp(ycrv[1], ycrv[2], t0);
49         SkScalar y23   = SkScalarInterp(ycrv[2], ycrv[3], t0);
50         SkScalar y012  = SkScalarInterp(y01,  y12,  t0);
51         SkScalar y123  = SkScalarInterp(y12,  y23,  t0);
52         SkScalar y0123 = SkScalarInterp(y012, y123, t0);
53         SkScalar yder  = (y123 - y012) * 3;
54         // TODO(turk): check for yder==0: horizontal.
55         t1 -= y0123 / yder;
56         converged = SkScalarAbs(t1 - t0) <= tol;  // NaN-safe
57         ++iters;
58     } while (!converged && (iters < maxiters));
59     *t = t1;                  // Return the result.
60 
61     // The result might be valid, even if outside of the range [0, 1], but
62     // we never evaluate a Bezier outside this interval, so we return false.
63     if (t1 < 0 || t1 > SK_Scalar1)
64         return false;         // This shouldn't happen, but check anyway.
65     return converged;
66 
67 #else  // BISECTION    // Linear convergence, typically 16 iterations.
68 
69     // Check that the endpoints straddle zero.
70     SkScalar tNeg, tPos;    // Negative and positive function parameters.
71     if (ycrv[0] < 0) {
72         if (ycrv[3] < 0)
73             return false;
74         tNeg = 0;
75         tPos = SK_Scalar1;
76     } else if (ycrv[0] > 0) {
77         if (ycrv[3] > 0)
78             return false;
79         tNeg = SK_Scalar1;
80         tPos = 0;
81     } else {
82         *t = 0;
83         return true;
84     }
85 
86     const SkScalar tol = SK_Scalar1 / 65536;  // 1 for fixed, 1e-5 for float.
87     do {
88         SkScalar tMid = (tPos + tNeg) / 2;
89         SkScalar y01   = SkScalarInterp(ycrv[0], ycrv[1], tMid);
90         SkScalar y12   = SkScalarInterp(ycrv[1], ycrv[2], tMid);
91         SkScalar y23   = SkScalarInterp(ycrv[2], ycrv[3], tMid);
92         SkScalar y012  = SkScalarInterp(y01,     y12,     tMid);
93         SkScalar y123  = SkScalarInterp(y12,     y23,     tMid);
94         SkScalar y0123 = SkScalarInterp(y012,    y123,    tMid);
95         if (y0123 == 0) {
96             *t = tMid;
97             return true;
98         }
99         if (y0123 < 0)  tNeg = tMid;
100         else            tPos = tMid;
101     } while (!(SkScalarAbs(tPos - tNeg) <= tol));   // Nan-safe
102 
103     *t = (tNeg + tPos) / 2;
104     return true;
105 #endif  // BISECTION
106 }
107 
108 
clipCubic(const SkPoint srcPts[4],SkPoint dst[4])109 bool SkCubicClipper::clipCubic(const SkPoint srcPts[4], SkPoint dst[4]) {
110     bool reverse;
111 
112     // we need the data to be monotonically descending in Y
113     if (srcPts[0].fY > srcPts[3].fY) {
114         dst[0] = srcPts[3];
115         dst[1] = srcPts[2];
116         dst[2] = srcPts[1];
117         dst[3] = srcPts[0];
118         reverse = true;
119     } else {
120         memcpy(dst, srcPts, 4 * sizeof(SkPoint));
121         reverse = false;
122     }
123 
124     // are we completely above or below
125     const SkScalar ctop = fClip.fTop;
126     const SkScalar cbot = fClip.fBottom;
127     if (dst[3].fY <= ctop || dst[0].fY >= cbot) {
128         return false;
129     }
130 
131     SkScalar t;
132     SkPoint tmp[7]; // for SkChopCubicAt
133 
134     // are we partially above
135     if (dst[0].fY < ctop && ChopMonoAtY(dst, ctop, &t)) {
136         SkChopCubicAt(dst, tmp, t);
137         dst[0] = tmp[3];
138         dst[1] = tmp[4];
139         dst[2] = tmp[5];
140     }
141 
142     // are we partially below
143     if (dst[3].fY > cbot && ChopMonoAtY(dst, cbot, &t)) {
144         SkChopCubicAt(dst, tmp, t);
145         dst[1] = tmp[1];
146         dst[2] = tmp[2];
147         dst[3] = tmp[3];
148     }
149 
150     if (reverse) {
151         using std::swap;
152         swap(dst[0], dst[3]);
153         swap(dst[1], dst[2]);
154     }
155     return true;
156 }
157