1 // Copyright 2019 Google LLC
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include <dlfcn.h>
16 #include <syscall.h>
17 #include <unistd.h>
18
19 #include <algorithm>
20 #include <cstdint>
21 #include <cstdlib>
22 #include <cstring>
23 #include <iterator>
24 #include <list>
25 #include <string>
26 #include <type_traits>
27 #include <utility>
28 #include <vector>
29
30 #include "absl/base/attributes.h"
31 #include "absl/base/dynamic_annotations.h"
32 #include "absl/flags/parse.h"
33 #include "absl/log/check.h"
34 #include "absl/log/initialize.h"
35 #include "absl/log/log.h"
36 #include "absl/status/statusor.h"
37 #include "absl/strings/str_cat.h"
38 #include "google/protobuf/descriptor.h"
39 #include "google/protobuf/message.h"
40 #include "sandboxed_api/call.h"
41 #include "sandboxed_api/lenval_core.h"
42 #include "sandboxed_api/proto_arg.pb.h"
43 #include "sandboxed_api/proto_helper.h"
44 #include "sandboxed_api/sandbox2/comms.h"
45 #include "sandboxed_api/sandbox2/forkingclient.h"
46 #include "sandboxed_api/sandbox2/logsink.h"
47 #include "sandboxed_api/util/raw_logging.h"
48 #include "sandboxed_api/var_type.h"
49
50 #include <ffi.h>
51
52 namespace sapi {
53 namespace {
54
55 // Guess the FFI type on the basis of data size and float/non-float/bool.
GetFFIType(size_t size,v::Type type)56 ffi_type* GetFFIType(size_t size, v::Type type) {
57 switch (type) {
58 case v::Type::kVoid:
59 return &ffi_type_void;
60 case v::Type::kPointer:
61 return &ffi_type_pointer;
62 case v::Type::kFd:
63 return &ffi_type_sint;
64 case v::Type::kFloat:
65 if (size == sizeof(float)) {
66 return &ffi_type_float;
67 }
68 if (size == sizeof(double)) {
69 return &ffi_type_double;
70 }
71 if (size == sizeof(long double)) {
72 return &ffi_type_longdouble;
73 }
74 LOG(FATAL) << "Unsupported floating-point size: " << size;
75 case v::Type::kInt:
76 switch (size) {
77 case 1:
78 return &ffi_type_uint8;
79 case 2:
80 return &ffi_type_uint16;
81 case 4:
82 return &ffi_type_uint32;
83 case 8:
84 return &ffi_type_uint64;
85 default:
86 LOG(FATAL) << "Unsupported integral size: " << size;
87 }
88 case v::Type::kStruct:
89 LOG(FATAL) << "Structs are not supported as function arguments";
90 case v::Type::kProto:
91 LOG(FATAL) << "Protos are not supported as function arguments";
92 default:
93 LOG(FATAL) << "Unknown type: " << type << " of size: " << size;
94 }
95 }
96
97 // Provides an interface to prepare the arguments for a function call.
98 // In case of protobuf arguments, the class allocates and manages
99 // memory for the deserialized protobuf.
100 class FunctionCallPreparer {
101 public:
FunctionCallPreparer(const FuncCall & call)102 explicit FunctionCallPreparer(const FuncCall& call) {
103 CHECK(call.argc <= FuncCall::kArgsMax)
104 << "Number of arguments of a sandbox call exceeds limits.";
105 for (int i = 0; i < call.argc; ++i) {
106 arg_types_[i] = GetFFIType(call.arg_size[i], call.arg_type[i]);
107 }
108 ret_type_ = GetFFIType(call.ret_size, call.ret_type);
109 for (int i = 0; i < call.argc; ++i) {
110 if (call.arg_type[i] == v::Type::kPointer &&
111 call.aux_type[i] == v::Type::kProto) {
112 // Deserialize protobuf stored in the LenValueStruct and keep a
113 // reference to both. This way we are able to update the content of the
114 // LenValueStruct (when the sandboxee modifies the protobuf).
115 // This will also make sure that the protobuf is freed afterwards.
116 arg_values_[i] = GetDeserializedProto(
117 reinterpret_cast<LenValStruct*>(call.args[i].arg_int));
118 } else if (call.arg_type[i] == v::Type::kFloat) {
119 arg_values_[i] = reinterpret_cast<const void*>(&call.args[i].arg_float);
120 } else {
121 arg_values_[i] = reinterpret_cast<const void*>(&call.args[i].arg_int);
122 }
123 }
124 }
125
~FunctionCallPreparer()126 ~FunctionCallPreparer() {
127 for (const auto& idx_proto : protos_to_be_destroyed_) {
128 const auto proto = idx_proto.second;
129 LenValStruct* lvs = idx_proto.first;
130 // There is no way to figure out whether the protobuf structure has
131 // changed or not, so we always serialize the protobuf again and replace
132 // the LenValStruct content.
133 std::vector<uint8_t> serialized = SerializeProto(*proto).value();
134 // Reallocate the LV memory to match its length.
135 if (lvs->size != serialized.size()) {
136 void* newdata = realloc(lvs->data, serialized.size());
137 if (!newdata) {
138 LOG(FATAL) << "Failed to reallocate protobuf buffer (size="
139 << serialized.size() << ")";
140 }
141 lvs->size = serialized.size();
142 lvs->data = newdata;
143 }
144 memcpy(lvs->data, serialized.data(), serialized.size());
145
146 delete proto;
147 }
148 }
149
ret_type() const150 ffi_type* ret_type() const { return ret_type_; }
arg_types() const151 ffi_type** arg_types() const { return const_cast<ffi_type**>(arg_types_); }
arg_values() const152 void** arg_values() const { return const_cast<void**>(arg_values_); }
153
154 private:
155 // Deserializes the protobuf argument.
GetDeserializedProto(LenValStruct * src)156 google::protobuf::MessageLite** GetDeserializedProto(LenValStruct* src) {
157 ProtoArg proto_arg;
158 if (!proto_arg.ParseFromArray(src->data, src->size)) {
159 LOG(FATAL) << "Unable to parse ProtoArg.";
160 }
161 const google::protobuf::Descriptor* desc =
162 google::protobuf::DescriptorPool::generated_pool()->FindMessageTypeByName(
163 proto_arg.full_name());
164 LOG_IF(FATAL, desc == nullptr) << "Unable to find the descriptor for '"
165 << proto_arg.full_name() << "'" << desc;
166 google::protobuf::MessageLite* deserialized_proto =
167 google::protobuf::MessageFactory::generated_factory()->GetPrototype(desc)->New();
168 LOG_IF(FATAL, deserialized_proto == nullptr)
169 << "Unable to create deserialized proto for " << proto_arg.full_name();
170 if (!deserialized_proto->ParseFromString(proto_arg.protobuf_data())) {
171 LOG(FATAL) << "Unable to deserialized proto for "
172 << proto_arg.full_name();
173 }
174 protos_to_be_destroyed_.push_back({src, deserialized_proto});
175 return &protos_to_be_destroyed_.back().second;
176 }
177
178 // Use list instead of vector to preserve references even with modifications.
179 // Contains pairs of lenval message pointer -> deserialized message
180 // so that we can serialize the argument again after the function call.
181 std::list<std::pair<LenValStruct*, google::protobuf::MessageLite*>>
182 protos_to_be_destroyed_;
183 ffi_type* ret_type_;
184 ffi_type* arg_types_[FuncCall::kArgsMax];
185 const void* arg_values_[FuncCall::kArgsMax];
186 };
187
188 } // namespace
189
190 namespace client {
191
192 // Error codes in the client code:
193 enum class Error : uintptr_t {
194 kUnset = 0,
195 kDlOpen,
196 kDlSym,
197 kCall,
198 };
199
200 // Handles requests to make function calls.
HandleCallMsg(const FuncCall & call,FuncRet * ret)201 void HandleCallMsg(const FuncCall& call, FuncRet* ret) {
202 VLOG(1) << "HandleMsgCall, func: '" << call.func
203 << "', # of args: " << call.argc;
204
205 ret->ret_type = call.ret_type;
206
207 void* handle = dlopen(nullptr, RTLD_NOW);
208 if (handle == nullptr) {
209 LOG(ERROR) << "dlopen(nullptr, RTLD_NOW)";
210 ret->success = false;
211 ret->int_val = static_cast<uintptr_t>(Error::kDlOpen);
212 return;
213 }
214
215 auto f = dlsym(handle, call.func);
216 if (f == nullptr) {
217 LOG(ERROR) << "Function '" << call.func << "' not found";
218 ret->success = false;
219 ret->int_val = static_cast<uintptr_t>(Error::kDlSym);
220 return;
221 }
222 FunctionCallPreparer arg_prep(call);
223 ffi_cif cif;
224 if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, call.argc, arg_prep.ret_type(),
225 arg_prep.arg_types()) != FFI_OK) {
226 ret->success = false;
227 ret->int_val = static_cast<uintptr_t>(Error::kCall);
228 return;
229 }
230
231 if (ret->ret_type == v::Type::kFloat) {
232 ffi_call(&cif, FFI_FN(f), &ret->float_val, arg_prep.arg_values());
233 } else {
234 ffi_call(&cif, FFI_FN(f), &ret->int_val, arg_prep.arg_values());
235 }
236
237 ret->success = true;
238 }
239
240 // Handles requests to allocate memory inside the sandboxee.
HandleAllocMsg(const size_t size,FuncRet * ret)241 void HandleAllocMsg(const size_t size, FuncRet* ret) {
242 VLOG(1) << "HandleAllocMsg: size=" << size;
243
244 const void* allocated = malloc(size);
245 // Memory is copied to the pointer using an API that the memory sanitizer
246 // is blind to (process_vm_writev). Mark the memory as initialized here, so
247 // that the sandboxed code can still be tested using MSAN.
248 ABSL_ANNOTATE_MEMORY_IS_INITIALIZED(allocated, size);
249
250 ret->ret_type = v::Type::kPointer;
251 ret->int_val = reinterpret_cast<uintptr_t>(allocated);
252 ret->success = true;
253 }
254
255 // Like HandleAllocMsg(), but handles requests to reallocate memory.
HandleReallocMsg(uintptr_t ptr,size_t size,FuncRet * ret)256 void HandleReallocMsg(uintptr_t ptr, size_t size, FuncRet* ret) {
257 VLOG(1) << "HandleReallocMsg(" << absl::StrCat(absl::Hex(ptr)) << ", " << size
258 << ")";
259
260 const void* reallocated = realloc(reinterpret_cast<void*>(ptr), size);
261 // Memory is copied to the pointer using an API that the memory sanitizer
262 // is blind to (process_vm_writev). Mark the memory as initialized here, so
263 // that the sandboxed code can still be tested using MSAN.
264 ABSL_ANNOTATE_MEMORY_IS_INITIALIZED(reallocated, size);
265
266 ret->ret_type = v::Type::kPointer;
267 ret->int_val = reinterpret_cast<uintptr_t>(reallocated);
268 ret->success = true;
269 }
270
271 // Handles requests to free memory previously allocated by HandleAllocMsg() and
272 // HandleReallocMsg().
HandleFreeMsg(uintptr_t ptr,FuncRet * ret)273 void HandleFreeMsg(uintptr_t ptr, FuncRet* ret) {
274 VLOG(1) << "HandleFreeMsg: free(0x" << absl::StrCat(absl::Hex(ptr)) << ")";
275
276 free(reinterpret_cast<void*>(ptr));
277 ret->ret_type = v::Type::kVoid;
278 ret->success = true;
279 ret->int_val = 0ULL;
280 }
281
282 // Handles requests to find a symbol value.
HandleSymbolMsg(const char * symname,FuncRet * ret)283 void HandleSymbolMsg(const char* symname, FuncRet* ret) {
284 ret->ret_type = v::Type::kPointer;
285
286 void* handle = dlopen(nullptr, RTLD_NOW);
287 if (handle == nullptr) {
288 ret->success = false;
289 ret->int_val = static_cast<uintptr_t>(Error::kDlOpen);
290 return;
291 }
292
293 ret->int_val = reinterpret_cast<uintptr_t>(dlsym(handle, symname));
294 ret->success = true;
295 }
296
297 // Handles requests to receive a file descriptor from sandboxer.
HandleSendFd(sandbox2::Comms * comms,FuncRet * ret)298 void HandleSendFd(sandbox2::Comms* comms, FuncRet* ret) {
299 ret->ret_type = v::Type::kInt;
300 int fd = -1;
301
302 if (comms->RecvFD(&fd) == false) {
303 ret->success = false;
304 return;
305 }
306
307 ret->int_val = fd;
308 ret->success = true;
309 }
310
311 // Handles requests to send a file descriptor back to sandboxer.
HandleRecvFd(sandbox2::Comms * comms,int fd_to_transfer,FuncRet * ret)312 void HandleRecvFd(sandbox2::Comms* comms, int fd_to_transfer, FuncRet* ret) {
313 ret->ret_type = v::Type::kVoid;
314
315 if (comms->SendFD(fd_to_transfer) == false) {
316 ret->success = false;
317 return;
318 }
319
320 ret->success = true;
321 }
322
323 // Handles requests to close a file descriptor in the sandboxee.
HandleCloseFd(sandbox2::Comms * comms,int fd_to_close,FuncRet * ret)324 void HandleCloseFd(sandbox2::Comms* comms, int fd_to_close, FuncRet* ret) {
325 VLOG(1) << "HandleCloseFd: close(" << fd_to_close << ")";
326 close(fd_to_close);
327
328 ret->ret_type = v::Type::kVoid;
329 ret->success = true;
330 }
331
HandleStrlen(sandbox2::Comms * comms,const char * ptr,FuncRet * ret)332 void HandleStrlen(sandbox2::Comms* comms, const char* ptr, FuncRet* ret) {
333 ret->ret_type = v::Type::kInt;
334 ret->int_val = strlen(ptr);
335 ret->success = true;
336 }
337
338 template <typename T>
BytesAs(const std::vector<uint8_t> & bytes)339 static T BytesAs(const std::vector<uint8_t>& bytes) {
340 static_assert(std::is_trivial<T>(),
341 "only trivial types can be used with BytesAs");
342 CHECK_EQ(bytes.size(), sizeof(T));
343 T rv;
344 memcpy(&rv, bytes.data(), sizeof(T));
345 return rv;
346 }
347
ServeRequest(sandbox2::Comms * comms)348 void ServeRequest(sandbox2::Comms* comms) {
349 uint32_t tag;
350 std::vector<uint8_t> bytes;
351
352 CHECK(comms->RecvTLV(&tag, &bytes));
353
354 FuncRet ret{}; // Brace-init zeroes struct padding
355
356 switch (tag) {
357 case comms::kMsgCall:
358 VLOG(1) << "Client::kMsgCall";
359 HandleCallMsg(BytesAs<FuncCall>(bytes), &ret);
360 break;
361 case comms::kMsgAllocate:
362 VLOG(1) << "Client::kMsgAllocate";
363 HandleAllocMsg(BytesAs<size_t>(bytes), &ret);
364 break;
365 case comms::kMsgReallocate:
366 VLOG(1) << "Client::kMsgReallocate";
367 {
368 auto req = BytesAs<comms::ReallocRequest>(bytes);
369 HandleReallocMsg(req.old_addr, req.size, &ret);
370 }
371 break;
372 case comms::kMsgFree:
373 VLOG(1) << "Client::kMsgFree";
374 HandleFreeMsg(BytesAs<uintptr_t>(bytes), &ret);
375 break;
376 case comms::kMsgSymbol:
377 CHECK_EQ(bytes.size(),
378 1 + std::distance(bytes.begin(),
379 std::find(bytes.begin(), bytes.end(), '\0')));
380 VLOG(1) << "Received Client::kMsgSymbol message";
381 HandleSymbolMsg(reinterpret_cast<const char*>(bytes.data()), &ret);
382 break;
383 case comms::kMsgExit:
384 VLOG(1) << "Received Client::kMsgExit message";
385 syscall(__NR_exit_group, 0UL);
386 break;
387 case comms::kMsgSendFd:
388 VLOG(1) << "Received Client::kMsgSendFd message";
389 HandleSendFd(comms, &ret);
390 break;
391 case comms::kMsgRecvFd:
392 VLOG(1) << "Received Client::kMsgRecvFd message";
393 HandleRecvFd(comms, BytesAs<int>(bytes), &ret);
394 break;
395 case comms::kMsgClose:
396 VLOG(1) << "Received Client::kMsgClose message";
397 HandleCloseFd(comms, BytesAs<int>(bytes), &ret);
398 break;
399 case comms::kMsgStrlen:
400 VLOG(1) << "Received Client::kMsgStrlen message";
401 HandleStrlen(comms, BytesAs<const char*>(bytes), &ret);
402 break;
403 break;
404 default:
405 LOG(FATAL) << "Received unknown tag: " << tag;
406 break; // Not reached
407 }
408
409 if (ret.ret_type == v::Type::kFloat) {
410 // Make MSAN happy with long double.
411 ABSL_ANNOTATE_MEMORY_IS_INITIALIZED(&ret.float_val, sizeof(ret.float_val));
412 VLOG(1) << "Returned value: " << ret.float_val
413 << ", Success: " << (ret.success ? "Yes" : "No");
414 } else {
415 VLOG(1) << "Returned value: " << ret.int_val << " (0x"
416 << absl::StrCat(absl::Hex(ret.int_val))
417 << "), Success: " << (ret.success ? "Yes" : "No");
418 }
419
420 CHECK(comms->SendTLV(comms::kMsgReturn, sizeof(ret),
421 reinterpret_cast<uint8_t*>(&ret)));
422 }
423
424 } // namespace client
425 } // namespace sapi
426
main(int argc,char * argv[])427 ABSL_ATTRIBUTE_WEAK int main(int argc, char* argv[]) {
428 absl::ParseCommandLine(argc, argv);
429 absl::InitializeLog();
430
431 // Note regarding the FD usage here: Parent and child seem to make use of the
432 // same FD, although this is not true. During process setup `dup2()` will be
433 // called to replace the FD `kSandbox2ClientCommsFD`.
434 // We do not use a new comms object here as the destructor would close our FD.
435 sandbox2::Comms comms(sandbox2::Comms::kDefaultConnection);
436 sandbox2::ForkingClient s2client(&comms);
437
438 // Forkserver loop.
439 while (true) {
440 pid_t pid = s2client.WaitAndFork();
441 if (pid == -1) {
442 LOG(FATAL) << "Could not spawn a new sandboxee";
443 }
444 if (pid == 0) {
445 break;
446 }
447 }
448
449 // Child thread.
450 s2client.SandboxMeHere();
451
452 // Enable log forwarding if enabled by the sandboxer.
453 if (s2client.HasMappedFD(sandbox2::LogSink::kLogFDName)) {
454 s2client.SendLogsToSupervisor();
455 }
456
457 // Run SAPI stub.
458 while (true) {
459 sapi::client::ServeRequest(&comms);
460 }
461 LOG(FATAL) << "Unreachable";
462 }
463