1 // Copyright 2023 The Fuchsia Authors
2 //
3 // Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
4 // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
5 // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
6 // This file may not be copied, modified, or distributed except according to
7 // those terms.
8 
9 use core::{
10     cmp::Ordering,
11     fmt::{self, Debug, Display, Formatter},
12     hash::Hash,
13     mem::{self, ManuallyDrop},
14     ops::{Deref, DerefMut},
15     ptr,
16 };
17 
18 use super::*;
19 
20 /// A type with no alignment requirement.
21 ///
22 /// An `Unalign` wraps a `T`, removing any alignment requirement. `Unalign<T>`
23 /// has the same size and bit validity as `T`, but not necessarily the same
24 /// alignment [or ABI]. This is useful if a type with an alignment requirement
25 /// needs to be read from a chunk of memory which provides no alignment
26 /// guarantees.
27 ///
28 /// Since `Unalign` has no alignment requirement, the inner `T` may not be
29 /// properly aligned in memory. There are five ways to access the inner `T`:
30 /// - by value, using [`get`] or [`into_inner`]
31 /// - by reference inside of a callback, using [`update`]
32 /// - fallibly by reference, using [`try_deref`] or [`try_deref_mut`]; these can
33 ///   fail if the `Unalign` does not satisfy `T`'s alignment requirement at
34 ///   runtime
35 /// - unsafely by reference, using [`deref_unchecked`] or
36 ///   [`deref_mut_unchecked`]; it is the caller's responsibility to ensure that
37 ///   the `Unalign` satisfies `T`'s alignment requirement
38 /// - (where `T: Unaligned`) infallibly by reference, using [`Deref::deref`] or
39 ///   [`DerefMut::deref_mut`]
40 ///
41 /// [or ABI]: https://github.com/google/zerocopy/issues/164
42 /// [`get`]: Unalign::get
43 /// [`into_inner`]: Unalign::into_inner
44 /// [`update`]: Unalign::update
45 /// [`try_deref`]: Unalign::try_deref
46 /// [`try_deref_mut`]: Unalign::try_deref_mut
47 /// [`deref_unchecked`]: Unalign::deref_unchecked
48 /// [`deref_mut_unchecked`]: Unalign::deref_mut_unchecked
49 // NOTE: This type is sound to use with types that need to be dropped. The
50 // reason is that the compiler-generated drop code automatically moves all
51 // values to aligned memory slots before dropping them in-place. This is not
52 // well-documented, but it's hinted at in places like [1] and [2]. However, this
53 // also means that `T` must be `Sized`; unless something changes, we can never
54 // support unsized `T`. [3]
55 //
56 // [1] https://github.com/rust-lang/rust/issues/54148#issuecomment-420529646
57 // [2] https://github.com/google/zerocopy/pull/126#discussion_r1018512323
58 // [3] https://github.com/google/zerocopy/issues/209
59 #[allow(missing_debug_implementations)]
60 #[derive(Default, Copy)]
61 #[cfg_attr(
62     any(feature = "derive", test),
63     derive(KnownLayout, FromZeroes, FromBytes, AsBytes, Unaligned)
64 )]
65 #[repr(C, packed)]
66 pub struct Unalign<T>(T);
67 
68 #[cfg(not(any(feature = "derive", test)))]
69 impl_known_layout!(T => Unalign<T>);
70 
71 safety_comment! {
72     /// SAFETY:
73     /// - `Unalign<T>` is `repr(packed)`, so it is unaligned regardless of the
74     ///   alignment of `T`, and so we don't require that `T: Unaligned`
75     /// - `Unalign<T>` has the same bit validity as `T`, and so it is
76     ///   `FromZeroes`, `FromBytes`, or `AsBytes` exactly when `T` is as well.
77     impl_or_verify!(T => Unaligned for Unalign<T>);
78     impl_or_verify!(T: FromZeroes => FromZeroes for Unalign<T>);
79     impl_or_verify!(T: FromBytes => FromBytes for Unalign<T>);
80     impl_or_verify!(T: AsBytes => AsBytes for Unalign<T>);
81 }
82 
83 // Note that `Unalign: Clone` only if `T: Copy`. Since the inner `T` may not be
84 // aligned, there's no way to safely call `T::clone`, and so a `T: Clone` bound
85 // is not sufficient to implement `Clone` for `Unalign`.
86 impl<T: Copy> Clone for Unalign<T> {
87     #[inline(always)]
clone(&self) -> Unalign<T>88     fn clone(&self) -> Unalign<T> {
89         *self
90     }
91 }
92 
93 impl<T> Unalign<T> {
94     /// Constructs a new `Unalign`.
95     #[inline(always)]
new(val: T) -> Unalign<T>96     pub const fn new(val: T) -> Unalign<T> {
97         Unalign(val)
98     }
99 
100     /// Consumes `self`, returning the inner `T`.
101     #[inline(always)]
into_inner(self) -> T102     pub const fn into_inner(self) -> T {
103         // Use this instead of `mem::transmute` since the latter can't tell
104         // that `Unalign<T>` and `T` have the same size.
105         #[repr(C)]
106         union Transmute<T> {
107             u: ManuallyDrop<Unalign<T>>,
108             t: ManuallyDrop<T>,
109         }
110 
111         // SAFETY: Since `Unalign` is `#[repr(C, packed)]`, it has the same
112         // layout as `T`. `ManuallyDrop<U>` is guaranteed to have the same
113         // layout as `U`, and so `ManuallyDrop<Unalign<T>>` has the same layout
114         // as `ManuallyDrop<T>`. Since `Transmute<T>` is `#[repr(C)]`, its `t`
115         // and `u` fields both start at the same offset (namely, 0) within the
116         // union.
117         //
118         // We do this instead of just destructuring in order to prevent
119         // `Unalign`'s `Drop::drop` from being run, since dropping is not
120         // supported in `const fn`s.
121         //
122         // TODO(https://github.com/rust-lang/rust/issues/73255): Destructure
123         // instead of using unsafe.
124         unsafe { ManuallyDrop::into_inner(Transmute { u: ManuallyDrop::new(self) }.t) }
125     }
126 
127     /// Attempts to return a reference to the wrapped `T`, failing if `self` is
128     /// not properly aligned.
129     ///
130     /// If `self` does not satisfy `mem::align_of::<T>()`, then it is unsound to
131     /// return a reference to the wrapped `T`, and `try_deref` returns `None`.
132     ///
133     /// If `T: Unaligned`, then `Unalign<T>` implements [`Deref`], and callers
134     /// may prefer [`Deref::deref`], which is infallible.
135     #[inline(always)]
try_deref(&self) -> Option<&T>136     pub fn try_deref(&self) -> Option<&T> {
137         if !util::aligned_to::<_, T>(self) {
138             return None;
139         }
140 
141         // SAFETY: `deref_unchecked`'s safety requirement is that `self` is
142         // aligned to `align_of::<T>()`, which we just checked.
143         unsafe { Some(self.deref_unchecked()) }
144     }
145 
146     /// Attempts to return a mutable reference to the wrapped `T`, failing if
147     /// `self` is not properly aligned.
148     ///
149     /// If `self` does not satisfy `mem::align_of::<T>()`, then it is unsound to
150     /// return a reference to the wrapped `T`, and `try_deref_mut` returns
151     /// `None`.
152     ///
153     /// If `T: Unaligned`, then `Unalign<T>` implements [`DerefMut`], and
154     /// callers may prefer [`DerefMut::deref_mut`], which is infallible.
155     #[inline(always)]
try_deref_mut(&mut self) -> Option<&mut T>156     pub fn try_deref_mut(&mut self) -> Option<&mut T> {
157         if !util::aligned_to::<_, T>(&*self) {
158             return None;
159         }
160 
161         // SAFETY: `deref_mut_unchecked`'s safety requirement is that `self` is
162         // aligned to `align_of::<T>()`, which we just checked.
163         unsafe { Some(self.deref_mut_unchecked()) }
164     }
165 
166     /// Returns a reference to the wrapped `T` without checking alignment.
167     ///
168     /// If `T: Unaligned`, then `Unalign<T>` implements[ `Deref`], and callers
169     /// may prefer [`Deref::deref`], which is safe.
170     ///
171     /// # Safety
172     ///
173     /// If `self` does not satisfy `mem::align_of::<T>()`, then
174     /// `self.deref_unchecked()` may cause undefined behavior.
175     #[inline(always)]
deref_unchecked(&self) -> &T176     pub const unsafe fn deref_unchecked(&self) -> &T {
177         // SAFETY: `Unalign<T>` is `repr(transparent)`, so there is a valid `T`
178         // at the same memory location as `self`. It has no alignment guarantee,
179         // but the caller has promised that `self` is properly aligned, so we
180         // know that it is sound to create a reference to `T` at this memory
181         // location.
182         //
183         // We use `mem::transmute` instead of `&*self.get_ptr()` because
184         // dereferencing pointers is not stable in `const` on our current MSRV
185         // (1.56 as of this writing).
186         unsafe { mem::transmute(self) }
187     }
188 
189     /// Returns a mutable reference to the wrapped `T` without checking
190     /// alignment.
191     ///
192     /// If `T: Unaligned`, then `Unalign<T>` implements[ `DerefMut`], and
193     /// callers may prefer [`DerefMut::deref_mut`], which is safe.
194     ///
195     /// # Safety
196     ///
197     /// If `self` does not satisfy `mem::align_of::<T>()`, then
198     /// `self.deref_mut_unchecked()` may cause undefined behavior.
199     #[inline(always)]
deref_mut_unchecked(&mut self) -> &mut T200     pub unsafe fn deref_mut_unchecked(&mut self) -> &mut T {
201         // SAFETY: `self.get_mut_ptr()` returns a raw pointer to a valid `T` at
202         // the same memory location as `self`. It has no alignment guarantee,
203         // but the caller has promised that `self` is properly aligned, so we
204         // know that the pointer itself is aligned, and thus that it is sound to
205         // create a reference to a `T` at this memory location.
206         unsafe { &mut *self.get_mut_ptr() }
207     }
208 
209     /// Gets an unaligned raw pointer to the inner `T`.
210     ///
211     /// # Safety
212     ///
213     /// The returned raw pointer is not necessarily aligned to
214     /// `align_of::<T>()`. Most functions which operate on raw pointers require
215     /// those pointers to be aligned, so calling those functions with the result
216     /// of `get_ptr` will be undefined behavior if alignment is not guaranteed
217     /// using some out-of-band mechanism. In general, the only functions which
218     /// are safe to call with this pointer are those which are explicitly
219     /// documented as being sound to use with an unaligned pointer, such as
220     /// [`read_unaligned`].
221     ///
222     /// [`read_unaligned`]: core::ptr::read_unaligned
223     #[inline(always)]
get_ptr(&self) -> *const T224     pub const fn get_ptr(&self) -> *const T {
225         ptr::addr_of!(self.0)
226     }
227 
228     /// Gets an unaligned mutable raw pointer to the inner `T`.
229     ///
230     /// # Safety
231     ///
232     /// The returned raw pointer is not necessarily aligned to
233     /// `align_of::<T>()`. Most functions which operate on raw pointers require
234     /// those pointers to be aligned, so calling those functions with the result
235     /// of `get_ptr` will be undefined behavior if alignment is not guaranteed
236     /// using some out-of-band mechanism. In general, the only functions which
237     /// are safe to call with this pointer are those which are explicitly
238     /// documented as being sound to use with an unaligned pointer, such as
239     /// [`read_unaligned`].
240     ///
241     /// [`read_unaligned`]: core::ptr::read_unaligned
242     // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
243     #[inline(always)]
get_mut_ptr(&mut self) -> *mut T244     pub fn get_mut_ptr(&mut self) -> *mut T {
245         ptr::addr_of_mut!(self.0)
246     }
247 
248     /// Sets the inner `T`, dropping the previous value.
249     // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
250     #[inline(always)]
set(&mut self, t: T)251     pub fn set(&mut self, t: T) {
252         *self = Unalign::new(t);
253     }
254 
255     /// Updates the inner `T` by calling a function on it.
256     ///
257     /// If [`T: Unaligned`], then `Unalign<T>` implements [`DerefMut`], and that
258     /// impl should be preferred over this method when performing updates, as it
259     /// will usually be faster and more ergonomic.
260     ///
261     /// For large types, this method may be expensive, as it requires copying
262     /// `2 * size_of::<T>()` bytes. \[1\]
263     ///
264     /// \[1\] Since the inner `T` may not be aligned, it would not be sound to
265     /// invoke `f` on it directly. Instead, `update` moves it into a
266     /// properly-aligned location in the local stack frame, calls `f` on it, and
267     /// then moves it back to its original location in `self`.
268     ///
269     /// [`T: Unaligned`]: Unaligned
270     #[inline]
update<O, F: FnOnce(&mut T) -> O>(&mut self, f: F) -> O271     pub fn update<O, F: FnOnce(&mut T) -> O>(&mut self, f: F) -> O {
272         // On drop, this moves `copy` out of itself and uses `ptr::write` to
273         // overwrite `slf`.
274         struct WriteBackOnDrop<T> {
275             copy: ManuallyDrop<T>,
276             slf: *mut Unalign<T>,
277         }
278 
279         impl<T> Drop for WriteBackOnDrop<T> {
280             fn drop(&mut self) {
281                 // SAFETY: We never use `copy` again as required by
282                 // `ManuallyDrop::take`.
283                 let copy = unsafe { ManuallyDrop::take(&mut self.copy) };
284                 // SAFETY: `slf` is the raw pointer value of `self`. We know it
285                 // is valid for writes and properly aligned because `self` is a
286                 // mutable reference, which guarantees both of these properties.
287                 unsafe { ptr::write(self.slf, Unalign::new(copy)) };
288             }
289         }
290 
291         // SAFETY: We know that `self` is valid for reads, properly aligned, and
292         // points to an initialized `Unalign<T>` because it is a mutable
293         // reference, which guarantees all of these properties.
294         //
295         // Since `T: !Copy`, it would be unsound in the general case to allow
296         // both the original `Unalign<T>` and the copy to be used by safe code.
297         // We guarantee that the copy is used to overwrite the original in the
298         // `Drop::drop` impl of `WriteBackOnDrop`. So long as this `drop` is
299         // called before any other safe code executes, soundness is upheld.
300         // While this method can terminate in two ways (by returning normally or
301         // by unwinding due to a panic in `f`), in both cases, `write_back` is
302         // dropped - and its `drop` called - before any other safe code can
303         // execute.
304         let copy = unsafe { ptr::read(self) }.into_inner();
305         let mut write_back = WriteBackOnDrop { copy: ManuallyDrop::new(copy), slf: self };
306 
307         let ret = f(&mut write_back.copy);
308 
309         drop(write_back);
310         ret
311     }
312 }
313 
314 impl<T: Copy> Unalign<T> {
315     /// Gets a copy of the inner `T`.
316     // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
317     #[inline(always)]
get(&self) -> T318     pub fn get(&self) -> T {
319         let Unalign(val) = *self;
320         val
321     }
322 }
323 
324 impl<T: Unaligned> Deref for Unalign<T> {
325     type Target = T;
326 
327     #[inline(always)]
deref(&self) -> &T328     fn deref(&self) -> &T {
329         // SAFETY: `deref_unchecked`'s safety requirement is that `self` is
330         // aligned to `align_of::<T>()`. `T: Unaligned` guarantees that
331         // `align_of::<T>() == 1`, and all pointers are one-aligned because all
332         // addresses are divisible by 1.
333         unsafe { self.deref_unchecked() }
334     }
335 }
336 
337 impl<T: Unaligned> DerefMut for Unalign<T> {
338     #[inline(always)]
deref_mut(&mut self) -> &mut T339     fn deref_mut(&mut self) -> &mut T {
340         // SAFETY: `deref_mut_unchecked`'s safety requirement is that `self` is
341         // aligned to `align_of::<T>()`. `T: Unaligned` guarantees that
342         // `align_of::<T>() == 1`, and all pointers are one-aligned because all
343         // addresses are divisible by 1.
344         unsafe { self.deref_mut_unchecked() }
345     }
346 }
347 
348 impl<T: Unaligned + PartialOrd> PartialOrd<Unalign<T>> for Unalign<T> {
349     #[inline(always)]
partial_cmp(&self, other: &Unalign<T>) -> Option<Ordering>350     fn partial_cmp(&self, other: &Unalign<T>) -> Option<Ordering> {
351         PartialOrd::partial_cmp(self.deref(), other.deref())
352     }
353 }
354 
355 impl<T: Unaligned + Ord> Ord for Unalign<T> {
356     #[inline(always)]
cmp(&self, other: &Unalign<T>) -> Ordering357     fn cmp(&self, other: &Unalign<T>) -> Ordering {
358         Ord::cmp(self.deref(), other.deref())
359     }
360 }
361 
362 impl<T: Unaligned + PartialEq> PartialEq<Unalign<T>> for Unalign<T> {
363     #[inline(always)]
eq(&self, other: &Unalign<T>) -> bool364     fn eq(&self, other: &Unalign<T>) -> bool {
365         PartialEq::eq(self.deref(), other.deref())
366     }
367 }
368 
369 impl<T: Unaligned + Eq> Eq for Unalign<T> {}
370 
371 impl<T: Unaligned + Hash> Hash for Unalign<T> {
372     #[inline(always)]
hash<H>(&self, state: &mut H) where H: Hasher,373     fn hash<H>(&self, state: &mut H)
374     where
375         H: Hasher,
376     {
377         self.deref().hash(state);
378     }
379 }
380 
381 impl<T: Unaligned + Debug> Debug for Unalign<T> {
382     #[inline(always)]
fmt(&self, f: &mut Formatter<'_>) -> fmt::Result383     fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
384         Debug::fmt(self.deref(), f)
385     }
386 }
387 
388 impl<T: Unaligned + Display> Display for Unalign<T> {
389     #[inline(always)]
fmt(&self, f: &mut Formatter<'_>) -> fmt::Result390     fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
391         Display::fmt(self.deref(), f)
392     }
393 }
394 
395 #[cfg(test)]
396 mod tests {
397     use core::panic::AssertUnwindSafe;
398 
399     use super::*;
400     use crate::util::testutil::*;
401 
402     /// A `T` which is guaranteed not to satisfy `align_of::<A>()`.
403     ///
404     /// It must be the case that `align_of::<T>() < align_of::<A>()` in order
405     /// fot this type to work properly.
406     #[repr(C)]
407     struct ForceUnalign<T, A> {
408         // The outer struct is aligned to `A`, and, thanks to `repr(C)`, `t` is
409         // placed at the minimum offset that guarantees its alignment. If
410         // `align_of::<T>() < align_of::<A>()`, then that offset will be
411         // guaranteed *not* to satisfy `align_of::<A>()`.
412         _u: u8,
413         t: T,
414         _a: [A; 0],
415     }
416 
417     impl<T, A> ForceUnalign<T, A> {
new(t: T) -> ForceUnalign<T, A>418         const fn new(t: T) -> ForceUnalign<T, A> {
419             ForceUnalign { _u: 0, t, _a: [] }
420         }
421     }
422 
423     #[test]
test_unalign()424     fn test_unalign() {
425         // Test methods that don't depend on alignment.
426         let mut u = Unalign::new(AU64(123));
427         assert_eq!(u.get(), AU64(123));
428         assert_eq!(u.into_inner(), AU64(123));
429         assert_eq!(u.get_ptr(), <*const _>::cast::<AU64>(&u));
430         assert_eq!(u.get_mut_ptr(), <*mut _>::cast::<AU64>(&mut u));
431         u.set(AU64(321));
432         assert_eq!(u.get(), AU64(321));
433 
434         // Test methods that depend on alignment (when alignment is satisfied).
435         let mut u: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
436         assert_eq!(u.t.try_deref(), Some(&AU64(123)));
437         assert_eq!(u.t.try_deref_mut(), Some(&mut AU64(123)));
438         // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
439         assert_eq!(unsafe { u.t.deref_unchecked() }, &AU64(123));
440         // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
441         assert_eq!(unsafe { u.t.deref_mut_unchecked() }, &mut AU64(123));
442         *u.t.try_deref_mut().unwrap() = AU64(321);
443         assert_eq!(u.t.get(), AU64(321));
444 
445         // Test methods that depend on alignment (when alignment is not
446         // satisfied).
447         let mut u: ForceUnalign<_, AU64> = ForceUnalign::new(Unalign::new(AU64(123)));
448         assert_eq!(u.t.try_deref(), None);
449         assert_eq!(u.t.try_deref_mut(), None);
450 
451         // Test methods that depend on `T: Unaligned`.
452         let mut u = Unalign::new(123u8);
453         assert_eq!(u.try_deref(), Some(&123));
454         assert_eq!(u.try_deref_mut(), Some(&mut 123));
455         assert_eq!(u.deref(), &123);
456         assert_eq!(u.deref_mut(), &mut 123);
457         *u = 21;
458         assert_eq!(u.get(), 21);
459 
460         // Test that some `Unalign` functions and methods are `const`.
461         const _UNALIGN: Unalign<u64> = Unalign::new(0);
462         const _UNALIGN_PTR: *const u64 = _UNALIGN.get_ptr();
463         const _U64: u64 = _UNALIGN.into_inner();
464         // Make sure all code is considered "used".
465         //
466         // TODO(https://github.com/rust-lang/rust/issues/104084): Remove this
467         // attribute.
468         #[allow(dead_code)]
469         const _: () = {
470             let x: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
471             // Make sure that `deref_unchecked` is `const`.
472             //
473             // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
474             let au64 = unsafe { x.t.deref_unchecked() };
475             match au64 {
476                 AU64(123) => {}
477                 _ => unreachable!(),
478             }
479         };
480     }
481 
482     #[test]
test_unalign_update()483     fn test_unalign_update() {
484         let mut u = Unalign::new(AU64(123));
485         u.update(|a| a.0 += 1);
486         assert_eq!(u.get(), AU64(124));
487 
488         // Test that, even if the callback panics, the original is still
489         // correctly overwritten. Use a `Box` so that Miri is more likely to
490         // catch any unsoundness (which would likely result in two `Box`es for
491         // the same heap object, which is the sort of thing that Miri would
492         // probably catch).
493         let mut u = Unalign::new(Box::new(AU64(123)));
494         let res = std::panic::catch_unwind(AssertUnwindSafe(|| {
495             u.update(|a| {
496                 a.0 += 1;
497                 panic!();
498             })
499         }));
500         assert!(res.is_err());
501         assert_eq!(u.into_inner(), Box::new(AU64(124)));
502     }
503 }
504