1 // Copyright 2023 The Fuchsia Authors 2 // 3 // Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0 4 // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT 5 // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option. 6 // This file may not be copied, modified, or distributed except according to 7 // those terms. 8 9 use core::{ 10 cmp::Ordering, 11 fmt::{self, Debug, Display, Formatter}, 12 hash::Hash, 13 mem::{self, ManuallyDrop}, 14 ops::{Deref, DerefMut}, 15 ptr, 16 }; 17 18 use super::*; 19 20 /// A type with no alignment requirement. 21 /// 22 /// An `Unalign` wraps a `T`, removing any alignment requirement. `Unalign<T>` 23 /// has the same size and bit validity as `T`, but not necessarily the same 24 /// alignment [or ABI]. This is useful if a type with an alignment requirement 25 /// needs to be read from a chunk of memory which provides no alignment 26 /// guarantees. 27 /// 28 /// Since `Unalign` has no alignment requirement, the inner `T` may not be 29 /// properly aligned in memory. There are five ways to access the inner `T`: 30 /// - by value, using [`get`] or [`into_inner`] 31 /// - by reference inside of a callback, using [`update`] 32 /// - fallibly by reference, using [`try_deref`] or [`try_deref_mut`]; these can 33 /// fail if the `Unalign` does not satisfy `T`'s alignment requirement at 34 /// runtime 35 /// - unsafely by reference, using [`deref_unchecked`] or 36 /// [`deref_mut_unchecked`]; it is the caller's responsibility to ensure that 37 /// the `Unalign` satisfies `T`'s alignment requirement 38 /// - (where `T: Unaligned`) infallibly by reference, using [`Deref::deref`] or 39 /// [`DerefMut::deref_mut`] 40 /// 41 /// [or ABI]: https://github.com/google/zerocopy/issues/164 42 /// [`get`]: Unalign::get 43 /// [`into_inner`]: Unalign::into_inner 44 /// [`update`]: Unalign::update 45 /// [`try_deref`]: Unalign::try_deref 46 /// [`try_deref_mut`]: Unalign::try_deref_mut 47 /// [`deref_unchecked`]: Unalign::deref_unchecked 48 /// [`deref_mut_unchecked`]: Unalign::deref_mut_unchecked 49 // NOTE: This type is sound to use with types that need to be dropped. The 50 // reason is that the compiler-generated drop code automatically moves all 51 // values to aligned memory slots before dropping them in-place. This is not 52 // well-documented, but it's hinted at in places like [1] and [2]. However, this 53 // also means that `T` must be `Sized`; unless something changes, we can never 54 // support unsized `T`. [3] 55 // 56 // [1] https://github.com/rust-lang/rust/issues/54148#issuecomment-420529646 57 // [2] https://github.com/google/zerocopy/pull/126#discussion_r1018512323 58 // [3] https://github.com/google/zerocopy/issues/209 59 #[allow(missing_debug_implementations)] 60 #[derive(Default, Copy)] 61 #[cfg_attr( 62 any(feature = "derive", test), 63 derive(KnownLayout, FromZeroes, FromBytes, AsBytes, Unaligned) 64 )] 65 #[repr(C, packed)] 66 pub struct Unalign<T>(T); 67 68 #[cfg(not(any(feature = "derive", test)))] 69 impl_known_layout!(T => Unalign<T>); 70 71 safety_comment! { 72 /// SAFETY: 73 /// - `Unalign<T>` is `repr(packed)`, so it is unaligned regardless of the 74 /// alignment of `T`, and so we don't require that `T: Unaligned` 75 /// - `Unalign<T>` has the same bit validity as `T`, and so it is 76 /// `FromZeroes`, `FromBytes`, or `AsBytes` exactly when `T` is as well. 77 impl_or_verify!(T => Unaligned for Unalign<T>); 78 impl_or_verify!(T: FromZeroes => FromZeroes for Unalign<T>); 79 impl_or_verify!(T: FromBytes => FromBytes for Unalign<T>); 80 impl_or_verify!(T: AsBytes => AsBytes for Unalign<T>); 81 } 82 83 // Note that `Unalign: Clone` only if `T: Copy`. Since the inner `T` may not be 84 // aligned, there's no way to safely call `T::clone`, and so a `T: Clone` bound 85 // is not sufficient to implement `Clone` for `Unalign`. 86 impl<T: Copy> Clone for Unalign<T> { 87 #[inline(always)] clone(&self) -> Unalign<T>88 fn clone(&self) -> Unalign<T> { 89 *self 90 } 91 } 92 93 impl<T> Unalign<T> { 94 /// Constructs a new `Unalign`. 95 #[inline(always)] new(val: T) -> Unalign<T>96 pub const fn new(val: T) -> Unalign<T> { 97 Unalign(val) 98 } 99 100 /// Consumes `self`, returning the inner `T`. 101 #[inline(always)] into_inner(self) -> T102 pub const fn into_inner(self) -> T { 103 // Use this instead of `mem::transmute` since the latter can't tell 104 // that `Unalign<T>` and `T` have the same size. 105 #[repr(C)] 106 union Transmute<T> { 107 u: ManuallyDrop<Unalign<T>>, 108 t: ManuallyDrop<T>, 109 } 110 111 // SAFETY: Since `Unalign` is `#[repr(C, packed)]`, it has the same 112 // layout as `T`. `ManuallyDrop<U>` is guaranteed to have the same 113 // layout as `U`, and so `ManuallyDrop<Unalign<T>>` has the same layout 114 // as `ManuallyDrop<T>`. Since `Transmute<T>` is `#[repr(C)]`, its `t` 115 // and `u` fields both start at the same offset (namely, 0) within the 116 // union. 117 // 118 // We do this instead of just destructuring in order to prevent 119 // `Unalign`'s `Drop::drop` from being run, since dropping is not 120 // supported in `const fn`s. 121 // 122 // TODO(https://github.com/rust-lang/rust/issues/73255): Destructure 123 // instead of using unsafe. 124 unsafe { ManuallyDrop::into_inner(Transmute { u: ManuallyDrop::new(self) }.t) } 125 } 126 127 /// Attempts to return a reference to the wrapped `T`, failing if `self` is 128 /// not properly aligned. 129 /// 130 /// If `self` does not satisfy `mem::align_of::<T>()`, then it is unsound to 131 /// return a reference to the wrapped `T`, and `try_deref` returns `None`. 132 /// 133 /// If `T: Unaligned`, then `Unalign<T>` implements [`Deref`], and callers 134 /// may prefer [`Deref::deref`], which is infallible. 135 #[inline(always)] try_deref(&self) -> Option<&T>136 pub fn try_deref(&self) -> Option<&T> { 137 if !util::aligned_to::<_, T>(self) { 138 return None; 139 } 140 141 // SAFETY: `deref_unchecked`'s safety requirement is that `self` is 142 // aligned to `align_of::<T>()`, which we just checked. 143 unsafe { Some(self.deref_unchecked()) } 144 } 145 146 /// Attempts to return a mutable reference to the wrapped `T`, failing if 147 /// `self` is not properly aligned. 148 /// 149 /// If `self` does not satisfy `mem::align_of::<T>()`, then it is unsound to 150 /// return a reference to the wrapped `T`, and `try_deref_mut` returns 151 /// `None`. 152 /// 153 /// If `T: Unaligned`, then `Unalign<T>` implements [`DerefMut`], and 154 /// callers may prefer [`DerefMut::deref_mut`], which is infallible. 155 #[inline(always)] try_deref_mut(&mut self) -> Option<&mut T>156 pub fn try_deref_mut(&mut self) -> Option<&mut T> { 157 if !util::aligned_to::<_, T>(&*self) { 158 return None; 159 } 160 161 // SAFETY: `deref_mut_unchecked`'s safety requirement is that `self` is 162 // aligned to `align_of::<T>()`, which we just checked. 163 unsafe { Some(self.deref_mut_unchecked()) } 164 } 165 166 /// Returns a reference to the wrapped `T` without checking alignment. 167 /// 168 /// If `T: Unaligned`, then `Unalign<T>` implements[ `Deref`], and callers 169 /// may prefer [`Deref::deref`], which is safe. 170 /// 171 /// # Safety 172 /// 173 /// If `self` does not satisfy `mem::align_of::<T>()`, then 174 /// `self.deref_unchecked()` may cause undefined behavior. 175 #[inline(always)] deref_unchecked(&self) -> &T176 pub const unsafe fn deref_unchecked(&self) -> &T { 177 // SAFETY: `Unalign<T>` is `repr(transparent)`, so there is a valid `T` 178 // at the same memory location as `self`. It has no alignment guarantee, 179 // but the caller has promised that `self` is properly aligned, so we 180 // know that it is sound to create a reference to `T` at this memory 181 // location. 182 // 183 // We use `mem::transmute` instead of `&*self.get_ptr()` because 184 // dereferencing pointers is not stable in `const` on our current MSRV 185 // (1.56 as of this writing). 186 unsafe { mem::transmute(self) } 187 } 188 189 /// Returns a mutable reference to the wrapped `T` without checking 190 /// alignment. 191 /// 192 /// If `T: Unaligned`, then `Unalign<T>` implements[ `DerefMut`], and 193 /// callers may prefer [`DerefMut::deref_mut`], which is safe. 194 /// 195 /// # Safety 196 /// 197 /// If `self` does not satisfy `mem::align_of::<T>()`, then 198 /// `self.deref_mut_unchecked()` may cause undefined behavior. 199 #[inline(always)] deref_mut_unchecked(&mut self) -> &mut T200 pub unsafe fn deref_mut_unchecked(&mut self) -> &mut T { 201 // SAFETY: `self.get_mut_ptr()` returns a raw pointer to a valid `T` at 202 // the same memory location as `self`. It has no alignment guarantee, 203 // but the caller has promised that `self` is properly aligned, so we 204 // know that the pointer itself is aligned, and thus that it is sound to 205 // create a reference to a `T` at this memory location. 206 unsafe { &mut *self.get_mut_ptr() } 207 } 208 209 /// Gets an unaligned raw pointer to the inner `T`. 210 /// 211 /// # Safety 212 /// 213 /// The returned raw pointer is not necessarily aligned to 214 /// `align_of::<T>()`. Most functions which operate on raw pointers require 215 /// those pointers to be aligned, so calling those functions with the result 216 /// of `get_ptr` will be undefined behavior if alignment is not guaranteed 217 /// using some out-of-band mechanism. In general, the only functions which 218 /// are safe to call with this pointer are those which are explicitly 219 /// documented as being sound to use with an unaligned pointer, such as 220 /// [`read_unaligned`]. 221 /// 222 /// [`read_unaligned`]: core::ptr::read_unaligned 223 #[inline(always)] get_ptr(&self) -> *const T224 pub const fn get_ptr(&self) -> *const T { 225 ptr::addr_of!(self.0) 226 } 227 228 /// Gets an unaligned mutable raw pointer to the inner `T`. 229 /// 230 /// # Safety 231 /// 232 /// The returned raw pointer is not necessarily aligned to 233 /// `align_of::<T>()`. Most functions which operate on raw pointers require 234 /// those pointers to be aligned, so calling those functions with the result 235 /// of `get_ptr` will be undefined behavior if alignment is not guaranteed 236 /// using some out-of-band mechanism. In general, the only functions which 237 /// are safe to call with this pointer are those which are explicitly 238 /// documented as being sound to use with an unaligned pointer, such as 239 /// [`read_unaligned`]. 240 /// 241 /// [`read_unaligned`]: core::ptr::read_unaligned 242 // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`. 243 #[inline(always)] get_mut_ptr(&mut self) -> *mut T244 pub fn get_mut_ptr(&mut self) -> *mut T { 245 ptr::addr_of_mut!(self.0) 246 } 247 248 /// Sets the inner `T`, dropping the previous value. 249 // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`. 250 #[inline(always)] set(&mut self, t: T)251 pub fn set(&mut self, t: T) { 252 *self = Unalign::new(t); 253 } 254 255 /// Updates the inner `T` by calling a function on it. 256 /// 257 /// If [`T: Unaligned`], then `Unalign<T>` implements [`DerefMut`], and that 258 /// impl should be preferred over this method when performing updates, as it 259 /// will usually be faster and more ergonomic. 260 /// 261 /// For large types, this method may be expensive, as it requires copying 262 /// `2 * size_of::<T>()` bytes. \[1\] 263 /// 264 /// \[1\] Since the inner `T` may not be aligned, it would not be sound to 265 /// invoke `f` on it directly. Instead, `update` moves it into a 266 /// properly-aligned location in the local stack frame, calls `f` on it, and 267 /// then moves it back to its original location in `self`. 268 /// 269 /// [`T: Unaligned`]: Unaligned 270 #[inline] update<O, F: FnOnce(&mut T) -> O>(&mut self, f: F) -> O271 pub fn update<O, F: FnOnce(&mut T) -> O>(&mut self, f: F) -> O { 272 // On drop, this moves `copy` out of itself and uses `ptr::write` to 273 // overwrite `slf`. 274 struct WriteBackOnDrop<T> { 275 copy: ManuallyDrop<T>, 276 slf: *mut Unalign<T>, 277 } 278 279 impl<T> Drop for WriteBackOnDrop<T> { 280 fn drop(&mut self) { 281 // SAFETY: We never use `copy` again as required by 282 // `ManuallyDrop::take`. 283 let copy = unsafe { ManuallyDrop::take(&mut self.copy) }; 284 // SAFETY: `slf` is the raw pointer value of `self`. We know it 285 // is valid for writes and properly aligned because `self` is a 286 // mutable reference, which guarantees both of these properties. 287 unsafe { ptr::write(self.slf, Unalign::new(copy)) }; 288 } 289 } 290 291 // SAFETY: We know that `self` is valid for reads, properly aligned, and 292 // points to an initialized `Unalign<T>` because it is a mutable 293 // reference, which guarantees all of these properties. 294 // 295 // Since `T: !Copy`, it would be unsound in the general case to allow 296 // both the original `Unalign<T>` and the copy to be used by safe code. 297 // We guarantee that the copy is used to overwrite the original in the 298 // `Drop::drop` impl of `WriteBackOnDrop`. So long as this `drop` is 299 // called before any other safe code executes, soundness is upheld. 300 // While this method can terminate in two ways (by returning normally or 301 // by unwinding due to a panic in `f`), in both cases, `write_back` is 302 // dropped - and its `drop` called - before any other safe code can 303 // execute. 304 let copy = unsafe { ptr::read(self) }.into_inner(); 305 let mut write_back = WriteBackOnDrop { copy: ManuallyDrop::new(copy), slf: self }; 306 307 let ret = f(&mut write_back.copy); 308 309 drop(write_back); 310 ret 311 } 312 } 313 314 impl<T: Copy> Unalign<T> { 315 /// Gets a copy of the inner `T`. 316 // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`. 317 #[inline(always)] get(&self) -> T318 pub fn get(&self) -> T { 319 let Unalign(val) = *self; 320 val 321 } 322 } 323 324 impl<T: Unaligned> Deref for Unalign<T> { 325 type Target = T; 326 327 #[inline(always)] deref(&self) -> &T328 fn deref(&self) -> &T { 329 // SAFETY: `deref_unchecked`'s safety requirement is that `self` is 330 // aligned to `align_of::<T>()`. `T: Unaligned` guarantees that 331 // `align_of::<T>() == 1`, and all pointers are one-aligned because all 332 // addresses are divisible by 1. 333 unsafe { self.deref_unchecked() } 334 } 335 } 336 337 impl<T: Unaligned> DerefMut for Unalign<T> { 338 #[inline(always)] deref_mut(&mut self) -> &mut T339 fn deref_mut(&mut self) -> &mut T { 340 // SAFETY: `deref_mut_unchecked`'s safety requirement is that `self` is 341 // aligned to `align_of::<T>()`. `T: Unaligned` guarantees that 342 // `align_of::<T>() == 1`, and all pointers are one-aligned because all 343 // addresses are divisible by 1. 344 unsafe { self.deref_mut_unchecked() } 345 } 346 } 347 348 impl<T: Unaligned + PartialOrd> PartialOrd<Unalign<T>> for Unalign<T> { 349 #[inline(always)] partial_cmp(&self, other: &Unalign<T>) -> Option<Ordering>350 fn partial_cmp(&self, other: &Unalign<T>) -> Option<Ordering> { 351 PartialOrd::partial_cmp(self.deref(), other.deref()) 352 } 353 } 354 355 impl<T: Unaligned + Ord> Ord for Unalign<T> { 356 #[inline(always)] cmp(&self, other: &Unalign<T>) -> Ordering357 fn cmp(&self, other: &Unalign<T>) -> Ordering { 358 Ord::cmp(self.deref(), other.deref()) 359 } 360 } 361 362 impl<T: Unaligned + PartialEq> PartialEq<Unalign<T>> for Unalign<T> { 363 #[inline(always)] eq(&self, other: &Unalign<T>) -> bool364 fn eq(&self, other: &Unalign<T>) -> bool { 365 PartialEq::eq(self.deref(), other.deref()) 366 } 367 } 368 369 impl<T: Unaligned + Eq> Eq for Unalign<T> {} 370 371 impl<T: Unaligned + Hash> Hash for Unalign<T> { 372 #[inline(always)] hash<H>(&self, state: &mut H) where H: Hasher,373 fn hash<H>(&self, state: &mut H) 374 where 375 H: Hasher, 376 { 377 self.deref().hash(state); 378 } 379 } 380 381 impl<T: Unaligned + Debug> Debug for Unalign<T> { 382 #[inline(always)] fmt(&self, f: &mut Formatter<'_>) -> fmt::Result383 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { 384 Debug::fmt(self.deref(), f) 385 } 386 } 387 388 impl<T: Unaligned + Display> Display for Unalign<T> { 389 #[inline(always)] fmt(&self, f: &mut Formatter<'_>) -> fmt::Result390 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { 391 Display::fmt(self.deref(), f) 392 } 393 } 394 395 #[cfg(test)] 396 mod tests { 397 use core::panic::AssertUnwindSafe; 398 399 use super::*; 400 use crate::util::testutil::*; 401 402 /// A `T` which is guaranteed not to satisfy `align_of::<A>()`. 403 /// 404 /// It must be the case that `align_of::<T>() < align_of::<A>()` in order 405 /// fot this type to work properly. 406 #[repr(C)] 407 struct ForceUnalign<T, A> { 408 // The outer struct is aligned to `A`, and, thanks to `repr(C)`, `t` is 409 // placed at the minimum offset that guarantees its alignment. If 410 // `align_of::<T>() < align_of::<A>()`, then that offset will be 411 // guaranteed *not* to satisfy `align_of::<A>()`. 412 _u: u8, 413 t: T, 414 _a: [A; 0], 415 } 416 417 impl<T, A> ForceUnalign<T, A> { new(t: T) -> ForceUnalign<T, A>418 const fn new(t: T) -> ForceUnalign<T, A> { 419 ForceUnalign { _u: 0, t, _a: [] } 420 } 421 } 422 423 #[test] test_unalign()424 fn test_unalign() { 425 // Test methods that don't depend on alignment. 426 let mut u = Unalign::new(AU64(123)); 427 assert_eq!(u.get(), AU64(123)); 428 assert_eq!(u.into_inner(), AU64(123)); 429 assert_eq!(u.get_ptr(), <*const _>::cast::<AU64>(&u)); 430 assert_eq!(u.get_mut_ptr(), <*mut _>::cast::<AU64>(&mut u)); 431 u.set(AU64(321)); 432 assert_eq!(u.get(), AU64(321)); 433 434 // Test methods that depend on alignment (when alignment is satisfied). 435 let mut u: Align<_, AU64> = Align::new(Unalign::new(AU64(123))); 436 assert_eq!(u.t.try_deref(), Some(&AU64(123))); 437 assert_eq!(u.t.try_deref_mut(), Some(&mut AU64(123))); 438 // SAFETY: The `Align<_, AU64>` guarantees proper alignment. 439 assert_eq!(unsafe { u.t.deref_unchecked() }, &AU64(123)); 440 // SAFETY: The `Align<_, AU64>` guarantees proper alignment. 441 assert_eq!(unsafe { u.t.deref_mut_unchecked() }, &mut AU64(123)); 442 *u.t.try_deref_mut().unwrap() = AU64(321); 443 assert_eq!(u.t.get(), AU64(321)); 444 445 // Test methods that depend on alignment (when alignment is not 446 // satisfied). 447 let mut u: ForceUnalign<_, AU64> = ForceUnalign::new(Unalign::new(AU64(123))); 448 assert_eq!(u.t.try_deref(), None); 449 assert_eq!(u.t.try_deref_mut(), None); 450 451 // Test methods that depend on `T: Unaligned`. 452 let mut u = Unalign::new(123u8); 453 assert_eq!(u.try_deref(), Some(&123)); 454 assert_eq!(u.try_deref_mut(), Some(&mut 123)); 455 assert_eq!(u.deref(), &123); 456 assert_eq!(u.deref_mut(), &mut 123); 457 *u = 21; 458 assert_eq!(u.get(), 21); 459 460 // Test that some `Unalign` functions and methods are `const`. 461 const _UNALIGN: Unalign<u64> = Unalign::new(0); 462 const _UNALIGN_PTR: *const u64 = _UNALIGN.get_ptr(); 463 const _U64: u64 = _UNALIGN.into_inner(); 464 // Make sure all code is considered "used". 465 // 466 // TODO(https://github.com/rust-lang/rust/issues/104084): Remove this 467 // attribute. 468 #[allow(dead_code)] 469 const _: () = { 470 let x: Align<_, AU64> = Align::new(Unalign::new(AU64(123))); 471 // Make sure that `deref_unchecked` is `const`. 472 // 473 // SAFETY: The `Align<_, AU64>` guarantees proper alignment. 474 let au64 = unsafe { x.t.deref_unchecked() }; 475 match au64 { 476 AU64(123) => {} 477 _ => unreachable!(), 478 } 479 }; 480 } 481 482 #[test] test_unalign_update()483 fn test_unalign_update() { 484 let mut u = Unalign::new(AU64(123)); 485 u.update(|a| a.0 += 1); 486 assert_eq!(u.get(), AU64(124)); 487 488 // Test that, even if the callback panics, the original is still 489 // correctly overwritten. Use a `Box` so that Miri is more likely to 490 // catch any unsoundness (which would likely result in two `Box`es for 491 // the same heap object, which is the sort of thing that Miri would 492 // probably catch). 493 let mut u = Unalign::new(Box::new(AU64(123))); 494 let res = std::panic::catch_unwind(AssertUnwindSafe(|| { 495 u.update(|a| { 496 a.0 += 1; 497 panic!(); 498 }) 499 })); 500 assert!(res.is_err()); 501 assert_eq!(u.into_inner(), Box::new(AU64(124))); 502 } 503 } 504