1 // Copyright 2015-2016 Brian Smith.
2 //
3 // Permission to use, copy, modify, and/or distribute this software for any
4 // purpose with or without fee is hereby granted, provided that the above
5 // copyright notice and this permission notice appear in all copies.
6 //
7 // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
8 // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
10 // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
14 
15 use super::{
16     padding::RsaEncoding, KeyPairComponents, PublicExponent, PublicKey, PublicKeyComponents, N,
17 };
18 
19 /// RSA PKCS#1 1.5 signatures.
20 use crate::{
21     arithmetic::{
22         bigint::{self, Prime},
23         montgomery::R,
24     },
25     bits, cpu, digest,
26     error::{self, KeyRejected},
27     io::der,
28     pkcs8, rand, signature,
29 };
30 
31 /// An RSA key pair, used for signing.
32 pub struct KeyPair {
33     p: PrivatePrime<P>,
34     q: PrivatePrime<Q>,
35     qInv: bigint::Elem<P, R>,
36     qq: bigint::Modulus<QQ>,
37     q_mod_n: bigint::Elem<N, R>,
38     public: PublicKey,
39 }
40 
41 derive_debug_via_field!(KeyPair, stringify!(RsaKeyPair), public);
42 
43 impl KeyPair {
44     /// Parses an unencrypted PKCS#8-encoded RSA private key.
45     ///
46     /// This will generate a 2048-bit RSA private key of the correct form using
47     /// OpenSSL's command line tool:
48     ///
49     /// ```sh
50     ///    openssl genpkey -algorithm RSA \
51     ///        -pkeyopt rsa_keygen_bits:2048 \
52     ///        -pkeyopt rsa_keygen_pubexp:65537 | \
53     ///      openssl pkcs8 -topk8 -nocrypt -outform der > rsa-2048-private-key.pk8
54     /// ```
55     ///
56     /// This will generate a 3072-bit RSA private key of the correct form:
57     ///
58     /// ```sh
59     ///    openssl genpkey -algorithm RSA \
60     ///        -pkeyopt rsa_keygen_bits:3072 \
61     ///        -pkeyopt rsa_keygen_pubexp:65537 | \
62     ///      openssl pkcs8 -topk8 -nocrypt -outform der > rsa-3072-private-key.pk8
63     /// ```
64     ///
65     /// Often, keys generated for use in OpenSSL-based software are stored in
66     /// the Base64 “PEM” format without the PKCS#8 wrapper. Such keys can be
67     /// converted to binary PKCS#8 form using the OpenSSL command line tool like
68     /// this:
69     ///
70     /// ```sh
71     /// openssl pkcs8 -topk8 -nocrypt -outform der \
72     ///     -in rsa-2048-private-key.pem > rsa-2048-private-key.pk8
73     /// ```
74     ///
75     /// Base64 (“PEM”) PKCS#8-encoded keys can be converted to the binary PKCS#8
76     /// form like this:
77     ///
78     /// ```sh
79     /// openssl pkcs8 -nocrypt -outform der \
80     ///     -in rsa-2048-private-key.pem > rsa-2048-private-key.pk8
81     /// ```
82     ///
83     /// See [`Self::from_components`] for more details on how the input is
84     /// validated.
85     ///
86     /// See [RFC 5958] and [RFC 3447 Appendix A.1.2] for more details of the
87     /// encoding of the key.
88     ///
89     /// [NIST SP-800-56B rev. 1]:
90     ///     http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf
91     ///
92     /// [RFC 3447 Appendix A.1.2]:
93     ///     https://tools.ietf.org/html/rfc3447#appendix-A.1.2
94     ///
95     /// [RFC 5958]:
96     ///     https://tools.ietf.org/html/rfc5958
from_pkcs8(pkcs8: &[u8]) -> Result<Self, KeyRejected>97     pub fn from_pkcs8(pkcs8: &[u8]) -> Result<Self, KeyRejected> {
98         const RSA_ENCRYPTION: &[u8] = include_bytes!("../data/alg-rsa-encryption.der");
99         let (der, _) = pkcs8::unwrap_key_(
100             untrusted::Input::from(RSA_ENCRYPTION),
101             pkcs8::Version::V1Only,
102             untrusted::Input::from(pkcs8),
103         )?;
104         Self::from_der(der.as_slice_less_safe())
105     }
106 
107     /// Parses an RSA private key that is not inside a PKCS#8 wrapper.
108     ///
109     /// The private key must be encoded as a binary DER-encoded ASN.1
110     /// `RSAPrivateKey` as described in [RFC 3447 Appendix A.1.2]). In all other
111     /// respects, this is just like `from_pkcs8()`. See the documentation for
112     /// `from_pkcs8()` for more details.
113     ///
114     /// It is recommended to use `from_pkcs8()` (with a PKCS#8-encoded key)
115     /// instead.
116     ///
117     /// See [`Self::from_components()`] for more details on how the input is
118     /// validated.
119     ///
120     /// [RFC 3447 Appendix A.1.2]:
121     ///     https://tools.ietf.org/html/rfc3447#appendix-A.1.2
122     ///
123     /// [NIST SP-800-56B rev. 1]:
124     ///     http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Br1.pdf
from_der(input: &[u8]) -> Result<Self, KeyRejected>125     pub fn from_der(input: &[u8]) -> Result<Self, KeyRejected> {
126         untrusted::Input::from(input).read_all(KeyRejected::invalid_encoding(), |input| {
127             der::nested(
128                 input,
129                 der::Tag::Sequence,
130                 error::KeyRejected::invalid_encoding(),
131                 Self::from_der_reader,
132             )
133         })
134     }
135 
from_der_reader(input: &mut untrusted::Reader) -> Result<Self, KeyRejected>136     fn from_der_reader(input: &mut untrusted::Reader) -> Result<Self, KeyRejected> {
137         let version = der::small_nonnegative_integer(input)
138             .map_err(|error::Unspecified| KeyRejected::invalid_encoding())?;
139         if version != 0 {
140             return Err(KeyRejected::version_not_supported());
141         }
142 
143         fn nonnegative_integer<'a>(
144             input: &mut untrusted::Reader<'a>,
145         ) -> Result<&'a [u8], KeyRejected> {
146             der::nonnegative_integer(input)
147                 .map(|input| input.as_slice_less_safe())
148                 .map_err(|error::Unspecified| KeyRejected::invalid_encoding())
149         }
150 
151         let n = nonnegative_integer(input)?;
152         let e = nonnegative_integer(input)?;
153         let d = nonnegative_integer(input)?;
154         let p = nonnegative_integer(input)?;
155         let q = nonnegative_integer(input)?;
156         let dP = nonnegative_integer(input)?;
157         let dQ = nonnegative_integer(input)?;
158         let qInv = nonnegative_integer(input)?;
159 
160         let components = KeyPairComponents {
161             public_key: PublicKeyComponents { n, e },
162             d,
163             p,
164             q,
165             dP,
166             dQ,
167             qInv,
168         };
169 
170         Self::from_components(&components)
171     }
172 
173     /// Constructs an RSA private key from its big-endian-encoded components.
174     ///
175     /// Only two-prime (not multi-prime) keys are supported. The public modulus
176     /// (n) must be at least 2047 bits. The public modulus must be no larger
177     /// than 4096 bits. It is recommended that the public modulus be exactly
178     /// 2048 or 3072 bits. The public exponent must be at least 65537 and must
179     /// be no more than 33 bits long.
180     ///
181     /// The private key is validated according to [NIST SP-800-56B rev. 1]
182     /// section 6.4.1.4.3, crt_pkv (Intended Exponent-Creation Method Unknown),
183     /// with the following exceptions:
184     ///
185     /// * Section 6.4.1.2.1, Step 1: Neither a target security level nor an
186     ///   expected modulus length is provided as a parameter, so checks
187     ///   regarding these expectations are not done.
188     /// * Section 6.4.1.2.1, Step 3: Since neither the public key nor the
189     ///   expected modulus length is provided as a parameter, the consistency
190     ///   check between these values and the private key's value of n isn't
191     ///   done.
192     /// * Section 6.4.1.2.1, Step 5: No primality tests are done, both for
193     ///   performance reasons and to avoid any side channels that such tests
194     ///   would provide.
195     /// * Section 6.4.1.2.1, Step 6, and 6.4.1.4.3, Step 7:
196     ///     * *ring* has a slightly looser lower bound for the values of `p`
197     ///     and `q` than what the NIST document specifies. This looser lower
198     ///     bound matches what most other crypto libraries do. The check might
199     ///     be tightened to meet NIST's requirements in the future. Similarly,
200     ///     the check that `p` and `q` are not too close together is skipped
201     ///     currently, but may be added in the future.
202     ///     - The validity of the mathematical relationship of `dP`, `dQ`, `e`
203     ///     and `n` is verified only during signing. Some size checks of `d`,
204     ///     `dP` and `dQ` are performed at construction, but some NIST checks
205     ///     are skipped because they would be expensive and/or they would leak
206     ///     information through side channels. If a preemptive check of the
207     ///     consistency of `dP`, `dQ`, `e` and `n` with each other is
208     ///     necessary, that can be done by signing any message with the key
209     ///     pair.
210     ///
211     ///     * `d` is not fully validated, neither at construction nor during
212     ///     signing. This is OK as far as *ring*'s usage of the key is
213     ///     concerned because *ring* never uses the value of `d` (*ring* always
214     ///     uses `p`, `q`, `dP` and `dQ` via the Chinese Remainder Theorem,
215     ///     instead). However, *ring*'s checks would not be sufficient for
216     ///     validating a key pair for use by some other system; that other
217     ///     system must check the value of `d` itself if `d` is to be used.
from_components<Public, Private>( components: &KeyPairComponents<Public, Private>, ) -> Result<Self, KeyRejected> where Public: AsRef<[u8]>, Private: AsRef<[u8]>,218     pub fn from_components<Public, Private>(
219         components: &KeyPairComponents<Public, Private>,
220     ) -> Result<Self, KeyRejected>
221     where
222         Public: AsRef<[u8]>,
223         Private: AsRef<[u8]>,
224     {
225         let components = KeyPairComponents {
226             public_key: PublicKeyComponents {
227                 n: components.public_key.n.as_ref(),
228                 e: components.public_key.e.as_ref(),
229             },
230             d: components.d.as_ref(),
231             p: components.p.as_ref(),
232             q: components.q.as_ref(),
233             dP: components.dP.as_ref(),
234             dQ: components.dQ.as_ref(),
235             qInv: components.qInv.as_ref(),
236         };
237         Self::from_components_(&components, cpu::features())
238     }
239 
240     fn from_components_(
241         &KeyPairComponents {
242             public_key,
243             d,
244             p,
245             q,
246             dP,
247             dQ,
248             qInv,
249         }: &KeyPairComponents<&[u8]>,
250         cpu_features: cpu::Features,
251     ) -> Result<Self, KeyRejected> {
252         let d = untrusted::Input::from(d);
253         let p = untrusted::Input::from(p);
254         let q = untrusted::Input::from(q);
255         let dP = untrusted::Input::from(dP);
256         let dQ = untrusted::Input::from(dQ);
257         let qInv = untrusted::Input::from(qInv);
258 
259         let (p, p_bits) = bigint::Nonnegative::from_be_bytes_with_bit_length(p)
260             .map_err(|error::Unspecified| KeyRejected::invalid_encoding())?;
261         let (q, q_bits) = bigint::Nonnegative::from_be_bytes_with_bit_length(q)
262             .map_err(|error::Unspecified| KeyRejected::invalid_encoding())?;
263 
264         // Our implementation of CRT-based modular exponentiation used requires
265         // that `p > q` so swap them if `p < q`. If swapped, `qInv` is
266         // recalculated below. `p != q` is verified implicitly below, e.g. when
267         // `q_mod_p` is constructed.
268         let ((p, p_bits, dP), (q, q_bits, dQ, qInv)) = match q.verify_less_than(&p) {
269             Ok(_) => ((p, p_bits, dP), (q, q_bits, dQ, Some(qInv))),
270             Err(error::Unspecified) => {
271                 // TODO: verify `q` and `qInv` are inverses (mod p).
272                 ((q, q_bits, dQ), (p, p_bits, dP, None))
273             }
274         };
275 
276         // XXX: Some steps are done out of order, but the NIST steps are worded
277         // in such a way that it is clear that NIST intends for them to be done
278         // in order. TODO: Does this matter at all?
279 
280         // 6.4.1.4.3/6.4.1.2.1 - Step 1.
281 
282         // Step 1.a is omitted, as explained above.
283 
284         // Step 1.b is omitted per above. Instead, we check that the public
285         // modulus is 2048 to `PRIVATE_KEY_PUBLIC_MODULUS_MAX_BITS` bits.
286         // XXX: The maximum limit of 4096 bits is primarily due to lack of
287         // testing of larger key sizes; see, in particular,
288         // https://www.mail-archive.com/[email protected]/msg44586.html
289         // and
290         // https://www.mail-archive.com/[email protected]/msg44759.html.
291         // Also, this limit might help with memory management decisions later.
292 
293         // Step 1.c. We validate e >= 65537.
294         let n = untrusted::Input::from(public_key.n);
295         let e = untrusted::Input::from(public_key.e);
296         let public_key = PublicKey::from_modulus_and_exponent(
297             n,
298             e,
299             bits::BitLength::from_usize_bits(2048),
300             super::PRIVATE_KEY_PUBLIC_MODULUS_MAX_BITS,
301             PublicExponent::_65537,
302             cpu_features,
303         )?;
304 
305         let n = public_key.n().value();
306 
307         // 6.4.1.4.3 says to skip 6.4.1.2.1 Step 2.
308 
309         // 6.4.1.4.3 Step 3.
310 
311         // Step 3.a is done below, out of order.
312         // Step 3.b is unneeded since `n_bits` is derived here from `n`.
313 
314         // 6.4.1.4.3 says to skip 6.4.1.2.1 Step 4. (We don't need to recover
315         // the prime factors since they are already given.)
316 
317         // 6.4.1.4.3 - Step 5.
318 
319         // Steps 5.a and 5.b are omitted, as explained above.
320 
321         // Step 5.c.
322         //
323         // TODO: First, stop if `p < (√2) * 2**((nBits/2) - 1)`.
324         //
325         // Second, stop if `p > 2**(nBits/2) - 1`.
326         let half_n_bits = public_key.n().len_bits().half_rounded_up();
327         if p_bits != half_n_bits {
328             return Err(KeyRejected::inconsistent_components());
329         }
330 
331         // TODO: Step 5.d: Verify GCD(p - 1, e) == 1.
332 
333         // Steps 5.e and 5.f are omitted as explained above.
334 
335         // Step 5.g.
336         //
337         // TODO: First, stop if `q < (√2) * 2**((nBits/2) - 1)`.
338         //
339         // Second, stop if `q > 2**(nBits/2) - 1`.
340         if p_bits != q_bits {
341             return Err(KeyRejected::inconsistent_components());
342         }
343 
344         // TODO: Step 5.h: Verify GCD(p - 1, e) == 1.
345 
346         let q_mod_n_decoded = q
347             .to_elem(n)
348             .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
349 
350         // TODO: Step 5.i
351         //
352         // 3.b is unneeded since `n_bits` is derived here from `n`.
353 
354         // 6.4.1.4.3 - Step 3.a (out of order).
355         //
356         // Verify that p * q == n. We restrict ourselves to modular
357         // multiplication. We rely on the fact that we've verified
358         // 0 < q < p < n. We check that q and p are close to sqrt(n) and then
359         // assume that these preconditions are enough to let us assume that
360         // checking p * q == 0 (mod n) is equivalent to checking p * q == n.
361         let q_mod_n = bigint::elem_mul(n.oneRR().as_ref(), q_mod_n_decoded.clone(), n);
362         let p_mod_n = p
363             .to_elem(n)
364             .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
365         let pq_mod_n = bigint::elem_mul(&q_mod_n, p_mod_n, n);
366         if !pq_mod_n.is_zero() {
367             return Err(KeyRejected::inconsistent_components());
368         }
369 
370         // 6.4.1.4.3/6.4.1.2.1 - Step 6.
371 
372         // Step 6.a, partial.
373         //
374         // First, validate `2**half_n_bits < d`. Since 2**half_n_bits has a bit
375         // length of half_n_bits + 1, this check gives us 2**half_n_bits <= d,
376         // and knowing d is odd makes the inequality strict.
377         let (d, d_bits) = bigint::Nonnegative::from_be_bytes_with_bit_length(d)
378             .map_err(|_| error::KeyRejected::invalid_encoding())?;
379         if !(half_n_bits < d_bits) {
380             return Err(KeyRejected::inconsistent_components());
381         }
382         // XXX: This check should be `d < LCM(p - 1, q - 1)`, but we don't have
383         // a good way of calculating LCM, so it is omitted, as explained above.
384         d.verify_less_than_modulus(n)
385             .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
386         if !d.is_odd() {
387             return Err(KeyRejected::invalid_component());
388         }
389 
390         // Step 6.b is omitted as explained above.
391 
392         // 6.4.1.4.3 - Step 7.
393 
394         // Step 7.a.
395         let p = PrivatePrime::new(p, dP, cpu_features)?;
396 
397         // Step 7.b.
398         let q = PrivatePrime::new(q, dQ, cpu_features)?;
399 
400         let q_mod_p = q.modulus.to_elem(&p.modulus);
401 
402         // Step 7.c.
403         let qInv = if let Some(qInv) = qInv {
404             bigint::Elem::from_be_bytes_padded(qInv, &p.modulus)
405                 .map_err(|error::Unspecified| KeyRejected::invalid_component())?
406         } else {
407             // We swapped `p` and `q` above, so we need to calculate `qInv`.
408             // Step 7.f below will verify `qInv` is correct.
409             let q_mod_p = bigint::elem_mul(p.modulus.oneRR().as_ref(), q_mod_p.clone(), &p.modulus);
410             bigint::elem_inverse_consttime(q_mod_p, &p.modulus)
411                 .map_err(|error::Unspecified| KeyRejected::unexpected_error())?
412         };
413 
414         // Steps 7.d and 7.e are omitted per the documentation above, and
415         // because we don't (in the long term) have a good way to do modulo
416         // with an even modulus.
417 
418         // Step 7.f.
419         let qInv = bigint::elem_mul(p.modulus.oneRR().as_ref(), qInv, &p.modulus);
420         bigint::verify_inverses_consttime(&qInv, q_mod_p, &p.modulus)
421             .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
422 
423         let qq = bigint::Modulus::from_elem(
424             bigint::elem_mul(&q_mod_n, q_mod_n_decoded, n),
425             cpu_features,
426         )?;
427 
428         // This should never fail since `n` and `e` were validated above.
429 
430         Ok(Self {
431             p,
432             q,
433             qInv,
434             q_mod_n,
435             qq,
436             public: public_key,
437         })
438     }
439 
440     /// Returns a reference to the public key.
public(&self) -> &PublicKey441     pub fn public(&self) -> &PublicKey {
442         &self.public
443     }
444 
445     /// Returns the length in bytes of the key pair's public modulus.
446     ///
447     /// A signature has the same length as the public modulus.
448     #[deprecated = "Use `public().modulus_len()`"]
449     #[inline]
public_modulus_len(&self) -> usize450     pub fn public_modulus_len(&self) -> usize {
451         self.public().modulus_len()
452     }
453 }
454 
455 impl signature::KeyPair for KeyPair {
456     type PublicKey = PublicKey;
457 
public_key(&self) -> &Self::PublicKey458     fn public_key(&self) -> &Self::PublicKey {
459         self.public()
460     }
461 }
462 
463 struct PrivatePrime<M: Prime> {
464     modulus: bigint::Modulus<M>,
465     exponent: bigint::PrivateExponent,
466 }
467 
468 impl<M: Prime> PrivatePrime<M> {
469     /// Constructs a `PrivatePrime` from the private prime `p` and `dP` where
470     /// dP == d % (p - 1).
new( p: bigint::Nonnegative, dP: untrusted::Input, cpu_features: cpu::Features, ) -> Result<Self, KeyRejected>471     fn new(
472         p: bigint::Nonnegative,
473         dP: untrusted::Input,
474         cpu_features: cpu::Features,
475     ) -> Result<Self, KeyRejected> {
476         let (p, p_bits) = bigint::Modulus::from_nonnegative_with_bit_length(p, cpu_features)?;
477         if p_bits.as_usize_bits() % 512 != 0 {
478             return Err(error::KeyRejected::private_modulus_len_not_multiple_of_512_bits());
479         }
480 
481         // [NIST SP-800-56B rev. 1] 6.4.1.4.3 - Steps 7.a & 7.b.
482         let dP = bigint::PrivateExponent::from_be_bytes_padded(dP, &p)
483             .map_err(|error::Unspecified| KeyRejected::inconsistent_components())?;
484 
485         // XXX: Steps 7.d and 7.e are omitted. We don't check that
486         // `dP == d % (p - 1)` because we don't (in the long term) have a good
487         // way to do modulo with an even modulus. Instead we just check that
488         // `1 <= dP < p - 1`. We'll check it, to some unknown extent, when we
489         // do the private key operation, since we verify that the result of the
490         // private key operation using the CRT parameters is consistent with `n`
491         // and `e`. TODO: Either prove that what we do is sufficient, or make
492         // it so.
493 
494         Ok(Self {
495             modulus: p,
496             exponent: dP,
497         })
498     }
499 }
500 
elem_exp_consttime<M, MM>( c: &bigint::Elem<MM>, p: &PrivatePrime<M>, ) -> Result<bigint::Elem<M>, error::Unspecified> where M: bigint::NotMuchSmallerModulus<MM>, M: Prime,501 fn elem_exp_consttime<M, MM>(
502     c: &bigint::Elem<MM>,
503     p: &PrivatePrime<M>,
504 ) -> Result<bigint::Elem<M>, error::Unspecified>
505 where
506     M: bigint::NotMuchSmallerModulus<MM>,
507     M: Prime,
508 {
509     let c_mod_m = bigint::elem_reduced(c, &p.modulus);
510     // We could precompute `oneRRR = elem_squared(&p.oneRR`) as mentioned
511     // in the Smooth CRT-RSA paper.
512     let c_mod_m = bigint::elem_mul(p.modulus.oneRR().as_ref(), c_mod_m, &p.modulus);
513     let c_mod_m = bigint::elem_mul(p.modulus.oneRR().as_ref(), c_mod_m, &p.modulus);
514     bigint::elem_exp_consttime(c_mod_m, &p.exponent, &p.modulus)
515 }
516 
517 // Type-level representations of the different moduli used in RSA signing, in
518 // addition to `super::N`. See `super::bigint`'s modulue-level documentation.
519 
520 #[derive(Copy, Clone)]
521 enum P {}
522 unsafe impl Prime for P {}
523 unsafe impl bigint::SmallerModulus<N> for P {}
524 unsafe impl bigint::NotMuchSmallerModulus<N> for P {}
525 
526 #[derive(Copy, Clone)]
527 enum QQ {}
528 unsafe impl bigint::SmallerModulus<N> for QQ {}
529 unsafe impl bigint::NotMuchSmallerModulus<N> for QQ {}
530 
531 // `q < p < 2*q` since `q` is slightly smaller than `p` (see below). Thus:
532 //
533 //                         q <  p  < 2*q
534 //                       q*q < p*q < 2*q*q.
535 //                      q**2 <  n  < 2*(q**2).
536 unsafe impl bigint::SlightlySmallerModulus<N> for QQ {}
537 
538 #[derive(Copy, Clone)]
539 enum Q {}
540 unsafe impl Prime for Q {}
541 unsafe impl bigint::SmallerModulus<N> for Q {}
542 unsafe impl bigint::SmallerModulus<P> for Q {}
543 
544 // q < p && `p.bit_length() == q.bit_length()` implies `q < p < 2*q`.
545 unsafe impl bigint::SlightlySmallerModulus<P> for Q {}
546 
547 unsafe impl bigint::SmallerModulus<QQ> for Q {}
548 unsafe impl bigint::NotMuchSmallerModulus<QQ> for Q {}
549 
550 impl KeyPair {
551     /// Computes the signature of `msg` and writes it into `signature`.
552     ///
553     /// `msg` is digested using the digest algorithm from `padding_alg` and the
554     /// digest is then padded using the padding algorithm from `padding_alg`.
555     ///
556     /// The signature it written into `signature`; `signature`'s length must be
557     /// exactly the length returned by `self::public().modulus_len()` or else
558     /// an error will be returned. On failure, `signature` may contain
559     /// intermediate results, but won't contain anything that would endanger the
560     /// private key.
561     ///
562     /// `rng` may be used to randomize the padding (e.g. for PSS).
563     ///
564     /// Many other crypto libraries have signing functions that takes a
565     /// precomputed digest as input, instead of the message to digest. This
566     /// function does *not* take a precomputed digest; instead, `sign`
567     /// calculates the digest itself.
sign( &self, padding_alg: &'static dyn RsaEncoding, rng: &dyn rand::SecureRandom, msg: &[u8], signature: &mut [u8], ) -> Result<(), error::Unspecified>568     pub fn sign(
569         &self,
570         padding_alg: &'static dyn RsaEncoding,
571         rng: &dyn rand::SecureRandom,
572         msg: &[u8],
573         signature: &mut [u8],
574     ) -> Result<(), error::Unspecified> {
575         if signature.len() != self.public().modulus_len() {
576             return Err(error::Unspecified);
577         }
578 
579         let m_hash = digest::digest(padding_alg.digest_alg(), msg);
580 
581         // Use the output buffer as the scratch space for the signature to
582         // reduce the required stack space.
583         padding_alg.encode(m_hash, signature, self.public().n().len_bits(), rng)?;
584 
585         // RFC 8017 Section 5.1.2: RSADP, using the Chinese Remainder Theorem
586         // with Garner's algorithm.
587 
588         // Steps 1 and 2.
589         let m = self.private_exponentiate(signature)?;
590 
591         // Step 3.
592         m.fill_be_bytes(signature);
593 
594         Ok(())
595     }
596 
597     /// Returns base**d (mod n).
598     ///
599     /// This does not return or write any intermediate results into any buffers
600     /// that are provided by the caller so that no intermediate state will be
601     /// leaked that would endanger the private key.
602     ///
603     /// Panics if `in_out` is not `self.public().modulus_len()`.
private_exponentiate(&self, base: &[u8]) -> Result<bigint::Elem<N>, error::Unspecified>604     fn private_exponentiate(&self, base: &[u8]) -> Result<bigint::Elem<N>, error::Unspecified> {
605         assert_eq!(base.len(), self.public().modulus_len());
606 
607         // RFC 8017 Section 5.1.2: RSADP, using the Chinese Remainder Theorem
608         // with Garner's algorithm.
609 
610         let n = self.public.n().value();
611 
612         // Step 1. The value zero is also rejected.
613         let base = bigint::Elem::from_be_bytes_padded(untrusted::Input::from(base), n)?;
614 
615         // Step 2
616         let c = base;
617 
618         // Step 2.b.i.
619         let m_1 = elem_exp_consttime(&c, &self.p)?;
620         let c_mod_qq = bigint::elem_reduced_once(&c, &self.qq);
621         let m_2 = elem_exp_consttime(&c_mod_qq, &self.q)?;
622 
623         // Step 2.b.ii isn't needed since there are only two primes.
624 
625         // Step 2.b.iii.
626         let p = &self.p.modulus;
627         let m_2 = bigint::elem_widen(m_2, p);
628         let m_1_minus_m_2 = bigint::elem_sub(m_1, &m_2, p);
629         let h = bigint::elem_mul(&self.qInv, m_1_minus_m_2, p);
630 
631         // Step 2.b.iv. The reduction in the modular multiplication isn't
632         // necessary because `h < p` and `p * q == n` implies `h * q < n`.
633         // Modular arithmetic is used simply to avoid implementing
634         // non-modular arithmetic.
635         let h = bigint::elem_widen(h, n);
636         let q_times_h = bigint::elem_mul(&self.q_mod_n, h, n);
637         let m_2 = bigint::elem_widen(m_2, n);
638         let m = bigint::elem_add(m_2, q_times_h, n);
639 
640         // Step 2.b.v isn't needed since there are only two primes.
641 
642         // Verify the result to protect against fault attacks as described
643         // in "On the Importance of Checking Cryptographic Protocols for
644         // Faults" by Dan Boneh, Richard A. DeMillo, and Richard J. Lipton.
645         // This check is cheap assuming `e` is small, which is ensured during
646         // `KeyPair` construction. Note that this is the only validation of `e`
647         // that is done other than basic checks on its size, oddness, and
648         // minimum value, since the relationship of `e` to `d`, `p`, and `q` is
649         // not verified during `KeyPair` construction.
650         {
651             let verify = self.public.exponentiate_elem(m.clone());
652             bigint::elem_verify_equal_consttime(&verify, &c)?;
653         }
654 
655         // Step 3 will be done by the caller.
656 
657         Ok(m)
658     }
659 }
660