1 //! Parallel iterator types for [inclusive ranges][std::range],
2 //! the type for values created by `a..=b` expressions
3 //!
4 //! You will rarely need to interact with this module directly unless you have
5 //! need to name one of the iterator types.
6 //!
7 //! ```
8 //! use rayon::prelude::*;
9 //!
10 //! let r = (0..=100u64).into_par_iter()
11 //!                     .sum();
12 //!
13 //! // compare result with sequential calculation
14 //! assert_eq!((0..=100).sum::<u64>(), r);
15 //! ```
16 //!
17 //! [std::range]: https://doc.rust-lang.org/core/ops/struct.RangeInclusive.html
18 
19 use crate::iter::plumbing::*;
20 use crate::iter::*;
21 use std::char;
22 use std::ops::RangeInclusive;
23 
24 /// Parallel iterator over an inclusive range, implemented for all integer types and `char`.
25 ///
26 /// **Note:** The `zip` operation requires `IndexedParallelIterator`
27 /// which is only implemented for `u8`, `i8`, `u16`, `i16`, and `char`.
28 ///
29 /// ```
30 /// use rayon::prelude::*;
31 ///
32 /// let p = (0..=25u16).into_par_iter()
33 ///                   .zip(0..=25u16)
34 ///                   .filter(|&(x, y)| x % 5 == 0 || y % 5 == 0)
35 ///                   .map(|(x, y)| x * y)
36 ///                   .sum::<u16>();
37 ///
38 /// let s = (0..=25u16).zip(0..=25u16)
39 ///                   .filter(|&(x, y)| x % 5 == 0 || y % 5 == 0)
40 ///                   .map(|(x, y)| x * y)
41 ///                   .sum();
42 ///
43 /// assert_eq!(p, s);
44 /// ```
45 #[derive(Debug, Clone)]
46 pub struct Iter<T> {
47     range: RangeInclusive<T>,
48 }
49 
50 impl<T> Iter<T>
51 where
52     RangeInclusive<T>: Eq,
53     T: Ord + Copy,
54 {
55     /// Returns `Some((start, end))` for `start..=end`, or `None` if it is exhausted.
56     ///
57     /// Note that `RangeInclusive` does not specify the bounds of an exhausted iterator,
58     /// so this is a way for us to figure out what we've got.  Thankfully, all of the
59     /// integer types we care about can be trivially cloned.
bounds(&self) -> Option<(T, T)>60     fn bounds(&self) -> Option<(T, T)> {
61         let start = *self.range.start();
62         let end = *self.range.end();
63         if start <= end && self.range == (start..=end) {
64             // If the range is still nonempty, this is obviously true
65             // If the range is exhausted, either start > end or
66             // the range does not equal start..=end.
67             Some((start, end))
68         } else {
69             None
70         }
71     }
72 }
73 
74 /// Implemented for ranges of all primitive integer types and `char`.
75 impl<T> IntoParallelIterator for RangeInclusive<T>
76 where
77     Iter<T>: ParallelIterator,
78 {
79     type Item = <Iter<T> as ParallelIterator>::Item;
80     type Iter = Iter<T>;
81 
into_par_iter(self) -> Self::Iter82     fn into_par_iter(self) -> Self::Iter {
83         Iter { range: self }
84     }
85 }
86 
87 /// These traits help drive integer type inference. Without them, an unknown `{integer}` type only
88 /// has constraints on `Iter<{integer}>`, which will probably give up and use `i32`. By adding
89 /// these traits on the item type, the compiler can see a more direct constraint to infer like
90 /// `{integer}: RangeInteger`, which works better. See `test_issue_833` for an example.
91 ///
92 /// They have to be `pub` since they're seen in the public `impl ParallelIterator` constraints, but
93 /// we put them in a private modules so they're not actually reachable in our public API.
94 mod private {
95     use super::*;
96 
97     /// Implementation details of `ParallelIterator for Iter<Self>`
98     pub trait RangeInteger: Sized + Send {
99         private_decl! {}
100 
drive_unindexed<C>(iter: Iter<Self>, consumer: C) -> C::Result where C: UnindexedConsumer<Self>101         fn drive_unindexed<C>(iter: Iter<Self>, consumer: C) -> C::Result
102         where
103             C: UnindexedConsumer<Self>;
104 
opt_len(iter: &Iter<Self>) -> Option<usize>105         fn opt_len(iter: &Iter<Self>) -> Option<usize>;
106     }
107 
108     /// Implementation details of `IndexedParallelIterator for Iter<Self>`
109     pub trait IndexedRangeInteger: RangeInteger {
110         private_decl! {}
111 
drive<C>(iter: Iter<Self>, consumer: C) -> C::Result where C: Consumer<Self>112         fn drive<C>(iter: Iter<Self>, consumer: C) -> C::Result
113         where
114             C: Consumer<Self>;
115 
len(iter: &Iter<Self>) -> usize116         fn len(iter: &Iter<Self>) -> usize;
117 
with_producer<CB>(iter: Iter<Self>, callback: CB) -> CB::Output where CB: ProducerCallback<Self>118         fn with_producer<CB>(iter: Iter<Self>, callback: CB) -> CB::Output
119         where
120             CB: ProducerCallback<Self>;
121     }
122 }
123 use private::{IndexedRangeInteger, RangeInteger};
124 
125 impl<T: RangeInteger> ParallelIterator for Iter<T> {
126     type Item = T;
127 
drive_unindexed<C>(self, consumer: C) -> C::Result where C: UnindexedConsumer<T>,128     fn drive_unindexed<C>(self, consumer: C) -> C::Result
129     where
130         C: UnindexedConsumer<T>,
131     {
132         T::drive_unindexed(self, consumer)
133     }
134 
135     #[inline]
opt_len(&self) -> Option<usize>136     fn opt_len(&self) -> Option<usize> {
137         T::opt_len(self)
138     }
139 }
140 
141 impl<T: IndexedRangeInteger> IndexedParallelIterator for Iter<T> {
drive<C>(self, consumer: C) -> C::Result where C: Consumer<T>,142     fn drive<C>(self, consumer: C) -> C::Result
143     where
144         C: Consumer<T>,
145     {
146         T::drive(self, consumer)
147     }
148 
149     #[inline]
len(&self) -> usize150     fn len(&self) -> usize {
151         T::len(self)
152     }
153 
with_producer<CB>(self, callback: CB) -> CB::Output where CB: ProducerCallback<T>,154     fn with_producer<CB>(self, callback: CB) -> CB::Output
155     where
156         CB: ProducerCallback<T>,
157     {
158         T::with_producer(self, callback)
159     }
160 }
161 
162 macro_rules! convert {
163     ( $iter:ident . $method:ident ( $( $arg:expr ),* ) ) => {
164         if let Some((start, end)) = $iter.bounds() {
165             if let Some(end) = end.checked_add(1) {
166                 (start..end).into_par_iter().$method($( $arg ),*)
167             } else {
168                 (start..end).into_par_iter().chain(once(end)).$method($( $arg ),*)
169             }
170         } else {
171             empty::<Self>().$method($( $arg ),*)
172         }
173     };
174 }
175 
176 macro_rules! parallel_range_impl {
177     ( $t:ty ) => {
178         impl RangeInteger for $t {
179             private_impl! {}
180 
181             fn drive_unindexed<C>(iter: Iter<$t>, consumer: C) -> C::Result
182             where
183                 C: UnindexedConsumer<$t>,
184             {
185                 convert!(iter.drive_unindexed(consumer))
186             }
187 
188             fn opt_len(iter: &Iter<$t>) -> Option<usize> {
189                 convert!(iter.opt_len())
190             }
191         }
192     };
193 }
194 
195 macro_rules! indexed_range_impl {
196     ( $t:ty ) => {
197         parallel_range_impl! { $t }
198 
199         impl IndexedRangeInteger for $t {
200             private_impl! {}
201 
202             fn drive<C>(iter: Iter<$t>, consumer: C) -> C::Result
203             where
204                 C: Consumer<$t>,
205             {
206                 convert!(iter.drive(consumer))
207             }
208 
209             fn len(iter: &Iter<$t>) -> usize {
210                 iter.range.len()
211             }
212 
213             fn with_producer<CB>(iter: Iter<$t>, callback: CB) -> CB::Output
214             where
215                 CB: ProducerCallback<$t>,
216             {
217                 convert!(iter.with_producer(callback))
218             }
219         }
220     };
221 }
222 
223 // all RangeInclusive<T> with ExactSizeIterator
224 indexed_range_impl! {u8}
225 indexed_range_impl! {u16}
226 indexed_range_impl! {i8}
227 indexed_range_impl! {i16}
228 
229 // other RangeInclusive<T> with just Iterator
230 parallel_range_impl! {usize}
231 parallel_range_impl! {isize}
232 parallel_range_impl! {u32}
233 parallel_range_impl! {i32}
234 parallel_range_impl! {u64}
235 parallel_range_impl! {i64}
236 parallel_range_impl! {u128}
237 parallel_range_impl! {i128}
238 
239 // char is special
240 macro_rules! convert_char {
241     ( $self:ident . $method:ident ( $( $arg:expr ),* ) ) => {
242         if let Some((start, end)) = $self.bounds() {
243             let start = start as u32;
244             let end = end as u32;
245             if start < 0xD800 && 0xE000 <= end {
246                 // chain the before and after surrogate range fragments
247                 (start..0xD800)
248                     .into_par_iter()
249                     .chain(0xE000..end + 1) // cannot use RangeInclusive, so add one to end
250                     .map(|codepoint| unsafe { char::from_u32_unchecked(codepoint) })
251                     .$method($( $arg ),*)
252             } else {
253                 // no surrogate range to worry about
254                 (start..end + 1) // cannot use RangeInclusive, so add one to end
255                     .into_par_iter()
256                     .map(|codepoint| unsafe { char::from_u32_unchecked(codepoint) })
257                     .$method($( $arg ),*)
258             }
259         } else {
260             empty::<char>().$method($( $arg ),*)
261         }
262     };
263 }
264 
265 impl ParallelIterator for Iter<char> {
266     type Item = char;
267 
drive_unindexed<C>(self, consumer: C) -> C::Result where C: UnindexedConsumer<Self::Item>,268     fn drive_unindexed<C>(self, consumer: C) -> C::Result
269     where
270         C: UnindexedConsumer<Self::Item>,
271     {
272         convert_char!(self.drive(consumer))
273     }
274 
opt_len(&self) -> Option<usize>275     fn opt_len(&self) -> Option<usize> {
276         Some(self.len())
277     }
278 }
279 
280 // Range<u32> is broken on 16 bit platforms, may as well benefit from it
281 impl IndexedParallelIterator for Iter<char> {
282     // Split at the surrogate range first if we're allowed to
drive<C>(self, consumer: C) -> C::Result where C: Consumer<Self::Item>,283     fn drive<C>(self, consumer: C) -> C::Result
284     where
285         C: Consumer<Self::Item>,
286     {
287         convert_char!(self.drive(consumer))
288     }
289 
len(&self) -> usize290     fn len(&self) -> usize {
291         if let Some((start, end)) = self.bounds() {
292             // Taken from <char as Step>::steps_between
293             let start = start as u32;
294             let end = end as u32;
295             let mut count = end - start;
296             if start < 0xD800 && 0xE000 <= end {
297                 count -= 0x800
298             }
299             (count + 1) as usize // add one for inclusive
300         } else {
301             0
302         }
303     }
304 
with_producer<CB>(self, callback: CB) -> CB::Output where CB: ProducerCallback<Self::Item>,305     fn with_producer<CB>(self, callback: CB) -> CB::Output
306     where
307         CB: ProducerCallback<Self::Item>,
308     {
309         convert_char!(self.with_producer(callback))
310     }
311 }
312 
313 #[test]
314 #[cfg(target_pointer_width = "64")]
test_u32_opt_len()315 fn test_u32_opt_len() {
316     use std::u32;
317     assert_eq!(Some(101), (0..=100u32).into_par_iter().opt_len());
318     assert_eq!(
319         Some(u32::MAX as usize),
320         (0..=u32::MAX - 1).into_par_iter().opt_len()
321     );
322     assert_eq!(
323         Some(u32::MAX as usize + 1),
324         (0..=u32::MAX).into_par_iter().opt_len()
325     );
326 }
327 
328 #[test]
test_u64_opt_len()329 fn test_u64_opt_len() {
330     use std::{u64, usize};
331     assert_eq!(Some(101), (0..=100u64).into_par_iter().opt_len());
332     assert_eq!(
333         Some(usize::MAX),
334         (0..=usize::MAX as u64 - 1).into_par_iter().opt_len()
335     );
336     assert_eq!(None, (0..=usize::MAX as u64).into_par_iter().opt_len());
337     assert_eq!(None, (0..=u64::MAX).into_par_iter().opt_len());
338 }
339 
340 #[test]
test_u128_opt_len()341 fn test_u128_opt_len() {
342     use std::{u128, usize};
343     assert_eq!(Some(101), (0..=100u128).into_par_iter().opt_len());
344     assert_eq!(
345         Some(usize::MAX),
346         (0..=usize::MAX as u128 - 1).into_par_iter().opt_len()
347     );
348     assert_eq!(None, (0..=usize::MAX as u128).into_par_iter().opt_len());
349     assert_eq!(None, (0..=u128::MAX).into_par_iter().opt_len());
350 }
351 
352 // `usize as i64` can overflow, so make sure to wrap it appropriately
353 // when using the `opt_len` "indexed" mode.
354 #[test]
355 #[cfg(target_pointer_width = "64")]
test_usize_i64_overflow()356 fn test_usize_i64_overflow() {
357     use crate::ThreadPoolBuilder;
358     use std::i64;
359 
360     let iter = (-2..=i64::MAX).into_par_iter();
361     assert_eq!(iter.opt_len(), Some(i64::MAX as usize + 3));
362 
363     // always run with multiple threads to split into, or this will take forever...
364     let pool = ThreadPoolBuilder::new().num_threads(8).build().unwrap();
365     pool.install(|| assert_eq!(iter.find_last(|_| true), Some(i64::MAX)));
366 }
367 
368 #[test]
test_issue_833()369 fn test_issue_833() {
370     fn is_even(n: i64) -> bool {
371         n % 2 == 0
372     }
373 
374     // The integer type should be inferred from `is_even`
375     let v: Vec<_> = (1..=100).into_par_iter().filter(|&x| is_even(x)).collect();
376     assert!(v.into_iter().eq((2..=100).step_by(2)));
377 
378     // Try examples with indexed iterators too
379     let pos = (0..=100).into_par_iter().position_any(|x| x == 50i16);
380     assert_eq!(pos, Some(50usize));
381 
382     assert!((0..=100)
383         .into_par_iter()
384         .zip(0..=100)
385         .all(|(a, b)| i16::eq(&a, &b)));
386 }
387