1 //! Parallel iterator types for [ranges][std::range],
2 //! the type for values created by `a..b` expressions
3 //!
4 //! You will rarely need to interact with this module directly unless you have
5 //! need to name one of the iterator types.
6 //!
7 //! ```
8 //! use rayon::prelude::*;
9 //!
10 //! let r = (0..100u64).into_par_iter()
11 //!                    .sum();
12 //!
13 //! // compare result with sequential calculation
14 //! assert_eq!((0..100).sum::<u64>(), r);
15 //! ```
16 //!
17 //! [std::range]: https://doc.rust-lang.org/core/ops/struct.Range.html
18 
19 use crate::iter::plumbing::*;
20 use crate::iter::*;
21 use std::char;
22 use std::convert::TryFrom;
23 use std::ops::Range;
24 use std::usize;
25 
26 /// Parallel iterator over a range, implemented for all integer types and `char`.
27 ///
28 /// **Note:** The `zip` operation requires `IndexedParallelIterator`
29 /// which is not implemented for `u64`, `i64`, `u128`, or `i128`.
30 ///
31 /// ```
32 /// use rayon::prelude::*;
33 ///
34 /// let p = (0..25usize).into_par_iter()
35 ///                   .zip(0..25usize)
36 ///                   .filter(|&(x, y)| x % 5 == 0 || y % 5 == 0)
37 ///                   .map(|(x, y)| x * y)
38 ///                   .sum::<usize>();
39 ///
40 /// let s = (0..25usize).zip(0..25)
41 ///                   .filter(|&(x, y)| x % 5 == 0 || y % 5 == 0)
42 ///                   .map(|(x, y)| x * y)
43 ///                   .sum();
44 ///
45 /// assert_eq!(p, s);
46 /// ```
47 #[derive(Debug, Clone)]
48 pub struct Iter<T> {
49     range: Range<T>,
50 }
51 
52 /// Implemented for ranges of all primitive integer types and `char`.
53 impl<T> IntoParallelIterator for Range<T>
54 where
55     Iter<T>: ParallelIterator,
56 {
57     type Item = <Iter<T> as ParallelIterator>::Item;
58     type Iter = Iter<T>;
59 
into_par_iter(self) -> Self::Iter60     fn into_par_iter(self) -> Self::Iter {
61         Iter { range: self }
62     }
63 }
64 
65 struct IterProducer<T> {
66     range: Range<T>,
67 }
68 
69 impl<T> IntoIterator for IterProducer<T>
70 where
71     Range<T>: Iterator,
72 {
73     type Item = <Range<T> as Iterator>::Item;
74     type IntoIter = Range<T>;
75 
into_iter(self) -> Self::IntoIter76     fn into_iter(self) -> Self::IntoIter {
77         self.range
78     }
79 }
80 
81 /// These traits help drive integer type inference. Without them, an unknown `{integer}` type only
82 /// has constraints on `Iter<{integer}>`, which will probably give up and use `i32`. By adding
83 /// these traits on the item type, the compiler can see a more direct constraint to infer like
84 /// `{integer}: RangeInteger`, which works better. See `test_issue_833` for an example.
85 ///
86 /// They have to be `pub` since they're seen in the public `impl ParallelIterator` constraints, but
87 /// we put them in a private modules so they're not actually reachable in our public API.
88 mod private {
89     use super::*;
90 
91     /// Implementation details of `ParallelIterator for Iter<Self>`
92     pub trait RangeInteger: Sized + Send {
93         private_decl! {}
94 
drive_unindexed<C>(iter: Iter<Self>, consumer: C) -> C::Result where C: UnindexedConsumer<Self>95         fn drive_unindexed<C>(iter: Iter<Self>, consumer: C) -> C::Result
96         where
97             C: UnindexedConsumer<Self>;
98 
opt_len(iter: &Iter<Self>) -> Option<usize>99         fn opt_len(iter: &Iter<Self>) -> Option<usize>;
100     }
101 
102     /// Implementation details of `IndexedParallelIterator for Iter<Self>`
103     pub trait IndexedRangeInteger: RangeInteger {
104         private_decl! {}
105 
drive<C>(iter: Iter<Self>, consumer: C) -> C::Result where C: Consumer<Self>106         fn drive<C>(iter: Iter<Self>, consumer: C) -> C::Result
107         where
108             C: Consumer<Self>;
109 
len(iter: &Iter<Self>) -> usize110         fn len(iter: &Iter<Self>) -> usize;
111 
with_producer<CB>(iter: Iter<Self>, callback: CB) -> CB::Output where CB: ProducerCallback<Self>112         fn with_producer<CB>(iter: Iter<Self>, callback: CB) -> CB::Output
113         where
114             CB: ProducerCallback<Self>;
115     }
116 }
117 use private::{IndexedRangeInteger, RangeInteger};
118 
119 impl<T: RangeInteger> ParallelIterator for Iter<T> {
120     type Item = T;
121 
drive_unindexed<C>(self, consumer: C) -> C::Result where C: UnindexedConsumer<T>,122     fn drive_unindexed<C>(self, consumer: C) -> C::Result
123     where
124         C: UnindexedConsumer<T>,
125     {
126         T::drive_unindexed(self, consumer)
127     }
128 
129     #[inline]
opt_len(&self) -> Option<usize>130     fn opt_len(&self) -> Option<usize> {
131         T::opt_len(self)
132     }
133 }
134 
135 impl<T: IndexedRangeInteger> IndexedParallelIterator for Iter<T> {
drive<C>(self, consumer: C) -> C::Result where C: Consumer<T>,136     fn drive<C>(self, consumer: C) -> C::Result
137     where
138         C: Consumer<T>,
139     {
140         T::drive(self, consumer)
141     }
142 
143     #[inline]
len(&self) -> usize144     fn len(&self) -> usize {
145         T::len(self)
146     }
147 
with_producer<CB>(self, callback: CB) -> CB::Output where CB: ProducerCallback<T>,148     fn with_producer<CB>(self, callback: CB) -> CB::Output
149     where
150         CB: ProducerCallback<T>,
151     {
152         T::with_producer(self, callback)
153     }
154 }
155 
156 macro_rules! indexed_range_impl {
157     ( $t:ty ) => {
158         impl RangeInteger for $t {
159             private_impl! {}
160 
161             fn drive_unindexed<C>(iter: Iter<$t>, consumer: C) -> C::Result
162             where
163                 C: UnindexedConsumer<$t>,
164             {
165                 bridge(iter, consumer)
166             }
167 
168             fn opt_len(iter: &Iter<$t>) -> Option<usize> {
169                 Some(iter.range.len())
170             }
171         }
172 
173         impl IndexedRangeInteger for $t {
174             private_impl! {}
175 
176             fn drive<C>(iter: Iter<$t>, consumer: C) -> C::Result
177             where
178                 C: Consumer<$t>,
179             {
180                 bridge(iter, consumer)
181             }
182 
183             fn len(iter: &Iter<$t>) -> usize {
184                 iter.range.len()
185             }
186 
187             fn with_producer<CB>(iter: Iter<$t>, callback: CB) -> CB::Output
188             where
189                 CB: ProducerCallback<$t>,
190             {
191                 callback.callback(IterProducer { range: iter.range })
192             }
193         }
194 
195         impl Producer for IterProducer<$t> {
196             type Item = <Range<$t> as Iterator>::Item;
197             type IntoIter = Range<$t>;
198             fn into_iter(self) -> Self::IntoIter {
199                 self.range
200             }
201 
202             fn split_at(self, index: usize) -> (Self, Self) {
203                 assert!(index <= self.range.len());
204                 // For signed $t, the length and requested index could be greater than $t::MAX, and
205                 // then `index as $t` could wrap to negative, so wrapping_add is necessary.
206                 let mid = self.range.start.wrapping_add(index as $t);
207                 let left = self.range.start..mid;
208                 let right = mid..self.range.end;
209                 (IterProducer { range: left }, IterProducer { range: right })
210             }
211         }
212     };
213 }
214 
215 trait UnindexedRangeLen<L> {
len(&self) -> L216     fn len(&self) -> L;
217 }
218 
219 macro_rules! unindexed_range_impl {
220     ( $t:ty, $len_t:ty ) => {
221         impl UnindexedRangeLen<$len_t> for Range<$t> {
222             fn len(&self) -> $len_t {
223                 let &Range { start, end } = self;
224                 if end > start {
225                     end.wrapping_sub(start) as $len_t
226                 } else {
227                     0
228                 }
229             }
230         }
231 
232         impl RangeInteger for $t {
233             private_impl! {}
234 
235             fn drive_unindexed<C>(iter: Iter<$t>, consumer: C) -> C::Result
236             where
237                 C: UnindexedConsumer<$t>,
238             {
239                 #[inline]
240                 fn offset(start: $t) -> impl Fn(usize) -> $t {
241                     move |i| start.wrapping_add(i as $t)
242                 }
243 
244                 if let Some(len) = iter.opt_len() {
245                     // Drive this in indexed mode for better `collect`.
246                     (0..len)
247                         .into_par_iter()
248                         .map(offset(iter.range.start))
249                         .drive(consumer)
250                 } else {
251                     bridge_unindexed(IterProducer { range: iter.range }, consumer)
252                 }
253             }
254 
255             fn opt_len(iter: &Iter<$t>) -> Option<usize> {
256                 usize::try_from(iter.range.len()).ok()
257             }
258         }
259 
260         impl UnindexedProducer for IterProducer<$t> {
261             type Item = $t;
262 
263             fn split(mut self) -> (Self, Option<Self>) {
264                 let index = self.range.len() / 2;
265                 if index > 0 {
266                     let mid = self.range.start.wrapping_add(index as $t);
267                     let right = mid..self.range.end;
268                     self.range.end = mid;
269                     (self, Some(IterProducer { range: right }))
270                 } else {
271                     (self, None)
272                 }
273             }
274 
275             fn fold_with<F>(self, folder: F) -> F
276             where
277                 F: Folder<Self::Item>,
278             {
279                 folder.consume_iter(self)
280             }
281         }
282     };
283 }
284 
285 // all Range<T> with ExactSizeIterator
286 indexed_range_impl! {u8}
287 indexed_range_impl! {u16}
288 indexed_range_impl! {u32}
289 indexed_range_impl! {usize}
290 indexed_range_impl! {i8}
291 indexed_range_impl! {i16}
292 indexed_range_impl! {i32}
293 indexed_range_impl! {isize}
294 
295 // other Range<T> with just Iterator
296 unindexed_range_impl! {u64, u64}
297 unindexed_range_impl! {i64, u64}
298 unindexed_range_impl! {u128, u128}
299 unindexed_range_impl! {i128, u128}
300 
301 // char is special because of the surrogate range hole
302 macro_rules! convert_char {
303     ( $self:ident . $method:ident ( $( $arg:expr ),* ) ) => {{
304         let start = $self.range.start as u32;
305         let end = $self.range.end as u32;
306         if start < 0xD800 && 0xE000 < end {
307             // chain the before and after surrogate range fragments
308             (start..0xD800)
309                 .into_par_iter()
310                 .chain(0xE000..end)
311                 .map(|codepoint| unsafe { char::from_u32_unchecked(codepoint) })
312                 .$method($( $arg ),*)
313         } else {
314             // no surrogate range to worry about
315             (start..end)
316                 .into_par_iter()
317                 .map(|codepoint| unsafe { char::from_u32_unchecked(codepoint) })
318                 .$method($( $arg ),*)
319         }
320     }};
321 }
322 
323 impl ParallelIterator for Iter<char> {
324     type Item = char;
325 
drive_unindexed<C>(self, consumer: C) -> C::Result where C: UnindexedConsumer<Self::Item>,326     fn drive_unindexed<C>(self, consumer: C) -> C::Result
327     where
328         C: UnindexedConsumer<Self::Item>,
329     {
330         convert_char!(self.drive(consumer))
331     }
332 
opt_len(&self) -> Option<usize>333     fn opt_len(&self) -> Option<usize> {
334         Some(self.len())
335     }
336 }
337 
338 impl IndexedParallelIterator for Iter<char> {
339     // Split at the surrogate range first if we're allowed to
drive<C>(self, consumer: C) -> C::Result where C: Consumer<Self::Item>,340     fn drive<C>(self, consumer: C) -> C::Result
341     where
342         C: Consumer<Self::Item>,
343     {
344         convert_char!(self.drive(consumer))
345     }
346 
len(&self) -> usize347     fn len(&self) -> usize {
348         // Taken from <char as Step>::steps_between
349         let start = self.range.start as u32;
350         let end = self.range.end as u32;
351         if start < end {
352             let mut count = end - start;
353             if start < 0xD800 && 0xE000 <= end {
354                 count -= 0x800
355             }
356             count as usize
357         } else {
358             0
359         }
360     }
361 
with_producer<CB>(self, callback: CB) -> CB::Output where CB: ProducerCallback<Self::Item>,362     fn with_producer<CB>(self, callback: CB) -> CB::Output
363     where
364         CB: ProducerCallback<Self::Item>,
365     {
366         convert_char!(self.with_producer(callback))
367     }
368 }
369 
370 #[test]
check_range_split_at_overflow()371 fn check_range_split_at_overflow() {
372     // Note, this split index overflows i8!
373     let producer = IterProducer { range: -100i8..100 };
374     let (left, right) = producer.split_at(150);
375     let r1: i32 = left.range.map(i32::from).sum();
376     let r2: i32 = right.range.map(i32::from).sum();
377     assert_eq!(r1 + r2, -100);
378 }
379 
380 #[test]
test_i128_len_doesnt_overflow()381 fn test_i128_len_doesnt_overflow() {
382     use std::{i128, u128};
383 
384     // Using parse because some versions of rust don't allow long literals
385     let octillion: i128 = "1000000000000000000000000000".parse().unwrap();
386     let producer = IterProducer {
387         range: 0..octillion,
388     };
389 
390     assert_eq!(octillion as u128, producer.range.len());
391     assert_eq!(octillion as u128, (0..octillion).len());
392     assert_eq!(2 * octillion as u128, (-octillion..octillion).len());
393 
394     assert_eq!(u128::MAX, (i128::MIN..i128::MAX).len());
395 }
396 
397 #[test]
test_u64_opt_len()398 fn test_u64_opt_len() {
399     use std::{u64, usize};
400     assert_eq!(Some(100), (0..100u64).into_par_iter().opt_len());
401     assert_eq!(
402         Some(usize::MAX),
403         (0..usize::MAX as u64).into_par_iter().opt_len()
404     );
405     if (usize::MAX as u64) < u64::MAX {
406         assert_eq!(
407             None,
408             (0..(usize::MAX as u64).wrapping_add(1))
409                 .into_par_iter()
410                 .opt_len()
411         );
412         assert_eq!(None, (0..u64::MAX).into_par_iter().opt_len());
413     }
414 }
415 
416 #[test]
test_u128_opt_len()417 fn test_u128_opt_len() {
418     use std::{u128, usize};
419     assert_eq!(Some(100), (0..100u128).into_par_iter().opt_len());
420     assert_eq!(
421         Some(usize::MAX),
422         (0..usize::MAX as u128).into_par_iter().opt_len()
423     );
424     assert_eq!(None, (0..1 + usize::MAX as u128).into_par_iter().opt_len());
425     assert_eq!(None, (0..u128::MAX).into_par_iter().opt_len());
426 }
427 
428 // `usize as i64` can overflow, so make sure to wrap it appropriately
429 // when using the `opt_len` "indexed" mode.
430 #[test]
431 #[cfg(target_pointer_width = "64")]
test_usize_i64_overflow()432 fn test_usize_i64_overflow() {
433     use crate::ThreadPoolBuilder;
434     use std::i64;
435 
436     let iter = (-2..i64::MAX).into_par_iter();
437     assert_eq!(iter.opt_len(), Some(i64::MAX as usize + 2));
438 
439     // always run with multiple threads to split into, or this will take forever...
440     let pool = ThreadPoolBuilder::new().num_threads(8).build().unwrap();
441     pool.install(|| assert_eq!(iter.find_last(|_| true), Some(i64::MAX - 1)));
442 }
443 
444 #[test]
test_issue_833()445 fn test_issue_833() {
446     fn is_even(n: i64) -> bool {
447         n % 2 == 0
448     }
449 
450     // The integer type should be inferred from `is_even`
451     let v: Vec<_> = (1..100).into_par_iter().filter(|&x| is_even(x)).collect();
452     assert!(v.into_iter().eq((2..100).step_by(2)));
453 
454     // Try examples with indexed iterators too
455     let pos = (0..100).into_par_iter().position_any(|x| x == 50i16);
456     assert_eq!(pos, Some(50usize));
457 
458     assert!((0..100)
459         .into_par_iter()
460         .zip(0..100)
461         .all(|(a, b)| i16::eq(&a, &b)));
462 }
463