1 use super::exp; 2 use super::expm1; 3 use super::k_expo2; 4 5 /// Hyperbolic cosine (f64) 6 /// 7 /// Computes the hyperbolic cosine of the argument x. 8 /// Is defined as `(exp(x) + exp(-x))/2` 9 /// Angles are specified in radians. 10 #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] cosh(mut x: f64) -> f6411pub fn cosh(mut x: f64) -> f64 { 12 /* |x| */ 13 let mut ix = x.to_bits(); 14 ix &= 0x7fffffffffffffff; 15 x = f64::from_bits(ix); 16 let w = ix >> 32; 17 18 /* |x| < log(2) */ 19 if w < 0x3fe62e42 { 20 if w < 0x3ff00000 - (26 << 20) { 21 let x1p120 = f64::from_bits(0x4770000000000000); 22 force_eval!(x + x1p120); 23 return 1.; 24 } 25 let t = expm1(x); // exponential minus 1 26 return 1. + t * t / (2. * (1. + t)); 27 } 28 29 /* |x| < log(DBL_MAX) */ 30 if w < 0x40862e42 { 31 let t = exp(x); 32 /* note: if x>log(0x1p26) then the 1/t is not needed */ 33 return 0.5 * (t + 1. / t); 34 } 35 36 /* |x| > log(DBL_MAX) or nan */ 37 k_expo2(x) 38 } 39