1 /* origin: FreeBSD /usr/src/lib/msun/src/s_cbrtf.c */
2 /*
3  * Conversion to float by Ian Lance Taylor, Cygnus Support, [email protected].
4  * Debugged and optimized by Bruce D. Evans.
5  */
6 /*
7  * ====================================================
8  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
9  *
10  * Developed at SunPro, a Sun Microsystems, Inc. business.
11  * Permission to use, copy, modify, and distribute this
12  * software is freely granted, provided that this notice
13  * is preserved.
14  * ====================================================
15  */
16 /* cbrtf(x)
17  * Return cube root of x
18  */
19 
20 use core::f32;
21 
22 const B1: u32 = 709958130; /* B1 = (127-127.0/3-0.03306235651)*2**23 */
23 const B2: u32 = 642849266; /* B2 = (127-127.0/3-24/3-0.03306235651)*2**23 */
24 
25 /// Cube root (f32)
26 ///
27 /// Computes the cube root of the argument.
28 #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
cbrtf(x: f32) -> f3229 pub fn cbrtf(x: f32) -> f32 {
30     let x1p24 = f32::from_bits(0x4b800000); // 0x1p24f === 2 ^ 24
31 
32     let mut r: f64;
33     let mut t: f64;
34     let mut ui: u32 = x.to_bits();
35     let mut hx: u32 = ui & 0x7fffffff;
36 
37     if hx >= 0x7f800000 {
38         /* cbrt(NaN,INF) is itself */
39         return x + x;
40     }
41 
42     /* rough cbrt to 5 bits */
43     if hx < 0x00800000 {
44         /* zero or subnormal? */
45         if hx == 0 {
46             return x; /* cbrt(+-0) is itself */
47         }
48         ui = (x * x1p24).to_bits();
49         hx = ui & 0x7fffffff;
50         hx = hx / 3 + B2;
51     } else {
52         hx = hx / 3 + B1;
53     }
54     ui &= 0x80000000;
55     ui |= hx;
56 
57     /*
58      * First step Newton iteration (solving t*t-x/t == 0) to 16 bits.  In
59      * double precision so that its terms can be arranged for efficiency
60      * without causing overflow or underflow.
61      */
62     t = f32::from_bits(ui) as f64;
63     r = t * t * t;
64     t = t * (x as f64 + x as f64 + r) / (x as f64 + r + r);
65 
66     /*
67      * Second step Newton iteration to 47 bits.  In double precision for
68      * efficiency and accuracy.
69      */
70     r = t * t * t;
71     t = t * (x as f64 + x as f64 + r) / (x as f64 + r + r);
72 
73     /* rounding to 24 bits is perfect in round-to-nearest mode */
74     t as f32
75 }
76