1 use super::log1p; 2 3 /* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */ 4 /// Inverse hyperbolic tangent (f64) 5 /// 6 /// Calculates the inverse hyperbolic tangent of `x`. 7 /// Is defined as `log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2`. 8 #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] atanh(x: f64) -> f649pub fn atanh(x: f64) -> f64 { 10 let u = x.to_bits(); 11 let e = ((u >> 52) as usize) & 0x7ff; 12 let sign = (u >> 63) != 0; 13 14 /* |x| */ 15 let mut y = f64::from_bits(u & 0x7fff_ffff_ffff_ffff); 16 17 if e < 0x3ff - 1 { 18 if e < 0x3ff - 32 { 19 /* handle underflow */ 20 if e == 0 { 21 force_eval!(y as f32); 22 } 23 } else { 24 /* |x| < 0.5, up to 1.7ulp error */ 25 y = 0.5 * log1p(2.0 * y + 2.0 * y * y / (1.0 - y)); 26 } 27 } else { 28 /* avoid overflow */ 29 y = 0.5 * log1p(2.0 * (y / (1.0 - y))); 30 } 31 32 if sign { 33 -y 34 } else { 35 y 36 } 37 } 38