1 // Generated from vec.rs.tera template. Edit the template, not the generated file.
2 
3 #[cfg(feature = "scalar-math")]
4 use crate::BVec4 as BVec4A;
5 #[cfg(not(feature = "scalar-math"))]
6 use crate::BVec4A;
7 use crate::{f32::math, Vec2, Vec3, Vec3A};
8 
9 #[cfg(not(target_arch = "spirv"))]
10 use core::fmt;
11 use core::iter::{Product, Sum};
12 use core::{f32, ops::*};
13 
14 /// Creates a 4-dimensional vector.
15 #[inline(always)]
16 #[must_use]
vec4(x: f32, y: f32, z: f32, w: f32) -> Vec417 pub const fn vec4(x: f32, y: f32, z: f32, w: f32) -> Vec4 {
18     Vec4::new(x, y, z, w)
19 }
20 
21 /// A 4-dimensional vector.
22 #[derive(Clone, Copy, PartialEq)]
23 #[cfg_attr(
24     any(
25         not(any(feature = "scalar-math", target_arch = "spirv")),
26         feature = "cuda"
27     ),
28     repr(align(16))
29 )]
30 #[cfg_attr(not(target_arch = "spirv"), repr(C))]
31 #[cfg_attr(target_arch = "spirv", repr(simd))]
32 pub struct Vec4 {
33     pub x: f32,
34     pub y: f32,
35     pub z: f32,
36     pub w: f32,
37 }
38 
39 impl Vec4 {
40     /// All zeroes.
41     pub const ZERO: Self = Self::splat(0.0);
42 
43     /// All ones.
44     pub const ONE: Self = Self::splat(1.0);
45 
46     /// All negative ones.
47     pub const NEG_ONE: Self = Self::splat(-1.0);
48 
49     /// All `f32::MIN`.
50     pub const MIN: Self = Self::splat(f32::MIN);
51 
52     /// All `f32::MAX`.
53     pub const MAX: Self = Self::splat(f32::MAX);
54 
55     /// All `f32::NAN`.
56     pub const NAN: Self = Self::splat(f32::NAN);
57 
58     /// All `f32::INFINITY`.
59     pub const INFINITY: Self = Self::splat(f32::INFINITY);
60 
61     /// All `f32::NEG_INFINITY`.
62     pub const NEG_INFINITY: Self = Self::splat(f32::NEG_INFINITY);
63 
64     /// A unit vector pointing along the positive X axis.
65     pub const X: Self = Self::new(1.0, 0.0, 0.0, 0.0);
66 
67     /// A unit vector pointing along the positive Y axis.
68     pub const Y: Self = Self::new(0.0, 1.0, 0.0, 0.0);
69 
70     /// A unit vector pointing along the positive Z axis.
71     pub const Z: Self = Self::new(0.0, 0.0, 1.0, 0.0);
72 
73     /// A unit vector pointing along the positive W axis.
74     pub const W: Self = Self::new(0.0, 0.0, 0.0, 1.0);
75 
76     /// A unit vector pointing along the negative X axis.
77     pub const NEG_X: Self = Self::new(-1.0, 0.0, 0.0, 0.0);
78 
79     /// A unit vector pointing along the negative Y axis.
80     pub const NEG_Y: Self = Self::new(0.0, -1.0, 0.0, 0.0);
81 
82     /// A unit vector pointing along the negative Z axis.
83     pub const NEG_Z: Self = Self::new(0.0, 0.0, -1.0, 0.0);
84 
85     /// A unit vector pointing along the negative W axis.
86     pub const NEG_W: Self = Self::new(0.0, 0.0, 0.0, -1.0);
87 
88     /// The unit axes.
89     pub const AXES: [Self; 4] = [Self::X, Self::Y, Self::Z, Self::W];
90 
91     /// Creates a new vector.
92     #[inline(always)]
93     #[must_use]
new(x: f32, y: f32, z: f32, w: f32) -> Self94     pub const fn new(x: f32, y: f32, z: f32, w: f32) -> Self {
95         Self { x, y, z, w }
96     }
97 
98     /// Creates a vector with all elements set to `v`.
99     #[inline]
100     #[must_use]
splat(v: f32) -> Self101     pub const fn splat(v: f32) -> Self {
102         Self {
103             x: v,
104 
105             y: v,
106 
107             z: v,
108 
109             w: v,
110         }
111     }
112 
113     /// Creates a vector from the elements in `if_true` and `if_false`, selecting which to use
114     /// for each element of `self`.
115     ///
116     /// A true element in the mask uses the corresponding element from `if_true`, and false
117     /// uses the element from `if_false`.
118     #[inline]
119     #[must_use]
select(mask: BVec4A, if_true: Self, if_false: Self) -> Self120     pub fn select(mask: BVec4A, if_true: Self, if_false: Self) -> Self {
121         Self {
122             x: if mask.test(0) { if_true.x } else { if_false.x },
123             y: if mask.test(1) { if_true.y } else { if_false.y },
124             z: if mask.test(2) { if_true.z } else { if_false.z },
125             w: if mask.test(3) { if_true.w } else { if_false.w },
126         }
127     }
128 
129     /// Creates a new vector from an array.
130     #[inline]
131     #[must_use]
from_array(a: [f32; 4]) -> Self132     pub const fn from_array(a: [f32; 4]) -> Self {
133         Self::new(a[0], a[1], a[2], a[3])
134     }
135 
136     /// `[x, y, z, w]`
137     #[inline]
138     #[must_use]
to_array(&self) -> [f32; 4]139     pub const fn to_array(&self) -> [f32; 4] {
140         [self.x, self.y, self.z, self.w]
141     }
142 
143     /// Creates a vector from the first 4 values in `slice`.
144     ///
145     /// # Panics
146     ///
147     /// Panics if `slice` is less than 4 elements long.
148     #[inline]
149     #[must_use]
from_slice(slice: &[f32]) -> Self150     pub const fn from_slice(slice: &[f32]) -> Self {
151         Self::new(slice[0], slice[1], slice[2], slice[3])
152     }
153 
154     /// Writes the elements of `self` to the first 4 elements in `slice`.
155     ///
156     /// # Panics
157     ///
158     /// Panics if `slice` is less than 4 elements long.
159     #[inline]
write_to_slice(self, slice: &mut [f32])160     pub fn write_to_slice(self, slice: &mut [f32]) {
161         slice[0] = self.x;
162         slice[1] = self.y;
163         slice[2] = self.z;
164         slice[3] = self.w;
165     }
166 
167     /// Creates a 3D vector from the `x`, `y` and `z` elements of `self`, discarding `w`.
168     ///
169     /// Truncation to [`Vec3`] may also be performed by using [`self.xyz()`][crate::swizzles::Vec4Swizzles::xyz()].
170     ///
171     /// To truncate to [`Vec3A`] use [`Vec3A::from()`].
172     #[inline]
173     #[must_use]
truncate(self) -> Vec3174     pub fn truncate(self) -> Vec3 {
175         use crate::swizzles::Vec4Swizzles;
176         self.xyz()
177     }
178 
179     /// Computes the dot product of `self` and `rhs`.
180     #[inline]
181     #[must_use]
dot(self, rhs: Self) -> f32182     pub fn dot(self, rhs: Self) -> f32 {
183         (self.x * rhs.x) + (self.y * rhs.y) + (self.z * rhs.z) + (self.w * rhs.w)
184     }
185 
186     /// Returns a vector where every component is the dot product of `self` and `rhs`.
187     #[inline]
188     #[must_use]
dot_into_vec(self, rhs: Self) -> Self189     pub fn dot_into_vec(self, rhs: Self) -> Self {
190         Self::splat(self.dot(rhs))
191     }
192 
193     /// Returns a vector containing the minimum values for each element of `self` and `rhs`.
194     ///
195     /// In other words this computes `[self.x.min(rhs.x), self.y.min(rhs.y), ..]`.
196     #[inline]
197     #[must_use]
min(self, rhs: Self) -> Self198     pub fn min(self, rhs: Self) -> Self {
199         Self {
200             x: self.x.min(rhs.x),
201             y: self.y.min(rhs.y),
202             z: self.z.min(rhs.z),
203             w: self.w.min(rhs.w),
204         }
205     }
206 
207     /// Returns a vector containing the maximum values for each element of `self` and `rhs`.
208     ///
209     /// In other words this computes `[self.x.max(rhs.x), self.y.max(rhs.y), ..]`.
210     #[inline]
211     #[must_use]
max(self, rhs: Self) -> Self212     pub fn max(self, rhs: Self) -> Self {
213         Self {
214             x: self.x.max(rhs.x),
215             y: self.y.max(rhs.y),
216             z: self.z.max(rhs.z),
217             w: self.w.max(rhs.w),
218         }
219     }
220 
221     /// Component-wise clamping of values, similar to [`f32::clamp`].
222     ///
223     /// Each element in `min` must be less-or-equal to the corresponding element in `max`.
224     ///
225     /// # Panics
226     ///
227     /// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
228     #[inline]
229     #[must_use]
clamp(self, min: Self, max: Self) -> Self230     pub fn clamp(self, min: Self, max: Self) -> Self {
231         glam_assert!(min.cmple(max).all(), "clamp: expected min <= max");
232         self.max(min).min(max)
233     }
234 
235     /// Returns the horizontal minimum of `self`.
236     ///
237     /// In other words this computes `min(x, y, ..)`.
238     #[inline]
239     #[must_use]
min_element(self) -> f32240     pub fn min_element(self) -> f32 {
241         self.x.min(self.y.min(self.z.min(self.w)))
242     }
243 
244     /// Returns the horizontal maximum of `self`.
245     ///
246     /// In other words this computes `max(x, y, ..)`.
247     #[inline]
248     #[must_use]
max_element(self) -> f32249     pub fn max_element(self) -> f32 {
250         self.x.max(self.y.max(self.z.max(self.w)))
251     }
252 
253     /// Returns a vector mask containing the result of a `==` comparison for each element of
254     /// `self` and `rhs`.
255     ///
256     /// In other words, this computes `[self.x == rhs.x, self.y == rhs.y, ..]` for all
257     /// elements.
258     #[inline]
259     #[must_use]
cmpeq(self, rhs: Self) -> BVec4A260     pub fn cmpeq(self, rhs: Self) -> BVec4A {
261         BVec4A::new(
262             self.x.eq(&rhs.x),
263             self.y.eq(&rhs.y),
264             self.z.eq(&rhs.z),
265             self.w.eq(&rhs.w),
266         )
267     }
268 
269     /// Returns a vector mask containing the result of a `!=` comparison for each element of
270     /// `self` and `rhs`.
271     ///
272     /// In other words this computes `[self.x != rhs.x, self.y != rhs.y, ..]` for all
273     /// elements.
274     #[inline]
275     #[must_use]
cmpne(self, rhs: Self) -> BVec4A276     pub fn cmpne(self, rhs: Self) -> BVec4A {
277         BVec4A::new(
278             self.x.ne(&rhs.x),
279             self.y.ne(&rhs.y),
280             self.z.ne(&rhs.z),
281             self.w.ne(&rhs.w),
282         )
283     }
284 
285     /// Returns a vector mask containing the result of a `>=` comparison for each element of
286     /// `self` and `rhs`.
287     ///
288     /// In other words this computes `[self.x >= rhs.x, self.y >= rhs.y, ..]` for all
289     /// elements.
290     #[inline]
291     #[must_use]
cmpge(self, rhs: Self) -> BVec4A292     pub fn cmpge(self, rhs: Self) -> BVec4A {
293         BVec4A::new(
294             self.x.ge(&rhs.x),
295             self.y.ge(&rhs.y),
296             self.z.ge(&rhs.z),
297             self.w.ge(&rhs.w),
298         )
299     }
300 
301     /// Returns a vector mask containing the result of a `>` comparison for each element of
302     /// `self` and `rhs`.
303     ///
304     /// In other words this computes `[self.x > rhs.x, self.y > rhs.y, ..]` for all
305     /// elements.
306     #[inline]
307     #[must_use]
cmpgt(self, rhs: Self) -> BVec4A308     pub fn cmpgt(self, rhs: Self) -> BVec4A {
309         BVec4A::new(
310             self.x.gt(&rhs.x),
311             self.y.gt(&rhs.y),
312             self.z.gt(&rhs.z),
313             self.w.gt(&rhs.w),
314         )
315     }
316 
317     /// Returns a vector mask containing the result of a `<=` comparison for each element of
318     /// `self` and `rhs`.
319     ///
320     /// In other words this computes `[self.x <= rhs.x, self.y <= rhs.y, ..]` for all
321     /// elements.
322     #[inline]
323     #[must_use]
cmple(self, rhs: Self) -> BVec4A324     pub fn cmple(self, rhs: Self) -> BVec4A {
325         BVec4A::new(
326             self.x.le(&rhs.x),
327             self.y.le(&rhs.y),
328             self.z.le(&rhs.z),
329             self.w.le(&rhs.w),
330         )
331     }
332 
333     /// Returns a vector mask containing the result of a `<` comparison for each element of
334     /// `self` and `rhs`.
335     ///
336     /// In other words this computes `[self.x < rhs.x, self.y < rhs.y, ..]` for all
337     /// elements.
338     #[inline]
339     #[must_use]
cmplt(self, rhs: Self) -> BVec4A340     pub fn cmplt(self, rhs: Self) -> BVec4A {
341         BVec4A::new(
342             self.x.lt(&rhs.x),
343             self.y.lt(&rhs.y),
344             self.z.lt(&rhs.z),
345             self.w.lt(&rhs.w),
346         )
347     }
348 
349     /// Returns a vector containing the absolute value of each element of `self`.
350     #[inline]
351     #[must_use]
abs(self) -> Self352     pub fn abs(self) -> Self {
353         Self {
354             x: math::abs(self.x),
355             y: math::abs(self.y),
356             z: math::abs(self.z),
357             w: math::abs(self.w),
358         }
359     }
360 
361     /// Returns a vector with elements representing the sign of `self`.
362     ///
363     /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
364     /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
365     /// - `NAN` if the number is `NAN`
366     #[inline]
367     #[must_use]
signum(self) -> Self368     pub fn signum(self) -> Self {
369         Self {
370             x: math::signum(self.x),
371             y: math::signum(self.y),
372             z: math::signum(self.z),
373             w: math::signum(self.w),
374         }
375     }
376 
377     /// Returns a vector with signs of `rhs` and the magnitudes of `self`.
378     #[inline]
379     #[must_use]
copysign(self, rhs: Self) -> Self380     pub fn copysign(self, rhs: Self) -> Self {
381         Self {
382             x: math::copysign(self.x, rhs.x),
383             y: math::copysign(self.y, rhs.y),
384             z: math::copysign(self.z, rhs.z),
385             w: math::copysign(self.w, rhs.w),
386         }
387     }
388 
389     /// Returns a bitmask with the lowest 4 bits set to the sign bits from the elements of `self`.
390     ///
391     /// A negative element results in a `1` bit and a positive element in a `0` bit.  Element `x` goes
392     /// into the first lowest bit, element `y` into the second, etc.
393     #[inline]
394     #[must_use]
is_negative_bitmask(self) -> u32395     pub fn is_negative_bitmask(self) -> u32 {
396         (self.x.is_sign_negative() as u32)
397             | (self.y.is_sign_negative() as u32) << 1
398             | (self.z.is_sign_negative() as u32) << 2
399             | (self.w.is_sign_negative() as u32) << 3
400     }
401 
402     /// Returns `true` if, and only if, all elements are finite.  If any element is either
403     /// `NaN`, positive or negative infinity, this will return `false`.
404     #[inline]
405     #[must_use]
is_finite(self) -> bool406     pub fn is_finite(self) -> bool {
407         self.x.is_finite() && self.y.is_finite() && self.z.is_finite() && self.w.is_finite()
408     }
409 
410     /// Returns `true` if any elements are `NaN`.
411     #[inline]
412     #[must_use]
is_nan(self) -> bool413     pub fn is_nan(self) -> bool {
414         self.x.is_nan() || self.y.is_nan() || self.z.is_nan() || self.w.is_nan()
415     }
416 
417     /// Performs `is_nan` on each element of self, returning a vector mask of the results.
418     ///
419     /// In other words, this computes `[x.is_nan(), y.is_nan(), z.is_nan(), w.is_nan()]`.
420     #[inline]
421     #[must_use]
is_nan_mask(self) -> BVec4A422     pub fn is_nan_mask(self) -> BVec4A {
423         BVec4A::new(
424             self.x.is_nan(),
425             self.y.is_nan(),
426             self.z.is_nan(),
427             self.w.is_nan(),
428         )
429     }
430 
431     /// Computes the length of `self`.
432     #[doc(alias = "magnitude")]
433     #[inline]
434     #[must_use]
length(self) -> f32435     pub fn length(self) -> f32 {
436         math::sqrt(self.dot(self))
437     }
438 
439     /// Computes the squared length of `self`.
440     ///
441     /// This is faster than `length()` as it avoids a square root operation.
442     #[doc(alias = "magnitude2")]
443     #[inline]
444     #[must_use]
length_squared(self) -> f32445     pub fn length_squared(self) -> f32 {
446         self.dot(self)
447     }
448 
449     /// Computes `1.0 / length()`.
450     ///
451     /// For valid results, `self` must _not_ be of length zero.
452     #[inline]
453     #[must_use]
length_recip(self) -> f32454     pub fn length_recip(self) -> f32 {
455         self.length().recip()
456     }
457 
458     /// Computes the Euclidean distance between two points in space.
459     #[inline]
460     #[must_use]
distance(self, rhs: Self) -> f32461     pub fn distance(self, rhs: Self) -> f32 {
462         (self - rhs).length()
463     }
464 
465     /// Compute the squared euclidean distance between two points in space.
466     #[inline]
467     #[must_use]
distance_squared(self, rhs: Self) -> f32468     pub fn distance_squared(self, rhs: Self) -> f32 {
469         (self - rhs).length_squared()
470     }
471 
472     /// Returns the element-wise quotient of [Euclidean division] of `self` by `rhs`.
473     #[inline]
474     #[must_use]
div_euclid(self, rhs: Self) -> Self475     pub fn div_euclid(self, rhs: Self) -> Self {
476         Self::new(
477             math::div_euclid(self.x, rhs.x),
478             math::div_euclid(self.y, rhs.y),
479             math::div_euclid(self.z, rhs.z),
480             math::div_euclid(self.w, rhs.w),
481         )
482     }
483 
484     /// Returns the element-wise remainder of [Euclidean division] of `self` by `rhs`.
485     ///
486     /// [Euclidean division]: f32::rem_euclid
487     #[inline]
488     #[must_use]
rem_euclid(self, rhs: Self) -> Self489     pub fn rem_euclid(self, rhs: Self) -> Self {
490         Self::new(
491             math::rem_euclid(self.x, rhs.x),
492             math::rem_euclid(self.y, rhs.y),
493             math::rem_euclid(self.z, rhs.z),
494             math::rem_euclid(self.w, rhs.w),
495         )
496     }
497 
498     /// Returns `self` normalized to length 1.0.
499     ///
500     /// For valid results, `self` must _not_ be of length zero, nor very close to zero.
501     ///
502     /// See also [`Self::try_normalize()`] and [`Self::normalize_or_zero()`].
503     ///
504     /// Panics
505     ///
506     /// Will panic if `self` is zero length when `glam_assert` is enabled.
507     #[inline]
508     #[must_use]
normalize(self) -> Self509     pub fn normalize(self) -> Self {
510         #[allow(clippy::let_and_return)]
511         let normalized = self.mul(self.length_recip());
512         glam_assert!(normalized.is_finite());
513         normalized
514     }
515 
516     /// Returns `self` normalized to length 1.0 if possible, else returns `None`.
517     ///
518     /// In particular, if the input is zero (or very close to zero), or non-finite,
519     /// the result of this operation will be `None`.
520     ///
521     /// See also [`Self::normalize_or_zero()`].
522     #[inline]
523     #[must_use]
try_normalize(self) -> Option<Self>524     pub fn try_normalize(self) -> Option<Self> {
525         let rcp = self.length_recip();
526         if rcp.is_finite() && rcp > 0.0 {
527             Some(self * rcp)
528         } else {
529             None
530         }
531     }
532 
533     /// Returns `self` normalized to length 1.0 if possible, else returns zero.
534     ///
535     /// In particular, if the input is zero (or very close to zero), or non-finite,
536     /// the result of this operation will be zero.
537     ///
538     /// See also [`Self::try_normalize()`].
539     #[inline]
540     #[must_use]
normalize_or_zero(self) -> Self541     pub fn normalize_or_zero(self) -> Self {
542         let rcp = self.length_recip();
543         if rcp.is_finite() && rcp > 0.0 {
544             self * rcp
545         } else {
546             Self::ZERO
547         }
548     }
549 
550     /// Returns whether `self` is length `1.0` or not.
551     ///
552     /// Uses a precision threshold of `1e-6`.
553     #[inline]
554     #[must_use]
is_normalized(self) -> bool555     pub fn is_normalized(self) -> bool {
556         // TODO: do something with epsilon
557         math::abs(self.length_squared() - 1.0) <= 1e-4
558     }
559 
560     /// Returns the vector projection of `self` onto `rhs`.
561     ///
562     /// `rhs` must be of non-zero length.
563     ///
564     /// # Panics
565     ///
566     /// Will panic if `rhs` is zero length when `glam_assert` is enabled.
567     #[inline]
568     #[must_use]
project_onto(self, rhs: Self) -> Self569     pub fn project_onto(self, rhs: Self) -> Self {
570         let other_len_sq_rcp = rhs.dot(rhs).recip();
571         glam_assert!(other_len_sq_rcp.is_finite());
572         rhs * self.dot(rhs) * other_len_sq_rcp
573     }
574 
575     /// Returns the vector rejection of `self` from `rhs`.
576     ///
577     /// The vector rejection is the vector perpendicular to the projection of `self` onto
578     /// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`.
579     ///
580     /// `rhs` must be of non-zero length.
581     ///
582     /// # Panics
583     ///
584     /// Will panic if `rhs` has a length of zero when `glam_assert` is enabled.
585     #[inline]
586     #[must_use]
reject_from(self, rhs: Self) -> Self587     pub fn reject_from(self, rhs: Self) -> Self {
588         self - self.project_onto(rhs)
589     }
590 
591     /// Returns the vector projection of `self` onto `rhs`.
592     ///
593     /// `rhs` must be normalized.
594     ///
595     /// # Panics
596     ///
597     /// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
598     #[inline]
599     #[must_use]
project_onto_normalized(self, rhs: Self) -> Self600     pub fn project_onto_normalized(self, rhs: Self) -> Self {
601         glam_assert!(rhs.is_normalized());
602         rhs * self.dot(rhs)
603     }
604 
605     /// Returns the vector rejection of `self` from `rhs`.
606     ///
607     /// The vector rejection is the vector perpendicular to the projection of `self` onto
608     /// `rhs`, in rhs words the result of `self - self.project_onto(rhs)`.
609     ///
610     /// `rhs` must be normalized.
611     ///
612     /// # Panics
613     ///
614     /// Will panic if `rhs` is not normalized when `glam_assert` is enabled.
615     #[inline]
616     #[must_use]
reject_from_normalized(self, rhs: Self) -> Self617     pub fn reject_from_normalized(self, rhs: Self) -> Self {
618         self - self.project_onto_normalized(rhs)
619     }
620 
621     /// Returns a vector containing the nearest integer to a number for each element of `self`.
622     /// Round half-way cases away from 0.0.
623     #[inline]
624     #[must_use]
round(self) -> Self625     pub fn round(self) -> Self {
626         Self {
627             x: math::round(self.x),
628             y: math::round(self.y),
629             z: math::round(self.z),
630             w: math::round(self.w),
631         }
632     }
633 
634     /// Returns a vector containing the largest integer less than or equal to a number for each
635     /// element of `self`.
636     #[inline]
637     #[must_use]
floor(self) -> Self638     pub fn floor(self) -> Self {
639         Self {
640             x: math::floor(self.x),
641             y: math::floor(self.y),
642             z: math::floor(self.z),
643             w: math::floor(self.w),
644         }
645     }
646 
647     /// Returns a vector containing the smallest integer greater than or equal to a number for
648     /// each element of `self`.
649     #[inline]
650     #[must_use]
ceil(self) -> Self651     pub fn ceil(self) -> Self {
652         Self {
653             x: math::ceil(self.x),
654             y: math::ceil(self.y),
655             z: math::ceil(self.z),
656             w: math::ceil(self.w),
657         }
658     }
659 
660     /// Returns a vector containing the integer part each element of `self`. This means numbers are
661     /// always truncated towards zero.
662     #[inline]
663     #[must_use]
trunc(self) -> Self664     pub fn trunc(self) -> Self {
665         Self {
666             x: math::trunc(self.x),
667             y: math::trunc(self.y),
668             z: math::trunc(self.z),
669             w: math::trunc(self.w),
670         }
671     }
672 
673     /// Returns a vector containing the fractional part of the vector, e.g. `self -
674     /// self.floor()`.
675     ///
676     /// Note that this is fast but not precise for large numbers.
677     #[inline]
678     #[must_use]
fract(self) -> Self679     pub fn fract(self) -> Self {
680         self - self.floor()
681     }
682 
683     /// Returns a vector containing `e^self` (the exponential function) for each element of
684     /// `self`.
685     #[inline]
686     #[must_use]
exp(self) -> Self687     pub fn exp(self) -> Self {
688         Self::new(
689             math::exp(self.x),
690             math::exp(self.y),
691             math::exp(self.z),
692             math::exp(self.w),
693         )
694     }
695 
696     /// Returns a vector containing each element of `self` raised to the power of `n`.
697     #[inline]
698     #[must_use]
powf(self, n: f32) -> Self699     pub fn powf(self, n: f32) -> Self {
700         Self::new(
701             math::powf(self.x, n),
702             math::powf(self.y, n),
703             math::powf(self.z, n),
704             math::powf(self.w, n),
705         )
706     }
707 
708     /// Returns a vector containing the reciprocal `1.0/n` of each element of `self`.
709     #[inline]
710     #[must_use]
recip(self) -> Self711     pub fn recip(self) -> Self {
712         Self {
713             x: 1.0 / self.x,
714             y: 1.0 / self.y,
715             z: 1.0 / self.z,
716             w: 1.0 / self.w,
717         }
718     }
719 
720     /// Performs a linear interpolation between `self` and `rhs` based on the value `s`.
721     ///
722     /// When `s` is `0.0`, the result will be equal to `self`.  When `s` is `1.0`, the result
723     /// will be equal to `rhs`. When `s` is outside of range `[0, 1]`, the result is linearly
724     /// extrapolated.
725     #[doc(alias = "mix")]
726     #[inline]
727     #[must_use]
lerp(self, rhs: Self, s: f32) -> Self728     pub fn lerp(self, rhs: Self, s: f32) -> Self {
729         self + ((rhs - self) * s)
730     }
731 
732     /// Returns true if the absolute difference of all elements between `self` and `rhs` is
733     /// less than or equal to `max_abs_diff`.
734     ///
735     /// This can be used to compare if two vectors contain similar elements. It works best when
736     /// comparing with a known value. The `max_abs_diff` that should be used used depends on
737     /// the values being compared against.
738     ///
739     /// For more see
740     /// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
741     #[inline]
742     #[must_use]
abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool743     pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f32) -> bool {
744         self.sub(rhs).abs().cmple(Self::splat(max_abs_diff)).all()
745     }
746 
747     /// Returns a vector with a length no less than `min` and no more than `max`
748     ///
749     /// # Panics
750     ///
751     /// Will panic if `min` is greater than `max` when `glam_assert` is enabled.
752     #[inline]
753     #[must_use]
clamp_length(self, min: f32, max: f32) -> Self754     pub fn clamp_length(self, min: f32, max: f32) -> Self {
755         glam_assert!(min <= max);
756         let length_sq = self.length_squared();
757         if length_sq < min * min {
758             min * (self / math::sqrt(length_sq))
759         } else if length_sq > max * max {
760             max * (self / math::sqrt(length_sq))
761         } else {
762             self
763         }
764     }
765 
766     /// Returns a vector with a length no more than `max`
767     #[inline]
768     #[must_use]
clamp_length_max(self, max: f32) -> Self769     pub fn clamp_length_max(self, max: f32) -> Self {
770         let length_sq = self.length_squared();
771         if length_sq > max * max {
772             max * (self / math::sqrt(length_sq))
773         } else {
774             self
775         }
776     }
777 
778     /// Returns a vector with a length no less than `min`
779     #[inline]
780     #[must_use]
clamp_length_min(self, min: f32) -> Self781     pub fn clamp_length_min(self, min: f32) -> Self {
782         let length_sq = self.length_squared();
783         if length_sq < min * min {
784             min * (self / math::sqrt(length_sq))
785         } else {
786             self
787         }
788     }
789 
790     /// Fused multiply-add. Computes `(self * a) + b` element-wise with only one rounding
791     /// error, yielding a more accurate result than an unfused multiply-add.
792     ///
793     /// Using `mul_add` *may* be more performant than an unfused multiply-add if the target
794     /// architecture has a dedicated fma CPU instruction. However, this is not always true,
795     /// and will be heavily dependant on designing algorithms with specific target hardware in
796     /// mind.
797     #[inline]
798     #[must_use]
mul_add(self, a: Self, b: Self) -> Self799     pub fn mul_add(self, a: Self, b: Self) -> Self {
800         Self::new(
801             math::mul_add(self.x, a.x, b.x),
802             math::mul_add(self.y, a.y, b.y),
803             math::mul_add(self.z, a.z, b.z),
804             math::mul_add(self.w, a.w, b.w),
805         )
806     }
807 
808     /// Casts all elements of `self` to `f64`.
809     #[inline]
810     #[must_use]
as_dvec4(&self) -> crate::DVec4811     pub fn as_dvec4(&self) -> crate::DVec4 {
812         crate::DVec4::new(self.x as f64, self.y as f64, self.z as f64, self.w as f64)
813     }
814 
815     /// Casts all elements of `self` to `i16`.
816     #[inline]
817     #[must_use]
as_i16vec4(&self) -> crate::I16Vec4818     pub fn as_i16vec4(&self) -> crate::I16Vec4 {
819         crate::I16Vec4::new(self.x as i16, self.y as i16, self.z as i16, self.w as i16)
820     }
821 
822     /// Casts all elements of `self` to `u16`.
823     #[inline]
824     #[must_use]
as_u16vec4(&self) -> crate::U16Vec4825     pub fn as_u16vec4(&self) -> crate::U16Vec4 {
826         crate::U16Vec4::new(self.x as u16, self.y as u16, self.z as u16, self.w as u16)
827     }
828 
829     /// Casts all elements of `self` to `i32`.
830     #[inline]
831     #[must_use]
as_ivec4(&self) -> crate::IVec4832     pub fn as_ivec4(&self) -> crate::IVec4 {
833         crate::IVec4::new(self.x as i32, self.y as i32, self.z as i32, self.w as i32)
834     }
835 
836     /// Casts all elements of `self` to `u32`.
837     #[inline]
838     #[must_use]
as_uvec4(&self) -> crate::UVec4839     pub fn as_uvec4(&self) -> crate::UVec4 {
840         crate::UVec4::new(self.x as u32, self.y as u32, self.z as u32, self.w as u32)
841     }
842 
843     /// Casts all elements of `self` to `i64`.
844     #[inline]
845     #[must_use]
as_i64vec4(&self) -> crate::I64Vec4846     pub fn as_i64vec4(&self) -> crate::I64Vec4 {
847         crate::I64Vec4::new(self.x as i64, self.y as i64, self.z as i64, self.w as i64)
848     }
849 
850     /// Casts all elements of `self` to `u64`.
851     #[inline]
852     #[must_use]
as_u64vec4(&self) -> crate::U64Vec4853     pub fn as_u64vec4(&self) -> crate::U64Vec4 {
854         crate::U64Vec4::new(self.x as u64, self.y as u64, self.z as u64, self.w as u64)
855     }
856 }
857 
858 impl Default for Vec4 {
859     #[inline(always)]
default() -> Self860     fn default() -> Self {
861         Self::ZERO
862     }
863 }
864 
865 impl Div<Vec4> for Vec4 {
866     type Output = Self;
867     #[inline]
div(self, rhs: Self) -> Self868     fn div(self, rhs: Self) -> Self {
869         Self {
870             x: self.x.div(rhs.x),
871             y: self.y.div(rhs.y),
872             z: self.z.div(rhs.z),
873             w: self.w.div(rhs.w),
874         }
875     }
876 }
877 
878 impl DivAssign<Vec4> for Vec4 {
879     #[inline]
div_assign(&mut self, rhs: Self)880     fn div_assign(&mut self, rhs: Self) {
881         self.x.div_assign(rhs.x);
882         self.y.div_assign(rhs.y);
883         self.z.div_assign(rhs.z);
884         self.w.div_assign(rhs.w);
885     }
886 }
887 
888 impl Div<f32> for Vec4 {
889     type Output = Self;
890     #[inline]
div(self, rhs: f32) -> Self891     fn div(self, rhs: f32) -> Self {
892         Self {
893             x: self.x.div(rhs),
894             y: self.y.div(rhs),
895             z: self.z.div(rhs),
896             w: self.w.div(rhs),
897         }
898     }
899 }
900 
901 impl DivAssign<f32> for Vec4 {
902     #[inline]
div_assign(&mut self, rhs: f32)903     fn div_assign(&mut self, rhs: f32) {
904         self.x.div_assign(rhs);
905         self.y.div_assign(rhs);
906         self.z.div_assign(rhs);
907         self.w.div_assign(rhs);
908     }
909 }
910 
911 impl Div<Vec4> for f32 {
912     type Output = Vec4;
913     #[inline]
div(self, rhs: Vec4) -> Vec4914     fn div(self, rhs: Vec4) -> Vec4 {
915         Vec4 {
916             x: self.div(rhs.x),
917             y: self.div(rhs.y),
918             z: self.div(rhs.z),
919             w: self.div(rhs.w),
920         }
921     }
922 }
923 
924 impl Mul<Vec4> for Vec4 {
925     type Output = Self;
926     #[inline]
mul(self, rhs: Self) -> Self927     fn mul(self, rhs: Self) -> Self {
928         Self {
929             x: self.x.mul(rhs.x),
930             y: self.y.mul(rhs.y),
931             z: self.z.mul(rhs.z),
932             w: self.w.mul(rhs.w),
933         }
934     }
935 }
936 
937 impl MulAssign<Vec4> for Vec4 {
938     #[inline]
mul_assign(&mut self, rhs: Self)939     fn mul_assign(&mut self, rhs: Self) {
940         self.x.mul_assign(rhs.x);
941         self.y.mul_assign(rhs.y);
942         self.z.mul_assign(rhs.z);
943         self.w.mul_assign(rhs.w);
944     }
945 }
946 
947 impl Mul<f32> for Vec4 {
948     type Output = Self;
949     #[inline]
mul(self, rhs: f32) -> Self950     fn mul(self, rhs: f32) -> Self {
951         Self {
952             x: self.x.mul(rhs),
953             y: self.y.mul(rhs),
954             z: self.z.mul(rhs),
955             w: self.w.mul(rhs),
956         }
957     }
958 }
959 
960 impl MulAssign<f32> for Vec4 {
961     #[inline]
mul_assign(&mut self, rhs: f32)962     fn mul_assign(&mut self, rhs: f32) {
963         self.x.mul_assign(rhs);
964         self.y.mul_assign(rhs);
965         self.z.mul_assign(rhs);
966         self.w.mul_assign(rhs);
967     }
968 }
969 
970 impl Mul<Vec4> for f32 {
971     type Output = Vec4;
972     #[inline]
mul(self, rhs: Vec4) -> Vec4973     fn mul(self, rhs: Vec4) -> Vec4 {
974         Vec4 {
975             x: self.mul(rhs.x),
976             y: self.mul(rhs.y),
977             z: self.mul(rhs.z),
978             w: self.mul(rhs.w),
979         }
980     }
981 }
982 
983 impl Add<Vec4> for Vec4 {
984     type Output = Self;
985     #[inline]
add(self, rhs: Self) -> Self986     fn add(self, rhs: Self) -> Self {
987         Self {
988             x: self.x.add(rhs.x),
989             y: self.y.add(rhs.y),
990             z: self.z.add(rhs.z),
991             w: self.w.add(rhs.w),
992         }
993     }
994 }
995 
996 impl AddAssign<Vec4> for Vec4 {
997     #[inline]
add_assign(&mut self, rhs: Self)998     fn add_assign(&mut self, rhs: Self) {
999         self.x.add_assign(rhs.x);
1000         self.y.add_assign(rhs.y);
1001         self.z.add_assign(rhs.z);
1002         self.w.add_assign(rhs.w);
1003     }
1004 }
1005 
1006 impl Add<f32> for Vec4 {
1007     type Output = Self;
1008     #[inline]
add(self, rhs: f32) -> Self1009     fn add(self, rhs: f32) -> Self {
1010         Self {
1011             x: self.x.add(rhs),
1012             y: self.y.add(rhs),
1013             z: self.z.add(rhs),
1014             w: self.w.add(rhs),
1015         }
1016     }
1017 }
1018 
1019 impl AddAssign<f32> for Vec4 {
1020     #[inline]
add_assign(&mut self, rhs: f32)1021     fn add_assign(&mut self, rhs: f32) {
1022         self.x.add_assign(rhs);
1023         self.y.add_assign(rhs);
1024         self.z.add_assign(rhs);
1025         self.w.add_assign(rhs);
1026     }
1027 }
1028 
1029 impl Add<Vec4> for f32 {
1030     type Output = Vec4;
1031     #[inline]
add(self, rhs: Vec4) -> Vec41032     fn add(self, rhs: Vec4) -> Vec4 {
1033         Vec4 {
1034             x: self.add(rhs.x),
1035             y: self.add(rhs.y),
1036             z: self.add(rhs.z),
1037             w: self.add(rhs.w),
1038         }
1039     }
1040 }
1041 
1042 impl Sub<Vec4> for Vec4 {
1043     type Output = Self;
1044     #[inline]
sub(self, rhs: Self) -> Self1045     fn sub(self, rhs: Self) -> Self {
1046         Self {
1047             x: self.x.sub(rhs.x),
1048             y: self.y.sub(rhs.y),
1049             z: self.z.sub(rhs.z),
1050             w: self.w.sub(rhs.w),
1051         }
1052     }
1053 }
1054 
1055 impl SubAssign<Vec4> for Vec4 {
1056     #[inline]
sub_assign(&mut self, rhs: Vec4)1057     fn sub_assign(&mut self, rhs: Vec4) {
1058         self.x.sub_assign(rhs.x);
1059         self.y.sub_assign(rhs.y);
1060         self.z.sub_assign(rhs.z);
1061         self.w.sub_assign(rhs.w);
1062     }
1063 }
1064 
1065 impl Sub<f32> for Vec4 {
1066     type Output = Self;
1067     #[inline]
sub(self, rhs: f32) -> Self1068     fn sub(self, rhs: f32) -> Self {
1069         Self {
1070             x: self.x.sub(rhs),
1071             y: self.y.sub(rhs),
1072             z: self.z.sub(rhs),
1073             w: self.w.sub(rhs),
1074         }
1075     }
1076 }
1077 
1078 impl SubAssign<f32> for Vec4 {
1079     #[inline]
sub_assign(&mut self, rhs: f32)1080     fn sub_assign(&mut self, rhs: f32) {
1081         self.x.sub_assign(rhs);
1082         self.y.sub_assign(rhs);
1083         self.z.sub_assign(rhs);
1084         self.w.sub_assign(rhs);
1085     }
1086 }
1087 
1088 impl Sub<Vec4> for f32 {
1089     type Output = Vec4;
1090     #[inline]
sub(self, rhs: Vec4) -> Vec41091     fn sub(self, rhs: Vec4) -> Vec4 {
1092         Vec4 {
1093             x: self.sub(rhs.x),
1094             y: self.sub(rhs.y),
1095             z: self.sub(rhs.z),
1096             w: self.sub(rhs.w),
1097         }
1098     }
1099 }
1100 
1101 impl Rem<Vec4> for Vec4 {
1102     type Output = Self;
1103     #[inline]
rem(self, rhs: Self) -> Self1104     fn rem(self, rhs: Self) -> Self {
1105         Self {
1106             x: self.x.rem(rhs.x),
1107             y: self.y.rem(rhs.y),
1108             z: self.z.rem(rhs.z),
1109             w: self.w.rem(rhs.w),
1110         }
1111     }
1112 }
1113 
1114 impl RemAssign<Vec4> for Vec4 {
1115     #[inline]
rem_assign(&mut self, rhs: Self)1116     fn rem_assign(&mut self, rhs: Self) {
1117         self.x.rem_assign(rhs.x);
1118         self.y.rem_assign(rhs.y);
1119         self.z.rem_assign(rhs.z);
1120         self.w.rem_assign(rhs.w);
1121     }
1122 }
1123 
1124 impl Rem<f32> for Vec4 {
1125     type Output = Self;
1126     #[inline]
rem(self, rhs: f32) -> Self1127     fn rem(self, rhs: f32) -> Self {
1128         Self {
1129             x: self.x.rem(rhs),
1130             y: self.y.rem(rhs),
1131             z: self.z.rem(rhs),
1132             w: self.w.rem(rhs),
1133         }
1134     }
1135 }
1136 
1137 impl RemAssign<f32> for Vec4 {
1138     #[inline]
rem_assign(&mut self, rhs: f32)1139     fn rem_assign(&mut self, rhs: f32) {
1140         self.x.rem_assign(rhs);
1141         self.y.rem_assign(rhs);
1142         self.z.rem_assign(rhs);
1143         self.w.rem_assign(rhs);
1144     }
1145 }
1146 
1147 impl Rem<Vec4> for f32 {
1148     type Output = Vec4;
1149     #[inline]
rem(self, rhs: Vec4) -> Vec41150     fn rem(self, rhs: Vec4) -> Vec4 {
1151         Vec4 {
1152             x: self.rem(rhs.x),
1153             y: self.rem(rhs.y),
1154             z: self.rem(rhs.z),
1155             w: self.rem(rhs.w),
1156         }
1157     }
1158 }
1159 
1160 #[cfg(not(target_arch = "spirv"))]
1161 impl AsRef<[f32; 4]> for Vec4 {
1162     #[inline]
as_ref(&self) -> &[f32; 4]1163     fn as_ref(&self) -> &[f32; 4] {
1164         unsafe { &*(self as *const Vec4 as *const [f32; 4]) }
1165     }
1166 }
1167 
1168 #[cfg(not(target_arch = "spirv"))]
1169 impl AsMut<[f32; 4]> for Vec4 {
1170     #[inline]
as_mut(&mut self) -> &mut [f32; 4]1171     fn as_mut(&mut self) -> &mut [f32; 4] {
1172         unsafe { &mut *(self as *mut Vec4 as *mut [f32; 4]) }
1173     }
1174 }
1175 
1176 impl Sum for Vec4 {
1177     #[inline]
sum<I>(iter: I) -> Self where I: Iterator<Item = Self>,1178     fn sum<I>(iter: I) -> Self
1179     where
1180         I: Iterator<Item = Self>,
1181     {
1182         iter.fold(Self::ZERO, Self::add)
1183     }
1184 }
1185 
1186 impl<'a> Sum<&'a Self> for Vec4 {
1187     #[inline]
sum<I>(iter: I) -> Self where I: Iterator<Item = &'a Self>,1188     fn sum<I>(iter: I) -> Self
1189     where
1190         I: Iterator<Item = &'a Self>,
1191     {
1192         iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
1193     }
1194 }
1195 
1196 impl Product for Vec4 {
1197     #[inline]
product<I>(iter: I) -> Self where I: Iterator<Item = Self>,1198     fn product<I>(iter: I) -> Self
1199     where
1200         I: Iterator<Item = Self>,
1201     {
1202         iter.fold(Self::ONE, Self::mul)
1203     }
1204 }
1205 
1206 impl<'a> Product<&'a Self> for Vec4 {
1207     #[inline]
product<I>(iter: I) -> Self where I: Iterator<Item = &'a Self>,1208     fn product<I>(iter: I) -> Self
1209     where
1210         I: Iterator<Item = &'a Self>,
1211     {
1212         iter.fold(Self::ONE, |a, &b| Self::mul(a, b))
1213     }
1214 }
1215 
1216 impl Neg for Vec4 {
1217     type Output = Self;
1218     #[inline]
neg(self) -> Self1219     fn neg(self) -> Self {
1220         Self {
1221             x: self.x.neg(),
1222             y: self.y.neg(),
1223             z: self.z.neg(),
1224             w: self.w.neg(),
1225         }
1226     }
1227 }
1228 
1229 impl Index<usize> for Vec4 {
1230     type Output = f32;
1231     #[inline]
index(&self, index: usize) -> &Self::Output1232     fn index(&self, index: usize) -> &Self::Output {
1233         match index {
1234             0 => &self.x,
1235             1 => &self.y,
1236             2 => &self.z,
1237             3 => &self.w,
1238             _ => panic!("index out of bounds"),
1239         }
1240     }
1241 }
1242 
1243 impl IndexMut<usize> for Vec4 {
1244     #[inline]
index_mut(&mut self, index: usize) -> &mut Self::Output1245     fn index_mut(&mut self, index: usize) -> &mut Self::Output {
1246         match index {
1247             0 => &mut self.x,
1248             1 => &mut self.y,
1249             2 => &mut self.z,
1250             3 => &mut self.w,
1251             _ => panic!("index out of bounds"),
1252         }
1253     }
1254 }
1255 
1256 #[cfg(not(target_arch = "spirv"))]
1257 impl fmt::Display for Vec4 {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result1258     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1259         write!(f, "[{}, {}, {}, {}]", self.x, self.y, self.z, self.w)
1260     }
1261 }
1262 
1263 #[cfg(not(target_arch = "spirv"))]
1264 impl fmt::Debug for Vec4 {
fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result1265     fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1266         fmt.debug_tuple(stringify!(Vec4))
1267             .field(&self.x)
1268             .field(&self.y)
1269             .field(&self.z)
1270             .field(&self.w)
1271             .finish()
1272     }
1273 }
1274 
1275 impl From<[f32; 4]> for Vec4 {
1276     #[inline]
from(a: [f32; 4]) -> Self1277     fn from(a: [f32; 4]) -> Self {
1278         Self::new(a[0], a[1], a[2], a[3])
1279     }
1280 }
1281 
1282 impl From<Vec4> for [f32; 4] {
1283     #[inline]
from(v: Vec4) -> Self1284     fn from(v: Vec4) -> Self {
1285         [v.x, v.y, v.z, v.w]
1286     }
1287 }
1288 
1289 impl From<(f32, f32, f32, f32)> for Vec4 {
1290     #[inline]
from(t: (f32, f32, f32, f32)) -> Self1291     fn from(t: (f32, f32, f32, f32)) -> Self {
1292         Self::new(t.0, t.1, t.2, t.3)
1293     }
1294 }
1295 
1296 impl From<Vec4> for (f32, f32, f32, f32) {
1297     #[inline]
from(v: Vec4) -> Self1298     fn from(v: Vec4) -> Self {
1299         (v.x, v.y, v.z, v.w)
1300     }
1301 }
1302 
1303 impl From<(Vec3A, f32)> for Vec4 {
1304     #[inline]
from((v, w): (Vec3A, f32)) -> Self1305     fn from((v, w): (Vec3A, f32)) -> Self {
1306         v.extend(w)
1307     }
1308 }
1309 
1310 impl From<(f32, Vec3A)> for Vec4 {
1311     #[inline]
from((x, v): (f32, Vec3A)) -> Self1312     fn from((x, v): (f32, Vec3A)) -> Self {
1313         Self::new(x, v.x, v.y, v.z)
1314     }
1315 }
1316 
1317 impl From<(Vec3, f32)> for Vec4 {
1318     #[inline]
from((v, w): (Vec3, f32)) -> Self1319     fn from((v, w): (Vec3, f32)) -> Self {
1320         Self::new(v.x, v.y, v.z, w)
1321     }
1322 }
1323 
1324 impl From<(f32, Vec3)> for Vec4 {
1325     #[inline]
from((x, v): (f32, Vec3)) -> Self1326     fn from((x, v): (f32, Vec3)) -> Self {
1327         Self::new(x, v.x, v.y, v.z)
1328     }
1329 }
1330 
1331 impl From<(Vec2, f32, f32)> for Vec4 {
1332     #[inline]
from((v, z, w): (Vec2, f32, f32)) -> Self1333     fn from((v, z, w): (Vec2, f32, f32)) -> Self {
1334         Self::new(v.x, v.y, z, w)
1335     }
1336 }
1337 
1338 impl From<(Vec2, Vec2)> for Vec4 {
1339     #[inline]
from((v, u): (Vec2, Vec2)) -> Self1340     fn from((v, u): (Vec2, Vec2)) -> Self {
1341         Self::new(v.x, v.y, u.x, u.y)
1342     }
1343 }
1344