1 use super::attr::AttrsHelper;
2 use proc_macro2::{Span, TokenStream};
3 use quote::{format_ident, quote};
4 use syn::{
5 punctuated::Punctuated,
6 token::{Colon, Comma, PathSep, Plus, Where},
7 Data, DataEnum, DataStruct, DeriveInput, Error, Fields, Generics, Ident, Path, PathArguments,
8 PathSegment, PredicateType, Result, TraitBound, TraitBoundModifier, Type, TypeParam,
9 TypeParamBound, TypePath, WhereClause, WherePredicate,
10 };
11
12 use std::collections::HashMap;
13
derive(input: &DeriveInput) -> Result<TokenStream>14 pub(crate) fn derive(input: &DeriveInput) -> Result<TokenStream> {
15 let impls = match &input.data {
16 Data::Struct(data) => impl_struct(input, data),
17 Data::Enum(data) => impl_enum(input, data),
18 Data::Union(_) => Err(Error::new_spanned(input, "Unions are not supported")),
19 }?;
20
21 let helpers = specialization();
22 Ok(quote! {
23 #[allow(non_upper_case_globals, unused_attributes, unused_qualifications)]
24 const _: () = {
25 #helpers
26 #impls
27 };
28 })
29 }
30
31 #[cfg(feature = "std")]
specialization() -> TokenStream32 fn specialization() -> TokenStream {
33 quote! {
34 trait DisplayToDisplayDoc {
35 fn __displaydoc_display(&self) -> Self;
36 }
37
38 impl<T: ::core::fmt::Display> DisplayToDisplayDoc for &T {
39 fn __displaydoc_display(&self) -> Self {
40 self
41 }
42 }
43
44 // If the `std` feature gets enabled we want to ensure that any crate
45 // using displaydoc can still reference the std crate, which is already
46 // being compiled in by whoever enabled the `std` feature in
47 // `displaydoc`, even if the crates using displaydoc are no_std.
48 extern crate std;
49
50 trait PathToDisplayDoc {
51 fn __displaydoc_display(&self) -> std::path::Display<'_>;
52 }
53
54 impl PathToDisplayDoc for std::path::Path {
55 fn __displaydoc_display(&self) -> std::path::Display<'_> {
56 self.display()
57 }
58 }
59
60 impl PathToDisplayDoc for std::path::PathBuf {
61 fn __displaydoc_display(&self) -> std::path::Display<'_> {
62 self.display()
63 }
64 }
65 }
66 }
67
68 #[cfg(not(feature = "std"))]
specialization() -> TokenStream69 fn specialization() -> TokenStream {
70 quote! {}
71 }
72
impl_struct(input: &DeriveInput, data: &DataStruct) -> Result<TokenStream>73 fn impl_struct(input: &DeriveInput, data: &DataStruct) -> Result<TokenStream> {
74 let ty = &input.ident;
75 let (impl_generics, ty_generics, where_clause) = input.generics.split_for_impl();
76 let where_clause = generate_where_clause(&input.generics, where_clause);
77
78 let helper = AttrsHelper::new(&input.attrs);
79
80 let display = helper.display(&input.attrs)?.map(|display| {
81 let pat = match &data.fields {
82 Fields::Named(fields) => {
83 let var = fields.named.iter().map(|field| &field.ident);
84 quote!(Self { #(#var),* })
85 }
86 Fields::Unnamed(fields) => {
87 let var = (0..fields.unnamed.len()).map(|i| format_ident!("_{}", i));
88 quote!(Self(#(#var),*))
89 }
90 Fields::Unit => quote!(_),
91 };
92 quote! {
93 impl #impl_generics ::core::fmt::Display for #ty #ty_generics #where_clause {
94 fn fmt(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
95 // NB: This destructures the fields of `self` into named variables (for unnamed
96 // fields, it uses _0, _1, etc as above). The `#[allow(unused_variables)]`
97 // section means it doesn't have to parse the individual field references out of
98 // the docstring.
99 #[allow(unused_variables)]
100 let #pat = self;
101 #display
102 }
103 }
104 }
105 });
106
107 Ok(quote! { #display })
108 }
109
110 /// Create a `where` predicate for `ident`, without any [bound][TypeParamBound]s yet.
new_empty_where_type_predicate(ident: Ident) -> PredicateType111 fn new_empty_where_type_predicate(ident: Ident) -> PredicateType {
112 let mut path_segments = Punctuated::<PathSegment, PathSep>::new();
113 path_segments.push_value(PathSegment {
114 ident,
115 arguments: PathArguments::None,
116 });
117 PredicateType {
118 lifetimes: None,
119 bounded_ty: Type::Path(TypePath {
120 qself: None,
121 path: Path {
122 leading_colon: None,
123 segments: path_segments,
124 },
125 }),
126 colon_token: Colon {
127 spans: [Span::call_site()],
128 },
129 bounds: Punctuated::<TypeParamBound, Plus>::new(),
130 }
131 }
132
133 /// Create a `where` clause that we can add [WherePredicate]s to.
new_empty_where_clause() -> WhereClause134 fn new_empty_where_clause() -> WhereClause {
135 WhereClause {
136 where_token: Where {
137 span: Span::call_site(),
138 },
139 predicates: Punctuated::<WherePredicate, Comma>::new(),
140 }
141 }
142
143 enum UseGlobalPrefix {
144 LeadingColon,
145 #[allow(dead_code)]
146 NoLeadingColon,
147 }
148
149 /// Create a path with segments composed of [Idents] *without* any [PathArguments].
join_paths(name_segments: &[&str], use_global_prefix: UseGlobalPrefix) -> Path150 fn join_paths(name_segments: &[&str], use_global_prefix: UseGlobalPrefix) -> Path {
151 let mut segments = Punctuated::<PathSegment, PathSep>::new();
152 assert!(!name_segments.is_empty());
153 segments.push_value(PathSegment {
154 ident: Ident::new(name_segments[0], Span::call_site()),
155 arguments: PathArguments::None,
156 });
157 for name in name_segments[1..].iter() {
158 segments.push_punct(PathSep {
159 spans: [Span::call_site(), Span::mixed_site()],
160 });
161 segments.push_value(PathSegment {
162 ident: Ident::new(name, Span::call_site()),
163 arguments: PathArguments::None,
164 });
165 }
166 Path {
167 leading_colon: match use_global_prefix {
168 UseGlobalPrefix::LeadingColon => Some(PathSep {
169 spans: [Span::call_site(), Span::mixed_site()],
170 }),
171 UseGlobalPrefix::NoLeadingColon => None,
172 },
173 segments,
174 }
175 }
176
177 /// Push `new_type_predicate` onto the end of `where_clause`.
append_where_clause_type_predicate( where_clause: &mut WhereClause, new_type_predicate: PredicateType, )178 fn append_where_clause_type_predicate(
179 where_clause: &mut WhereClause,
180 new_type_predicate: PredicateType,
181 ) {
182 // Push a comma at the end if there are already any `where` predicates.
183 if !where_clause.predicates.is_empty() {
184 where_clause.predicates.push_punct(Comma {
185 spans: [Span::call_site()],
186 });
187 }
188 where_clause
189 .predicates
190 .push_value(WherePredicate::Type(new_type_predicate));
191 }
192
193 /// Add a requirement for [core::fmt::Display] to a `where` predicate for some type.
add_display_constraint_to_type_predicate( predicate_that_needs_a_display_impl: &mut PredicateType, )194 fn add_display_constraint_to_type_predicate(
195 predicate_that_needs_a_display_impl: &mut PredicateType,
196 ) {
197 // Create a `Path` of `::core::fmt::Display`.
198 let display_path = join_paths(&["core", "fmt", "Display"], UseGlobalPrefix::LeadingColon);
199
200 let display_bound = TypeParamBound::Trait(TraitBound {
201 paren_token: None,
202 modifier: TraitBoundModifier::None,
203 lifetimes: None,
204 path: display_path,
205 });
206 if !predicate_that_needs_a_display_impl.bounds.is_empty() {
207 predicate_that_needs_a_display_impl.bounds.push_punct(Plus {
208 spans: [Span::call_site()],
209 });
210 }
211
212 predicate_that_needs_a_display_impl
213 .bounds
214 .push_value(display_bound);
215 }
216
217 /// Map each declared generic type parameter to the set of all trait boundaries declared on it.
218 ///
219 /// These boundaries may come from the declaration site:
220 /// pub enum E<T: MyTrait> { ... }
221 /// or a `where` clause after the parameter declarations:
222 /// pub enum E<T> where T: MyTrait { ... }
223 /// This method will return the boundaries from both of those cases.
extract_trait_constraints_from_source( where_clause: &WhereClause, type_params: &[&TypeParam], ) -> HashMap<Ident, Vec<TraitBound>>224 fn extract_trait_constraints_from_source(
225 where_clause: &WhereClause,
226 type_params: &[&TypeParam],
227 ) -> HashMap<Ident, Vec<TraitBound>> {
228 // Add trait bounds provided at the declaration site of type parameters for the struct/enum.
229 let mut param_constraint_mapping: HashMap<Ident, Vec<TraitBound>> = type_params
230 .iter()
231 .map(|type_param| {
232 let trait_bounds: Vec<TraitBound> = type_param
233 .bounds
234 .iter()
235 .flat_map(|bound| match bound {
236 TypeParamBound::Trait(trait_bound) => Some(trait_bound),
237 _ => None,
238 })
239 .cloned()
240 .collect();
241 (type_param.ident.clone(), trait_bounds)
242 })
243 .collect();
244
245 // Add trait bounds from `where` clauses, which may be type parameters or types containing
246 // those parameters.
247 for predicate in where_clause.predicates.iter() {
248 // We only care about type and not lifetime constraints here.
249 if let WherePredicate::Type(ref pred_ty) = predicate {
250 let ident = match &pred_ty.bounded_ty {
251 Type::Path(TypePath { path, qself: None }) => match path.get_ident() {
252 None => continue,
253 Some(ident) => ident,
254 },
255 _ => continue,
256 };
257 // We ignore any type constraints that aren't direct references to type
258 // parameters of the current enum of struct definition. No types can be
259 // constrained in a `where` clause unless they are a type parameter or a generic
260 // type instantiated with one of the type parameters, so by only allowing single
261 // identifiers, we can be sure that the constrained type is a type parameter
262 // that is contained in `param_constraint_mapping`.
263 if let Some((_, ref mut known_bounds)) = param_constraint_mapping
264 .iter_mut()
265 .find(|(id, _)| *id == ident)
266 {
267 for bound in pred_ty.bounds.iter() {
268 // We only care about trait bounds here.
269 if let TypeParamBound::Trait(ref bound) = bound {
270 known_bounds.push(bound.clone());
271 }
272 }
273 }
274 }
275 }
276
277 param_constraint_mapping
278 }
279
280 /// Hygienically add `where _: Display` to the set of [TypeParamBound]s for `ident`, creating such
281 /// a set if necessary.
ensure_display_in_where_clause_for_type(where_clause: &mut WhereClause, ident: Ident)282 fn ensure_display_in_where_clause_for_type(where_clause: &mut WhereClause, ident: Ident) {
283 for pred_ty in where_clause
284 .predicates
285 .iter_mut()
286 // Find the `where` predicate constraining the current type param, if it exists.
287 .flat_map(|predicate| match predicate {
288 WherePredicate::Type(pred_ty) => Some(pred_ty),
289 // We're looking through type constraints, not lifetime constraints.
290 _ => None,
291 })
292 {
293 // Do a complicated destructuring in order to check if the type being constrained in this
294 // `where` clause is the type we're looking for, so we can use the mutable reference to
295 // `pred_ty` if so.
296 let matches_desired_type = matches!(
297 &pred_ty.bounded_ty,
298 Type::Path(TypePath { path, .. }) if Some(&ident) == path.get_ident());
299 if matches_desired_type {
300 add_display_constraint_to_type_predicate(pred_ty);
301 return;
302 }
303 }
304
305 // If there is no `where` predicate for the current type param, we will construct one.
306 let mut new_type_predicate = new_empty_where_type_predicate(ident);
307 add_display_constraint_to_type_predicate(&mut new_type_predicate);
308 append_where_clause_type_predicate(where_clause, new_type_predicate);
309 }
310
311 /// For all declared type parameters, add a [core::fmt::Display] constraint, unless the type
312 /// parameter already has any type constraint.
ensure_where_clause_has_display_for_all_unconstrained_members( where_clause: &mut WhereClause, type_params: &[&TypeParam], )313 fn ensure_where_clause_has_display_for_all_unconstrained_members(
314 where_clause: &mut WhereClause,
315 type_params: &[&TypeParam],
316 ) {
317 let param_constraint_mapping = extract_trait_constraints_from_source(where_clause, type_params);
318
319 for (ident, known_bounds) in param_constraint_mapping.into_iter() {
320 // If the type parameter has any constraints already, we don't want to touch it, to avoid
321 // breaking use cases where a type parameter only needs to impl `Debug`, for example.
322 if known_bounds.is_empty() {
323 ensure_display_in_where_clause_for_type(where_clause, ident);
324 }
325 }
326 }
327
328 /// Generate a `where` clause that ensures all generic type parameters `impl`
329 /// [core::fmt::Display] unless already constrained.
330 ///
331 /// This approach allows struct/enum definitions deriving [crate::Display] to avoid hardcoding
332 /// a [core::fmt::Display] constraint into every type parameter.
333 ///
334 /// If the type parameter isn't already constrained, we add a `where _: Display` clause to our
335 /// display implementation to expect to be able to format every enum case or struct member.
336 ///
337 /// In fact, we would preferably only require `where _: Display` or `where _: Debug` where the
338 /// format string actually requires it. However, while [`std::fmt` defines a formal syntax for
339 /// `format!()`][format syntax], it *doesn't* expose the actual logic to parse the format string,
340 /// which appears to live in [`rustc_parse_format`]. While we use the [`syn`] crate to parse rust
341 /// syntax, it also doesn't currently provide any method to introspect a `format!()` string. It
342 /// would be nice to contribute this upstream in [`syn`].
343 ///
344 /// [format syntax]: std::fmt#syntax
345 /// [`rustc_parse_format`]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse_format/index.html
generate_where_clause(generics: &Generics, where_clause: Option<&WhereClause>) -> WhereClause346 fn generate_where_clause(generics: &Generics, where_clause: Option<&WhereClause>) -> WhereClause {
347 let mut where_clause = where_clause.cloned().unwrap_or_else(new_empty_where_clause);
348 let type_params: Vec<&TypeParam> = generics.type_params().collect();
349 ensure_where_clause_has_display_for_all_unconstrained_members(&mut where_clause, &type_params);
350 where_clause
351 }
352
impl_enum(input: &DeriveInput, data: &DataEnum) -> Result<TokenStream>353 fn impl_enum(input: &DeriveInput, data: &DataEnum) -> Result<TokenStream> {
354 let ty = &input.ident;
355 let (impl_generics, ty_generics, where_clause) = input.generics.split_for_impl();
356 let where_clause = generate_where_clause(&input.generics, where_clause);
357
358 let helper = AttrsHelper::new(&input.attrs);
359
360 let displays = data
361 .variants
362 .iter()
363 .map(|variant| helper.display_with_input(&input.attrs, &variant.attrs))
364 .collect::<Result<Vec<_>>>()?;
365
366 if data.variants.is_empty() {
367 Ok(quote! {
368 impl #impl_generics ::core::fmt::Display for #ty #ty_generics #where_clause {
369 fn fmt(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
370 unreachable!("empty enums cannot be instantiated and thus cannot be printed")
371 }
372 }
373 })
374 } else if displays.iter().any(Option::is_some) {
375 let arms = data
376 .variants
377 .iter()
378 .zip(displays)
379 .map(|(variant, display)| {
380 let display =
381 display.ok_or_else(|| Error::new_spanned(variant, "missing doc comment"))?;
382 let ident = &variant.ident;
383 Ok(match &variant.fields {
384 Fields::Named(fields) => {
385 let var = fields.named.iter().map(|field| &field.ident);
386 quote!(Self::#ident { #(#var),* } => { #display })
387 }
388 Fields::Unnamed(fields) => {
389 let var = (0..fields.unnamed.len()).map(|i| format_ident!("_{}", i));
390 quote!(Self::#ident(#(#var),*) => { #display })
391 }
392 Fields::Unit => quote!(Self::#ident => { #display }),
393 })
394 })
395 .collect::<Result<Vec<_>>>()?;
396 Ok(quote! {
397 impl #impl_generics ::core::fmt::Display for #ty #ty_generics #where_clause {
398 fn fmt(&self, formatter: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
399 #[allow(unused_variables)]
400 match self {
401 #(#arms,)*
402 }
403 }
404 }
405 })
406 } else {
407 Err(Error::new_spanned(input, "Missing doc comments"))
408 }
409 }
410