1 use core::fmt;
2 use core::mem;
3 
4 use crate::atomic::Shared;
5 use crate::collector::Collector;
6 use crate::deferred::Deferred;
7 use crate::internal::Local;
8 
9 /// A guard that keeps the current thread pinned.
10 ///
11 /// # Pinning
12 ///
13 /// The current thread is pinned by calling [`pin`], which returns a new guard:
14 ///
15 /// ```
16 /// use crossbeam_epoch as epoch;
17 ///
18 /// // It is often convenient to prefix a call to `pin` with a `&` in order to create a reference.
19 /// // This is not really necessary, but makes passing references to the guard a bit easier.
20 /// let guard = &epoch::pin();
21 /// ```
22 ///
23 /// When a guard gets dropped, the current thread is automatically unpinned.
24 ///
25 /// # Pointers on the stack
26 ///
27 /// Having a guard allows us to create pointers on the stack to heap-allocated objects.
28 /// For example:
29 ///
30 /// ```
31 /// use crossbeam_epoch::{self as epoch, Atomic};
32 /// use std::sync::atomic::Ordering::SeqCst;
33 ///
34 /// // Create a heap-allocated number.
35 /// let a = Atomic::new(777);
36 ///
37 /// // Pin the current thread.
38 /// let guard = &epoch::pin();
39 ///
40 /// // Load the heap-allocated object and create pointer `p` on the stack.
41 /// let p = a.load(SeqCst, guard);
42 ///
43 /// // Dereference the pointer and print the value:
44 /// if let Some(num) = unsafe { p.as_ref() } {
45 ///     println!("The number is {}.", num);
46 /// }
47 /// # unsafe { drop(a.into_owned()); } // avoid leak
48 /// ```
49 ///
50 /// # Multiple guards
51 ///
52 /// Pinning is reentrant and it is perfectly legal to create multiple guards. In that case, the
53 /// thread will actually be pinned only when the first guard is created and unpinned when the last
54 /// one is dropped:
55 ///
56 /// ```
57 /// use crossbeam_epoch as epoch;
58 ///
59 /// let guard1 = epoch::pin();
60 /// let guard2 = epoch::pin();
61 /// assert!(epoch::is_pinned());
62 /// drop(guard1);
63 /// assert!(epoch::is_pinned());
64 /// drop(guard2);
65 /// assert!(!epoch::is_pinned());
66 /// ```
67 ///
68 /// [`pin`]: super::pin
69 pub struct Guard {
70     pub(crate) local: *const Local,
71 }
72 
73 impl Guard {
74     /// Stores a function so that it can be executed at some point after all currently pinned
75     /// threads get unpinned.
76     ///
77     /// This method first stores `f` into the thread-local (or handle-local) cache. If this cache
78     /// becomes full, some functions are moved into the global cache. At the same time, some
79     /// functions from both local and global caches may get executed in order to incrementally
80     /// clean up the caches as they fill up.
81     ///
82     /// There is no guarantee when exactly `f` will be executed. The only guarantee is that it
83     /// won't be executed until all currently pinned threads get unpinned. In theory, `f` might
84     /// never run, but the epoch-based garbage collection will make an effort to execute it
85     /// reasonably soon.
86     ///
87     /// If this method is called from an [`unprotected`] guard, the function will simply be
88     /// executed immediately.
defer<F, R>(&self, f: F) where F: FnOnce() -> R, F: Send + 'static,89     pub fn defer<F, R>(&self, f: F)
90     where
91         F: FnOnce() -> R,
92         F: Send + 'static,
93     {
94         unsafe {
95             self.defer_unchecked(f);
96         }
97     }
98 
99     /// Stores a function so that it can be executed at some point after all currently pinned
100     /// threads get unpinned.
101     ///
102     /// This method first stores `f` into the thread-local (or handle-local) cache. If this cache
103     /// becomes full, some functions are moved into the global cache. At the same time, some
104     /// functions from both local and global caches may get executed in order to incrementally
105     /// clean up the caches as they fill up.
106     ///
107     /// There is no guarantee when exactly `f` will be executed. The only guarantee is that it
108     /// won't be executed until all currently pinned threads get unpinned. In theory, `f` might
109     /// never run, but the epoch-based garbage collection will make an effort to execute it
110     /// reasonably soon.
111     ///
112     /// If this method is called from an [`unprotected`] guard, the function will simply be
113     /// executed immediately.
114     ///
115     /// # Safety
116     ///
117     /// The given function must not hold reference onto the stack. It is highly recommended that
118     /// the passed function is **always** marked with `move` in order to prevent accidental
119     /// borrows.
120     ///
121     /// ```
122     /// use crossbeam_epoch as epoch;
123     ///
124     /// let guard = &epoch::pin();
125     /// let message = "Hello!";
126     /// unsafe {
127     ///     // ALWAYS use `move` when sending a closure into `defer_unchecked`.
128     ///     guard.defer_unchecked(move || {
129     ///         println!("{}", message);
130     ///     });
131     /// }
132     /// ```
133     ///
134     /// Apart from that, keep in mind that another thread may execute `f`, so anything accessed by
135     /// the closure must be `Send`.
136     ///
137     /// We intentionally didn't require `F: Send`, because Rust's type systems usually cannot prove
138     /// `F: Send` for typical use cases. For example, consider the following code snippet, which
139     /// exemplifies the typical use case of deferring the deallocation of a shared reference:
140     ///
141     /// ```ignore
142     /// let shared = Owned::new(7i32).into_shared(guard);
143     /// guard.defer_unchecked(move || shared.into_owned()); // `Shared` is not `Send`!
144     /// ```
145     ///
146     /// While `Shared` is not `Send`, it's safe for another thread to call the deferred function,
147     /// because it's called only after the grace period and `shared` is no longer shared with other
148     /// threads. But we don't expect type systems to prove this.
149     ///
150     /// # Examples
151     ///
152     /// When a heap-allocated object in a data structure becomes unreachable, it has to be
153     /// deallocated. However, the current thread and other threads may be still holding references
154     /// on the stack to that same object. Therefore it cannot be deallocated before those references
155     /// get dropped. This method can defer deallocation until all those threads get unpinned and
156     /// consequently drop all their references on the stack.
157     ///
158     /// ```
159     /// use crossbeam_epoch::{self as epoch, Atomic, Owned};
160     /// use std::sync::atomic::Ordering::SeqCst;
161     ///
162     /// let a = Atomic::new("foo");
163     ///
164     /// // Now suppose that `a` is shared among multiple threads and concurrently
165     /// // accessed and modified...
166     ///
167     /// // Pin the current thread.
168     /// let guard = &epoch::pin();
169     ///
170     /// // Steal the object currently stored in `a` and swap it with another one.
171     /// let p = a.swap(Owned::new("bar").into_shared(guard), SeqCst, guard);
172     ///
173     /// if !p.is_null() {
174     ///     // The object `p` is pointing to is now unreachable.
175     ///     // Defer its deallocation until all currently pinned threads get unpinned.
176     ///     unsafe {
177     ///         // ALWAYS use `move` when sending a closure into `defer_unchecked`.
178     ///         guard.defer_unchecked(move || {
179     ///             println!("{} is now being deallocated.", p.deref());
180     ///             // Now we have unique access to the object pointed to by `p` and can turn it
181     ///             // into an `Owned`. Dropping the `Owned` will deallocate the object.
182     ///             drop(p.into_owned());
183     ///         });
184     ///     }
185     /// }
186     /// # unsafe { drop(a.into_owned()); } // avoid leak
187     /// ```
defer_unchecked<F, R>(&self, f: F) where F: FnOnce() -> R,188     pub unsafe fn defer_unchecked<F, R>(&self, f: F)
189     where
190         F: FnOnce() -> R,
191     {
192         if let Some(local) = self.local.as_ref() {
193             local.defer(Deferred::new(move || drop(f())), self);
194         } else {
195             drop(f());
196         }
197     }
198 
199     /// Stores a destructor for an object so that it can be deallocated and dropped at some point
200     /// after all currently pinned threads get unpinned.
201     ///
202     /// This method first stores the destructor into the thread-local (or handle-local) cache. If
203     /// this cache becomes full, some destructors are moved into the global cache. At the same
204     /// time, some destructors from both local and global caches may get executed in order to
205     /// incrementally clean up the caches as they fill up.
206     ///
207     /// There is no guarantee when exactly the destructor will be executed. The only guarantee is
208     /// that it won't be executed until all currently pinned threads get unpinned. In theory, the
209     /// destructor might never run, but the epoch-based garbage collection will make an effort to
210     /// execute it reasonably soon.
211     ///
212     /// If this method is called from an [`unprotected`] guard, the destructor will simply be
213     /// executed immediately.
214     ///
215     /// # Safety
216     ///
217     /// The object must not be reachable by other threads anymore, otherwise it might be still in
218     /// use when the destructor runs.
219     ///
220     /// Apart from that, keep in mind that another thread may execute the destructor, so the object
221     /// must be sendable to other threads.
222     ///
223     /// We intentionally didn't require `T: Send`, because Rust's type systems usually cannot prove
224     /// `T: Send` for typical use cases. For example, consider the following code snippet, which
225     /// exemplifies the typical use case of deferring the deallocation of a shared reference:
226     ///
227     /// ```ignore
228     /// let shared = Owned::new(7i32).into_shared(guard);
229     /// guard.defer_destroy(shared); // `Shared` is not `Send`!
230     /// ```
231     ///
232     /// While `Shared` is not `Send`, it's safe for another thread to call the destructor, because
233     /// it's called only after the grace period and `shared` is no longer shared with other
234     /// threads. But we don't expect type systems to prove this.
235     ///
236     /// # Examples
237     ///
238     /// When a heap-allocated object in a data structure becomes unreachable, it has to be
239     /// deallocated. However, the current thread and other threads may be still holding references
240     /// on the stack to that same object. Therefore it cannot be deallocated before those references
241     /// get dropped. This method can defer deallocation until all those threads get unpinned and
242     /// consequently drop all their references on the stack.
243     ///
244     /// ```
245     /// use crossbeam_epoch::{self as epoch, Atomic, Owned};
246     /// use std::sync::atomic::Ordering::SeqCst;
247     ///
248     /// let a = Atomic::new("foo");
249     ///
250     /// // Now suppose that `a` is shared among multiple threads and concurrently
251     /// // accessed and modified...
252     ///
253     /// // Pin the current thread.
254     /// let guard = &epoch::pin();
255     ///
256     /// // Steal the object currently stored in `a` and swap it with another one.
257     /// let p = a.swap(Owned::new("bar").into_shared(guard), SeqCst, guard);
258     ///
259     /// if !p.is_null() {
260     ///     // The object `p` is pointing to is now unreachable.
261     ///     // Defer its deallocation until all currently pinned threads get unpinned.
262     ///     unsafe {
263     ///         guard.defer_destroy(p);
264     ///     }
265     /// }
266     /// # unsafe { drop(a.into_owned()); } // avoid leak
267     /// ```
defer_destroy<T>(&self, ptr: Shared<'_, T>)268     pub unsafe fn defer_destroy<T>(&self, ptr: Shared<'_, T>) {
269         self.defer_unchecked(move || ptr.into_owned());
270     }
271 
272     /// Clears up the thread-local cache of deferred functions by executing them or moving into the
273     /// global cache.
274     ///
275     /// Call this method after deferring execution of a function if you want to get it executed as
276     /// soon as possible. Flushing will make sure it is residing in in the global cache, so that
277     /// any thread has a chance of taking the function and executing it.
278     ///
279     /// If this method is called from an [`unprotected`] guard, it is a no-op (nothing happens).
280     ///
281     /// # Examples
282     ///
283     /// ```
284     /// use crossbeam_epoch as epoch;
285     ///
286     /// let guard = &epoch::pin();
287     /// guard.defer(move || {
288     ///     println!("This better be printed as soon as possible!");
289     /// });
290     /// guard.flush();
291     /// ```
flush(&self)292     pub fn flush(&self) {
293         if let Some(local) = unsafe { self.local.as_ref() } {
294             local.flush(self);
295         }
296     }
297 
298     /// Unpins and then immediately re-pins the thread.
299     ///
300     /// This method is useful when you don't want delay the advancement of the global epoch by
301     /// holding an old epoch. For safety, you should not maintain any guard-based reference across
302     /// the call (the latter is enforced by `&mut self`). The thread will only be repinned if this
303     /// is the only active guard for the current thread.
304     ///
305     /// If this method is called from an [`unprotected`] guard, then the call will be just no-op.
306     ///
307     /// # Examples
308     ///
309     /// ```
310     /// use crossbeam_epoch::{self as epoch, Atomic};
311     /// use std::sync::atomic::Ordering::SeqCst;
312     ///
313     /// let a = Atomic::new(777);
314     /// let mut guard = epoch::pin();
315     /// {
316     ///     let p = a.load(SeqCst, &guard);
317     ///     assert_eq!(unsafe { p.as_ref() }, Some(&777));
318     /// }
319     /// guard.repin();
320     /// {
321     ///     let p = a.load(SeqCst, &guard);
322     ///     assert_eq!(unsafe { p.as_ref() }, Some(&777));
323     /// }
324     /// # unsafe { drop(a.into_owned()); } // avoid leak
325     /// ```
repin(&mut self)326     pub fn repin(&mut self) {
327         if let Some(local) = unsafe { self.local.as_ref() } {
328             local.repin();
329         }
330     }
331 
332     /// Temporarily unpins the thread, executes the given function and then re-pins the thread.
333     ///
334     /// This method is useful when you need to perform a long-running operation (e.g. sleeping)
335     /// and don't need to maintain any guard-based reference across the call (the latter is enforced
336     /// by `&mut self`). The thread will only be unpinned if this is the only active guard for the
337     /// current thread.
338     ///
339     /// If this method is called from an [`unprotected`] guard, then the passed function is called
340     /// directly without unpinning the thread.
341     ///
342     /// # Examples
343     ///
344     /// ```
345     /// use crossbeam_epoch::{self as epoch, Atomic};
346     /// use std::sync::atomic::Ordering::SeqCst;
347     /// use std::thread;
348     /// use std::time::Duration;
349     ///
350     /// let a = Atomic::new(777);
351     /// let mut guard = epoch::pin();
352     /// {
353     ///     let p = a.load(SeqCst, &guard);
354     ///     assert_eq!(unsafe { p.as_ref() }, Some(&777));
355     /// }
356     /// guard.repin_after(|| thread::sleep(Duration::from_millis(50)));
357     /// {
358     ///     let p = a.load(SeqCst, &guard);
359     ///     assert_eq!(unsafe { p.as_ref() }, Some(&777));
360     /// }
361     /// # unsafe { drop(a.into_owned()); } // avoid leak
362     /// ```
repin_after<F, R>(&mut self, f: F) -> R where F: FnOnce() -> R,363     pub fn repin_after<F, R>(&mut self, f: F) -> R
364     where
365         F: FnOnce() -> R,
366     {
367         // Ensure the Guard is re-pinned even if the function panics
368         struct ScopeGuard(*const Local);
369         impl Drop for ScopeGuard {
370             fn drop(&mut self) {
371                 if let Some(local) = unsafe { self.0.as_ref() } {
372                     mem::forget(local.pin());
373                     local.release_handle();
374                 }
375             }
376         }
377 
378         if let Some(local) = unsafe { self.local.as_ref() } {
379             // We need to acquire a handle here to ensure the Local doesn't
380             // disappear from under us.
381             local.acquire_handle();
382             local.unpin();
383         }
384 
385         let _guard = ScopeGuard(self.local);
386 
387         f()
388     }
389 
390     /// Returns the `Collector` associated with this guard.
391     ///
392     /// This method is useful when you need to ensure that all guards used with
393     /// a data structure come from the same collector.
394     ///
395     /// If this method is called from an [`unprotected`] guard, then `None` is returned.
396     ///
397     /// # Examples
398     ///
399     /// ```
400     /// use crossbeam_epoch as epoch;
401     ///
402     /// let guard1 = epoch::pin();
403     /// let guard2 = epoch::pin();
404     /// assert!(guard1.collector() == guard2.collector());
405     /// ```
collector(&self) -> Option<&Collector>406     pub fn collector(&self) -> Option<&Collector> {
407         unsafe { self.local.as_ref().map(|local| local.collector()) }
408     }
409 }
410 
411 impl Drop for Guard {
412     #[inline]
drop(&mut self)413     fn drop(&mut self) {
414         if let Some(local) = unsafe { self.local.as_ref() } {
415             local.unpin();
416         }
417     }
418 }
419 
420 impl fmt::Debug for Guard {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result421     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
422         f.pad("Guard { .. }")
423     }
424 }
425 
426 /// Returns a reference to a dummy guard that allows unprotected access to [`Atomic`]s.
427 ///
428 /// This guard should be used in special occasions only. Note that it doesn't actually keep any
429 /// thread pinned - it's just a fake guard that allows loading from [`Atomic`]s unsafely.
430 ///
431 /// Note that calling [`defer`] with a dummy guard will not defer the function - it will just
432 /// execute the function immediately.
433 ///
434 /// If necessary, it's possible to create more dummy guards by cloning: `unprotected().clone()`.
435 ///
436 /// # Safety
437 ///
438 /// Loading and dereferencing data from an [`Atomic`] using this guard is safe only if the
439 /// [`Atomic`] is not being concurrently modified by other threads.
440 ///
441 /// # Examples
442 ///
443 /// ```
444 /// use crossbeam_epoch::{self as epoch, Atomic};
445 /// use std::sync::atomic::Ordering::Relaxed;
446 ///
447 /// let a = Atomic::new(7);
448 ///
449 /// unsafe {
450 ///     // Load `a` without pinning the current thread.
451 ///     a.load(Relaxed, epoch::unprotected());
452 ///
453 ///     // It's possible to create more dummy guards.
454 ///     let dummy = epoch::unprotected();
455 ///
456 ///     dummy.defer(move || {
457 ///         println!("This gets executed immediately.");
458 ///     });
459 ///
460 ///     // Dropping `dummy` doesn't affect the current thread - it's just a noop.
461 /// }
462 /// # unsafe { drop(a.into_owned()); } // avoid leak
463 /// ```
464 ///
465 /// The most common use of this function is when constructing or destructing a data structure.
466 ///
467 /// For example, we can use a dummy guard in the destructor of a Treiber stack because at that
468 /// point no other thread could concurrently modify the [`Atomic`]s we are accessing.
469 ///
470 /// If we were to actually pin the current thread during destruction, that would just unnecessarily
471 /// delay garbage collection and incur some performance cost, so in cases like these `unprotected`
472 /// is very helpful.
473 ///
474 /// ```
475 /// use crossbeam_epoch::{self as epoch, Atomic};
476 /// use std::mem::ManuallyDrop;
477 /// use std::sync::atomic::Ordering::Relaxed;
478 ///
479 /// struct Stack<T> {
480 ///     head: Atomic<Node<T>>,
481 /// }
482 ///
483 /// struct Node<T> {
484 ///     data: ManuallyDrop<T>,
485 ///     next: Atomic<Node<T>>,
486 /// }
487 ///
488 /// impl<T> Drop for Stack<T> {
489 ///     fn drop(&mut self) {
490 ///         unsafe {
491 ///             // Unprotected load.
492 ///             let mut node = self.head.load(Relaxed, epoch::unprotected());
493 ///
494 ///             while let Some(n) = node.as_ref() {
495 ///                 // Unprotected load.
496 ///                 let next = n.next.load(Relaxed, epoch::unprotected());
497 ///
498 ///                 // Take ownership of the node, then drop its data and deallocate it.
499 ///                 let mut o = node.into_owned();
500 ///                 ManuallyDrop::drop(&mut o.data);
501 ///                 drop(o);
502 ///
503 ///                 node = next;
504 ///             }
505 ///         }
506 ///     }
507 /// }
508 /// ```
509 ///
510 /// [`Atomic`]: super::Atomic
511 /// [`defer`]: Guard::defer
512 #[inline]
unprotected() -> &'static Guard513 pub unsafe fn unprotected() -> &'static Guard {
514     // An unprotected guard is just a `Guard` with its field `local` set to null.
515     // We make a newtype over `Guard` because `Guard` isn't `Sync`, so can't be directly stored in
516     // a `static`
517     struct GuardWrapper(Guard);
518     unsafe impl Sync for GuardWrapper {}
519     static UNPROTECTED: GuardWrapper = GuardWrapper(Guard {
520         local: core::ptr::null(),
521     });
522     &UNPROTECTED.0
523 }
524