xref: /aosp_15_r20/external/pytorch/torch/distributions/normal.py (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1# mypy: allow-untyped-defs
2import math
3from numbers import Number, Real
4
5import torch
6from torch.distributions import constraints
7from torch.distributions.exp_family import ExponentialFamily
8from torch.distributions.utils import _standard_normal, broadcast_all
9from torch.types import _size
10
11
12__all__ = ["Normal"]
13
14
15class Normal(ExponentialFamily):
16    r"""
17    Creates a normal (also called Gaussian) distribution parameterized by
18    :attr:`loc` and :attr:`scale`.
19
20    Example::
21
22        >>> # xdoctest: +IGNORE_WANT("non-deterministic")
23        >>> m = Normal(torch.tensor([0.0]), torch.tensor([1.0]))
24        >>> m.sample()  # normally distributed with loc=0 and scale=1
25        tensor([ 0.1046])
26
27    Args:
28        loc (float or Tensor): mean of the distribution (often referred to as mu)
29        scale (float or Tensor): standard deviation of the distribution
30            (often referred to as sigma)
31    """
32    arg_constraints = {"loc": constraints.real, "scale": constraints.positive}
33    support = constraints.real
34    has_rsample = True
35    _mean_carrier_measure = 0
36
37    @property
38    def mean(self):
39        return self.loc
40
41    @property
42    def mode(self):
43        return self.loc
44
45    @property
46    def stddev(self):
47        return self.scale
48
49    @property
50    def variance(self):
51        return self.stddev.pow(2)
52
53    def __init__(self, loc, scale, validate_args=None):
54        self.loc, self.scale = broadcast_all(loc, scale)
55        if isinstance(loc, Number) and isinstance(scale, Number):
56            batch_shape = torch.Size()
57        else:
58            batch_shape = self.loc.size()
59        super().__init__(batch_shape, validate_args=validate_args)
60
61    def expand(self, batch_shape, _instance=None):
62        new = self._get_checked_instance(Normal, _instance)
63        batch_shape = torch.Size(batch_shape)
64        new.loc = self.loc.expand(batch_shape)
65        new.scale = self.scale.expand(batch_shape)
66        super(Normal, new).__init__(batch_shape, validate_args=False)
67        new._validate_args = self._validate_args
68        return new
69
70    def sample(self, sample_shape=torch.Size()):
71        shape = self._extended_shape(sample_shape)
72        with torch.no_grad():
73            return torch.normal(self.loc.expand(shape), self.scale.expand(shape))
74
75    def rsample(self, sample_shape: _size = torch.Size()) -> torch.Tensor:
76        shape = self._extended_shape(sample_shape)
77        eps = _standard_normal(shape, dtype=self.loc.dtype, device=self.loc.device)
78        return self.loc + eps * self.scale
79
80    def log_prob(self, value):
81        if self._validate_args:
82            self._validate_sample(value)
83        # compute the variance
84        var = self.scale**2
85        log_scale = (
86            math.log(self.scale) if isinstance(self.scale, Real) else self.scale.log()
87        )
88        return (
89            -((value - self.loc) ** 2) / (2 * var)
90            - log_scale
91            - math.log(math.sqrt(2 * math.pi))
92        )
93
94    def cdf(self, value):
95        if self._validate_args:
96            self._validate_sample(value)
97        return 0.5 * (
98            1 + torch.erf((value - self.loc) * self.scale.reciprocal() / math.sqrt(2))
99        )
100
101    def icdf(self, value):
102        return self.loc + self.scale * torch.erfinv(2 * value - 1) * math.sqrt(2)
103
104    def entropy(self):
105        return 0.5 + 0.5 * math.log(2 * math.pi) + torch.log(self.scale)
106
107    @property
108    def _natural_params(self):
109        return (self.loc / self.scale.pow(2), -0.5 * self.scale.pow(2).reciprocal())
110
111    def _log_normalizer(self, x, y):
112        return -0.25 * x.pow(2) / y + 0.5 * torch.log(-math.pi / y)
113