xref: /aosp_15_r20/external/pytorch/torch/distributed/optim/functional_rmsprop.py (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1# mypy: allow-untyped-defs
2from typing import Dict, List, Optional
3
4import torch
5import torch.optim._functional as F
6from torch import Tensor
7
8
9__all__: List[str] = []
10
11
12# Define a TorchScript compatible Functional RMSprop Optimizer
13# where we use these optimizer in a functional way.
14# Instead of using the `param.grad` when updating parameters,
15# we explicitly allow the distributed optimizer pass gradients to
16# the `step` function. In this way, we could separate the gradients
17# and parameters and allow multithreaded trainer to update the
18# parameters without data traces on accumulating to the same .grad.
19# NOTE: This should be only used by distributed optimizer internals
20# and not meant to expose to the user.
21@torch.jit.script
22class _FunctionalRMSprop:
23    def __init__(
24        self,
25        params: List[Tensor],
26        lr: float = 1e-2,
27        alpha: float = 0.99,
28        eps: float = 1e-8,
29        weight_decay: float = 0.0,
30        momentum: float = 0.0,
31        centered: bool = False,
32        foreach: bool = False,
33        maximize: bool = False,
34        _allow_empty_param_list: bool = False,
35    ):
36        self.defaults = {
37            "lr": lr,
38            "alpha": alpha,
39            "eps": eps,
40            "weight_decay": weight_decay,
41            "momentum": momentum,
42        }
43        self.centered = centered
44        self.foreach = foreach
45        self.maximize = maximize
46
47        if len(params) == 0 and not _allow_empty_param_list:
48            raise ValueError("optimizer got an empty parameter list")
49
50        # NOTE: we only have one param_group and don't allow user to add additional
51        # param group as it's not a common use case.
52        self.param_group = {"params": params}
53
54        self.state = torch.jit.annotate(Dict[torch.Tensor, Dict[str, torch.Tensor]], {})
55
56    def step(self, gradients: List[Optional[Tensor]]):
57        params = self.param_group["params"]
58        params_with_grad = []
59        grads = []
60        square_avgs = []
61        grad_avgs = []
62        momentum_buffer_list = []
63        state_steps = []
64        lr = self.defaults["lr"]
65        alpha = self.defaults["alpha"]
66        eps = self.defaults["eps"]
67        momentum = self.defaults["momentum"]
68        weight_decay = self.defaults["weight_decay"]
69
70        if len(params) != len(gradients):
71            raise ValueError(
72                "the gradients passed in does not equal to the size of the parameters!"
73                + f"Params length: {len(params)}. "
74                + f"Gradients length: {len(gradients)}"
75            )
76
77        has_complex = False
78        for param, gradient in zip(params, gradients):
79            if gradient is not None:
80                has_complex |= torch.is_complex(param)
81                params_with_grad.append(param)
82                grads.append(gradient)
83                # Lazy state initialization
84                if param not in self.state:
85                    self.state[param] = {}
86                    state = self.state[param]
87                    state["step"] = torch.tensor(0.0)
88                    state["square_avg"] = torch.zeros_like(
89                        param, memory_format=torch.preserve_format
90                    )
91                    if momentum > 0:
92                        state["momentum_buffer"] = torch.zeros_like(
93                            param, memory_format=torch.preserve_format
94                        )
95                    if self.centered:
96                        state["grad_avg"] = torch.zeros_like(
97                            param, memory_format=torch.preserve_format
98                        )
99
100                state = self.state[param]
101                square_avgs.append(state["square_avg"])
102                if momentum > 0:
103                    momentum_buffer_list.append(state["momentum_buffer"])
104                if self.centered:
105                    grad_avgs.append(state["grad_avg"])
106
107                state_steps.append(state["step"])
108
109        with torch.no_grad():
110            F.rmsprop(
111                params_with_grad,
112                grads,
113                square_avgs,
114                grad_avgs,
115                momentum_buffer_list,
116                state_steps,
117                lr=lr,
118                alpha=alpha,
119                eps=eps,
120                weight_decay=weight_decay,
121                momentum=momentum,
122                centered=self.centered,
123                foreach=self.foreach,
124                maximize=self.maximize,
125                has_complex=has_complex,
126            )
127