xref: /aosp_15_r20/external/pytorch/torch/distributed/optim/functional_adamax.py (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1# mypy: allow-untyped-defs
2from typing import Dict, List, Optional, Tuple
3
4import torch
5import torch.optim._functional as F
6from torch import Tensor
7
8
9__all__: List[str] = []
10
11
12# Define a TorchScript compatible Functional Adamax Optimizer
13# where we use these optimizer in a functional way.
14# Instead of using the `param.grad` when updating parameters,
15# we explicitly allow the distributed optimizer pass gradients to
16# the `step` function. In this way, we could separate the gradients
17# and parameters and allow multithreaded trainer to update the
18# parameters without data traces on accumulating to the same .grad.
19# NOTE: This should be only used by distributed optimizer internals
20# and not meant to expose to the user.
21@torch.jit.script
22class _FunctionalAdamax:
23    def __init__(
24        self,
25        params: List[Tensor],
26        lr: float = 1e-3,
27        betas: Tuple[float, float] = (0.9, 0.999),
28        eps: float = 1e-8,
29        weight_decay: float = 0.0,
30        foreach: bool = False,
31        maximize: bool = False,
32        _allow_empty_param_list: bool = False,
33    ):
34        if not 0.0 <= lr:
35            raise ValueError(f"Invalid learning rate: {lr}")
36        if not 0.0 <= eps:
37            raise ValueError(f"Invalid epsilon value: {eps}")
38        if not 0.0 <= betas[0] < 1.0:
39            raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
40        if not 0.0 <= betas[1] < 1.0:
41            raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
42        if not 0.0 <= weight_decay:
43            raise ValueError(f"Invalid weight_decay value: {weight_decay}")
44
45        self.defaults = {
46            "lr": lr,
47            "eps": eps,
48            "beta1": betas[0],
49            "beta2": betas[1],
50            "weight_decay": weight_decay,
51        }
52        self.foreach = foreach
53        self.maximize = maximize
54        self.state = torch.jit.annotate(Dict[torch.Tensor, Dict[str, torch.Tensor]], {})
55
56        if len(params) == 0 and not _allow_empty_param_list:
57            raise ValueError("optimizer got an empty parameter list")
58
59        # NOTE: we only have one param_group and don't allow user to add additional
60        # param group as it's not a common use case.
61        self.param_group = {"params": params}
62
63    def step(self, gradients: List[Optional[Tensor]]):
64        params = self.param_group["params"]
65        params_with_grad = []
66        grads = []
67        exp_avgs = []
68        exp_infs = []
69        state_steps: List[Tensor] = []
70
71        if len(params) != len(gradients):
72            raise ValueError(
73                "the gradients passed in does not equal to the size of the parameters!"
74                + f"Params length: {len(params)}. "
75                + f"Gradients length: {len(gradients)}"
76            )
77
78        has_complex = False
79        for param, gradient in zip(self.param_group["params"], gradients):
80            if gradient is not None:
81                has_complex |= torch.is_complex(param)
82                params_with_grad.append(param)
83                grads.append(gradient)
84                # Lazy state initialization
85                if param not in self.state:
86                    self.state[param] = {}
87                    state = self.state[param]
88                    state["step"] = torch.tensor(0.0)
89                    # Exponential moving average of gradient values
90                    state["exp_avg"] = torch.zeros_like(
91                        param, memory_format=torch.preserve_format
92                    )
93                    # Exponential moving average of squared gradient values
94                    state["exp_inf"] = torch.zeros_like(
95                        param, memory_format=torch.preserve_format
96                    )
97
98                state = self.state[param]
99
100                exp_avgs.append(state["exp_avg"])
101                exp_infs.append(state["exp_inf"])
102                state_steps.append(state["step"])
103
104        with torch.no_grad():
105            F.adamax(
106                params_with_grad,
107                grads,
108                exp_avgs,
109                exp_infs,
110                state_steps,
111                eps=self.defaults["eps"],
112                beta1=self.defaults["beta1"],
113                beta2=self.defaults["beta2"],
114                lr=self.defaults["lr"],
115                weight_decay=self.defaults["weight_decay"],
116                foreach=self.foreach,
117                maximize=self.maximize,
118                has_complex=has_complex,
119            )
120