xref: /aosp_15_r20/external/pytorch/test/cpp/api/init_baseline.py (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1"""Script to generate baseline values from PyTorch initialization algorithms"""
2
3import sys
4
5import torch
6
7
8HEADER = """
9#include <torch/types.h>
10
11#include <vector>
12
13namespace expected_parameters {
14"""
15
16FOOTER = "} // namespace expected_parameters"
17
18PARAMETERS = "inline std::vector<std::vector<torch::Tensor>> {}() {{"
19
20INITIALIZERS = {
21    "Xavier_Uniform": lambda w: torch.nn.init.xavier_uniform(w),
22    "Xavier_Normal": lambda w: torch.nn.init.xavier_normal(w),
23    "Kaiming_Normal": lambda w: torch.nn.init.kaiming_normal(w),
24    "Kaiming_Uniform": lambda w: torch.nn.init.kaiming_uniform(w),
25}
26
27
28def emit(initializer_parameter_map):
29    # Don't write generated with an @ in front, else this file is recognized as generated.
30    print("// @{} from {}".format("generated", __file__))
31    print(HEADER)
32    for initializer_name, weights in initializer_parameter_map.items():
33        print(PARAMETERS.format(initializer_name))
34        print("  return {")
35        for sample in weights:
36            print("    {")
37            for parameter in sample:
38                parameter_values = "{{{}}}".format(", ".join(map(str, parameter)))
39                print(f"      torch::tensor({parameter_values}),")
40            print("    },")
41        print("  };")
42        print("}\n")
43    print(FOOTER)
44
45
46def run(initializer):
47    torch.manual_seed(0)
48
49    layer1 = torch.nn.Linear(7, 15)
50    INITIALIZERS[initializer](layer1.weight)
51
52    layer2 = torch.nn.Linear(15, 15)
53    INITIALIZERS[initializer](layer2.weight)
54
55    layer3 = torch.nn.Linear(15, 2)
56    INITIALIZERS[initializer](layer3.weight)
57
58    weight1 = layer1.weight.data.numpy()
59    weight2 = layer2.weight.data.numpy()
60    weight3 = layer3.weight.data.numpy()
61
62    return [weight1, weight2, weight3]
63
64
65def main():
66    initializer_parameter_map = {}
67    for initializer in INITIALIZERS.keys():
68        sys.stderr.write(f"Evaluating {initializer} ...\n")
69        initializer_parameter_map[initializer] = run(initializer)
70
71    emit(initializer_parameter_map)
72
73
74if __name__ == "__main__":
75    main()
76