1{ 2 "cells": [ 3 { 4 "cell_type": "markdown", 5 "id": "903e2f76", 6 "metadata": {}, 7 "source": [ 8 "# Whirlwind Tour\n", 9 "\n", 10 "<a href=\"https://colab.research.google.com/github/pytorch/pytorch/blob/master/functorch/notebooks/whirlwind_tour.ipynb\">\n", 11 " <img style=\"width: auto\" src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/>\n", 12 "</a>\n", 13 "\n", 14 "## What is functorch?\n", 15 "\n", 16 "functorch is a library for [JAX](https://github.com/google/jax)-like composable function transforms in PyTorch.\n", 17 "- A \"function transform\" is a higher-order function that accepts a numerical function and returns a new function that computes a different quantity.\n", 18 "- functorch has auto-differentiation transforms (`grad(f)` returns a function that computes the gradient of `f`), a vectorization/batching transform (`vmap(f)` returns a function that computes `f` over batches of inputs), and others.\n", 19 "- These function transforms can compose with each other arbitrarily. For example, composing `vmap(grad(f))` computes a quantity called per-sample-gradients that stock PyTorch cannot efficiently compute today.\n", 20 "\n", 21 "Furthermore, we also provide an experimental compilation transform in the `functorch.compile` namespace. Our compilation transform, named AOT (ahead-of-time) Autograd, returns to you an [FX graph](https://pytorch.org/docs/stable/fx.html) (that optionally contains a backward pass), of which compilation via various backends is one path you can take.\n", 22 "\n", 23 "\n", 24 "## Why composable function transforms?\n", 25 "There are a number of use cases that are tricky to do in PyTorch today:\n", 26 "- computing per-sample-gradients (or other per-sample quantities)\n", 27 "- running ensembles of models on a single machine\n", 28 "- efficiently batching together tasks in the inner-loop of MAML\n", 29 "- efficiently computing Jacobians and Hessians\n", 30 "- efficiently computing batched Jacobians and Hessians\n", 31 "\n", 32 "Composing `vmap`, `grad`, `vjp`, and `jvp` transforms allows us to express the above without designing a separate subsystem for each.\n", 33 "\n", 34 "## What are the transforms?\n", 35 "\n", 36 "### grad (gradient computation)\n", 37 "\n", 38 "`grad(func)` is our gradient computation transform. It returns a new function that computes the gradients of `func`. It assumes `func` returns a single-element Tensor and by default it computes the gradients of the output of `func` w.r.t. to the first input." 39 ] 40 }, 41 { 42 "cell_type": "code", 43 "execution_count": null, 44 "id": "f920b923", 45 "metadata": {}, 46 "outputs": [], 47 "source": [ 48 "import torch\n", 49 "from functorch import grad\n", 50 "x = torch.randn([])\n", 51 "cos_x = grad(lambda x: torch.sin(x))(x)\n", 52 "assert torch.allclose(cos_x, x.cos())\n", 53 "\n", 54 "# Second-order gradients\n", 55 "neg_sin_x = grad(grad(lambda x: torch.sin(x)))(x)\n", 56 "assert torch.allclose(neg_sin_x, -x.sin())" 57 ] 58 }, 59 { 60 "cell_type": "markdown", 61 "id": "ef3b2d85", 62 "metadata": {}, 63 "source": [ 64 "### vmap (auto-vectorization)\n", 65 "\n", 66 "Note: vmap imposes restrictions on the code that it can be used on. For more details, please read its docstring.\n", 67 "\n", 68 "`vmap(func)(*inputs)` is a transform that adds a dimension to all Tensor operations in `func`. `vmap(func)` returns a new function that maps `func` over some dimension (default: 0) of each Tensor in inputs.\n", 69 "\n", 70 "vmap is useful for hiding batch dimensions: one can write a function func that runs on examples and then lift it to a function that can take batches of examples with `vmap(func)`, leading to a simpler modeling experience:" 71 ] 72 }, 73 { 74 "cell_type": "code", 75 "execution_count": null, 76 "id": "6ebac649", 77 "metadata": {}, 78 "outputs": [], 79 "source": [ 80 "import torch\n", 81 "from functorch import vmap\n", 82 "batch_size, feature_size = 3, 5\n", 83 "weights = torch.randn(feature_size, requires_grad=True)\n", 84 "\n", 85 "def model(feature_vec):\n", 86 " # Very simple linear model with activation\n", 87 " assert feature_vec.dim() == 1\n", 88 " return feature_vec.dot(weights).relu()\n", 89 "\n", 90 "examples = torch.randn(batch_size, feature_size)\n", 91 "result = vmap(model)(examples)" 92 ] 93 }, 94 { 95 "cell_type": "markdown", 96 "id": "5161e6d2", 97 "metadata": {}, 98 "source": [ 99 "When composed with `grad`, `vmap` can be used to compute per-sample-gradients:" 100 ] 101 }, 102 { 103 "cell_type": "code", 104 "execution_count": null, 105 "id": "ffb2fcb1", 106 "metadata": {}, 107 "outputs": [], 108 "source": [ 109 "from functorch import vmap\n", 110 "batch_size, feature_size = 3, 5\n", 111 "\n", 112 "def model(weights,feature_vec):\n", 113 " # Very simple linear model with activation\n", 114 " assert feature_vec.dim() == 1\n", 115 " return feature_vec.dot(weights).relu()\n", 116 "\n", 117 "def compute_loss(weights, example, target):\n", 118 " y = model(weights, example)\n", 119 " return ((y - target) ** 2).mean() # MSELoss\n", 120 "\n", 121 "weights = torch.randn(feature_size, requires_grad=True)\n", 122 "examples = torch.randn(batch_size, feature_size)\n", 123 "targets = torch.randn(batch_size)\n", 124 "inputs = (weights,examples, targets)\n", 125 "grad_weight_per_example = vmap(grad(compute_loss), in_dims=(None, 0, 0))(*inputs)" 126 ] 127 }, 128 { 129 "cell_type": "markdown", 130 "id": "11d711af", 131 "metadata": {}, 132 "source": [ 133 "### vjp (vector-Jacobian product)\n", 134 "\n", 135 "The `vjp` transform applies `func` to `inputs` and returns a new function that computes the vector-Jacobian product (vjp) given some `cotangents` Tensors." 136 ] 137 }, 138 { 139 "cell_type": "code", 140 "execution_count": null, 141 "id": "ad48f9d4", 142 "metadata": {}, 143 "outputs": [], 144 "source": [ 145 "from functorch import vjp\n", 146 "\n", 147 "inputs = torch.randn(3)\n", 148 "func = torch.sin\n", 149 "cotangents = (torch.randn(3),)\n", 150 "\n", 151 "outputs, vjp_fn = vjp(func, inputs); vjps = vjp_fn(*cotangents)" 152 ] 153 }, 154 { 155 "cell_type": "markdown", 156 "id": "e0221270", 157 "metadata": {}, 158 "source": [ 159 "### jvp (Jacobian-vector product)\n", 160 "\n", 161 "The `jvp` transforms computes Jacobian-vector-products and is also known as \"forward-mode AD\". It is not a higher-order function unlike most other transforms, but it returns the outputs of `func(inputs)` as well as the jvps." 162 ] 163 }, 164 { 165 "cell_type": "code", 166 "execution_count": null, 167 "id": "f3772f43", 168 "metadata": {}, 169 "outputs": [], 170 "source": [ 171 "from functorch import jvp\n", 172 "x = torch.randn(5)\n", 173 "y = torch.randn(5)\n", 174 "f = lambda x, y: (x * y)\n", 175 "_, output = jvp(f, (x, y), (torch.ones(5), torch.ones(5)))\n", 176 "assert torch.allclose(output, x + y)" 177 ] 178 }, 179 { 180 "cell_type": "markdown", 181 "id": "7b00953b", 182 "metadata": {}, 183 "source": [ 184 "### jacrev, jacfwd, and hessian\n", 185 "\n", 186 "The `jacrev` transform returns a new function that takes in `x` and returns the Jacobian of the function\n", 187 "with respect to `x` using reverse-mode AD." 188 ] 189 }, 190 { 191 "cell_type": "code", 192 "execution_count": null, 193 "id": "20f53be2", 194 "metadata": {}, 195 "outputs": [], 196 "source": [ 197 "from functorch import jacrev\n", 198 "x = torch.randn(5)\n", 199 "jacobian = jacrev(torch.sin)(x)\n", 200 "expected = torch.diag(torch.cos(x))\n", 201 "assert torch.allclose(jacobian, expected)" 202 ] 203 }, 204 { 205 "cell_type": "markdown", 206 "id": "b9007c88", 207 "metadata": {}, 208 "source": [ 209 "Use `jacrev` to compute the jacobian. This can be composed with `vmap` to produce batched jacobians:" 210 ] 211 }, 212 { 213 "cell_type": "code", 214 "execution_count": null, 215 "id": "97d6c382", 216 "metadata": {}, 217 "outputs": [], 218 "source": [ 219 "x = torch.randn(64, 5)\n", 220 "jacobian = vmap(jacrev(torch.sin))(x)\n", 221 "assert jacobian.shape == (64, 5, 5)" 222 ] 223 }, 224 { 225 "cell_type": "markdown", 226 "id": "cda642ec", 227 "metadata": {}, 228 "source": [ 229 "`jacfwd` is a drop-in replacement for `jacrev` that computes Jacobians using forward-mode AD:" 230 ] 231 }, 232 { 233 "cell_type": "code", 234 "execution_count": null, 235 "id": "a8c1dedb", 236 "metadata": {}, 237 "outputs": [], 238 "source": [ 239 "from functorch import jacfwd\n", 240 "x = torch.randn(5)\n", 241 "jacobian = jacfwd(torch.sin)(x)\n", 242 "expected = torch.diag(torch.cos(x))\n", 243 "assert torch.allclose(jacobian, expected)" 244 ] 245 }, 246 { 247 "cell_type": "markdown", 248 "id": "39f85b50", 249 "metadata": {}, 250 "source": [ 251 "Composing `jacrev` with itself or `jacfwd` can produce hessians:" 252 ] 253 }, 254 { 255 "cell_type": "code", 256 "execution_count": null, 257 "id": "1e511139", 258 "metadata": {}, 259 "outputs": [], 260 "source": [ 261 "def f(x):\n", 262 " return x.sin().sum()\n", 263 "\n", 264 "x = torch.randn(5)\n", 265 "hessian0 = jacrev(jacrev(f))(x)\n", 266 "hessian1 = jacfwd(jacrev(f))(x)" 267 ] 268 }, 269 { 270 "cell_type": "markdown", 271 "id": "18efdc65", 272 "metadata": {}, 273 "source": [ 274 "The `hessian` is a convenience function that combines `jacfwd` and `jacrev`:" 275 ] 276 }, 277 { 278 "cell_type": "code", 279 "execution_count": null, 280 "id": "fd1765df", 281 "metadata": {}, 282 "outputs": [], 283 "source": [ 284 "from functorch import hessian\n", 285 "\n", 286 "def f(x):\n", 287 " return x.sin().sum()\n", 288 "\n", 289 "x = torch.randn(5)\n", 290 "hess = hessian(f)(x)" 291 ] 292 }, 293 { 294 "cell_type": "markdown", 295 "id": "b597d7ad", 296 "metadata": {}, 297 "source": [ 298 "## Conclusion\n", 299 "\n", 300 "Check out our other tutorials (in the left bar) for more detailed explanations of how to apply functorch transforms for various use cases. `functorch` is very much a work in progress and we'd love to hear how you're using it -- we encourage you to start a conversation at our [issues tracker](https://github.com/pytorch/functorch) to discuss your use case." 301 ] 302 } 303 ], 304 "metadata": { 305 "kernelspec": { 306 "display_name": "Python 3 (ipykernel)", 307 "language": "python", 308 "name": "python3" 309 }, 310 "language_info": { 311 "codemirror_mode": { 312 "name": "ipython", 313 "version": 3 314 }, 315 "file_extension": ".py", 316 "mimetype": "text/x-python", 317 "name": "python", 318 "nbconvert_exporter": "python", 319 "pygments_lexer": "ipython3", 320 "version": "3.7.4" 321 } 322 }, 323 "nbformat": 4, 324 "nbformat_minor": 5 325} 326