1from . import benchmark 2 3 4class ReduceBench(benchmark.Benchmark): 5 def __init__(self, mode, device, dtype, case, M, N, K, skip_input_transform): 6 super().__init__(mode, device, dtype) 7 self.case = case 8 self.M = M 9 self.N = N 10 self.K = K 11 self._set_skip_input_transform(skip_input_transform) 12 13 self.inputs = [ 14 self.randn( 15 [M, N, K], device=device, dtype=dtype, requires_grad=self.requires_grad 16 ) 17 ] 18 if case == "row": 19 self.dims = [1, 2] 20 elif case == "mid": 21 self.dims = [0, 2] 22 elif case == "col": 23 self.dims = [0, 1] 24 elif case == "full": 25 self.dims = [0, 1, 2] 26 else: 27 raise ValueError(f"invalid case: {case}") 28 29 def forward(self, inputs): 30 if self.skip_input_transform: 31 x = inputs 32 else: 33 x = self.add(inputs, 0.001) 34 y = self.sum(x, self.dims) 35 return y 36 37 def config(self): 38 if self.case == "full": 39 return [self.M * self.N * self.K, self._skip_input_transform_str()] 40 return [self.M, self.N, self.K, self._skip_input_transform_str()] 41 42 @staticmethod 43 def default_configs(): 44 return [ 45 # [512, 512, 512], 46 [512, 64, 512, "s0"], 47 ] 48 49 @staticmethod 50 def module(): 51 return "reduce" 52 53 def memory_workload(self): 54 if self.mode == "fwd": 55 sol_count = 1 56 algorithmic_count = 1 57 else: 58 sol_count = (1) + (1) 59 algorithmic_count = 1 + 1 60 61 buffer_size = self.M * self.N * self.K 62 return { 63 "sol": buffer_size * sol_count, 64 "algorithmic": buffer_size * algorithmic_count, 65 } 66 67 def _set_skip_input_transform(self, input_str): 68 # In the test setting, s1 will skip the input transformation, and s0 will not. 69 if input_str == "s0": 70 self.skip_input_transform = False 71 elif input_str == "s1": 72 self.skip_input_transform = True 73 else: 74 raise ValueError(f"invalid skip_input_transform: {input_str}") 75 76 def _skip_input_transform_str(self): 77 if self.skip_input_transform: 78 return "s1" 79 else: 80 return "s0" 81 82 83class ReduceRowBench(ReduceBench): 84 def __init__(self, mode, device, dtype, M, N, K, skip_input_transform): 85 super().__init__(mode, device, dtype, "row", M, N, K, skip_input_transform) 86 87 @staticmethod 88 def module(): 89 return "reduce_row" 90 91 92class ReduceMidBench(ReduceBench): 93 def __init__(self, mode, device, dtype, M, N, K, skip_input_transform): 94 super().__init__(mode, device, dtype, "mid", M, N, K, skip_input_transform) 95 96 @staticmethod 97 def module(): 98 return "reduce_mid" 99 100 101class ReduceColBench(ReduceBench): 102 def __init__(self, mode, device, dtype, M, N, K, skip_input_transform): 103 super().__init__(mode, device, dtype, "col", M, N, K, skip_input_transform) 104 105 @staticmethod 106 def module(): 107 return "reduce_col" 108 109 110class ReduceFullBench(ReduceBench): 111 def __init__(self, mode, device, dtype, M, skip_input_transform): 112 super().__init__(mode, device, dtype, "full", M, 1, 1, skip_input_transform) 113 114 def config(self): 115 return [self.M * self.N * self.K, self._skip_input_transform_str()] 116 117 @staticmethod 118 def default_configs(): 119 return [ 120 [1 << 24, "s1"], 121 ] 122 123 @staticmethod 124 def module(): 125 return "reduce_full" 126 127 128class Reduce2DBench(benchmark.Benchmark): 129 """ 130 A benchmark class to validate 2 dimensional reduction performance. 131 Only a simple add is fused to induce the fuser and isolate reduction perf. 132 """ 133 134 def __init__(self, mode, device, dtype, red_dim, dim0, dim1): 135 super().__init__(mode, device, dtype) 136 self.red_dim = red_dim 137 self.dim0 = dim0 138 self.dim1 = dim1 139 140 self.inputs = [ 141 self.randn( 142 [dim0, dim1], 143 device=device, 144 dtype=dtype, 145 requires_grad=self.requires_grad, 146 ) 147 ] 148 149 if red_dim != 0 and red_dim != 1: 150 raise ValueError(f"invalid reduction dimension: {red_dim}") 151 152 def forward(self, inputs): 153 x = self.add(inputs, 0.001) 154 y = self.sum(x, [self.red_dim]) 155 return y 156 157 def config(self): 158 return [self.red_dim, self.dim0, self.dim1] 159 160 @staticmethod 161 def default_configs(): 162 return [ 163 [1, 640, 524288], 164 ] 165 166 @staticmethod 167 def module(): 168 return "reduce2d" 169 170 @staticmethod 171 def input_iterable(): 172 return True 173 174 def memory_workload(self): 175 assert self.mode == "fwd", "Only the forward operation is modeled!" 176 177 buffer_size = self.dim0 * self.dim1 178 if self.red_dim == 0: 179 buffer_size += self.dim1 180 else: 181 buffer_size += self.dim0 182 return { 183 "sol": buffer_size, 184 "algorithmic": buffer_size, 185 } 186 187 188class Reduce2DInnerBench(Reduce2DBench): 189 def __init__(self, mode, device, dtype, dim0, dim1): 190 super().__init__(mode, device, dtype, 1, dim0, dim1) 191 192 @staticmethod 193 def default_configs(): 194 parent_config = Reduce2DBench.default_configs()[0] 195 return [parent_config[1:]] 196 197 def config(self): 198 parent_config = super().config() 199 return parent_config[1:] 200 201 @staticmethod 202 def module(): 203 return "reduce2d_inner" 204 205 206class Reduce2DOuterBench(Reduce2DBench): 207 def __init__(self, mode, device, dtype, dim0, dim1): 208 super().__init__(mode, device, dtype, 0, dim0, dim1) 209 210 @staticmethod 211 def default_configs(): 212 parent_config = Reduce2DBench.default_configs()[0] 213 return [parent_config[1:]] 214 215 def config(self): 216 parent_config = super().config() 217 return parent_config[1:] 218 219 @staticmethod 220 def module(): 221 return "reduce2d_outer" 222 223 224benchmark.register_benchmark_class(ReduceRowBench) 225benchmark.register_benchmark_class(ReduceMidBench) 226benchmark.register_benchmark_class(ReduceColBench) 227benchmark.register_benchmark_class(Reduce2DInnerBench) 228benchmark.register_benchmark_class(Reduce2DOuterBench) 229benchmark.register_benchmark_class(ReduceFullBench) 230 231 232class DynamicReduce2DBench(benchmark.DynamicShape, Reduce2DBench): 233 """ 234 A benchmark class to validate 2 dimensional reduction performance. 235 Only a simple add is fused to induce the fuser and isolate reduction perf. 236 """ 237 238 def __init__(self, mode, device, dtype, red_dim, dim0, dim1): 239 benchmark.DynamicShape.__init__(self) 240 Reduce2DBench.__init__(self, mode, device, dtype, red_dim, dim0, dim1) 241 242 def instantiate_input(self): 243 dim0, dim1 = self.rand_shape([self.dim0, self.dim1]) 244 245 self.inputs = [ 246 self.randn( 247 [dim0, dim1], 248 device=self.device, 249 dtype=self.dtype, 250 requires_grad=self.requires_grad, 251 ) 252 ] 253 254 @staticmethod 255 def module(): 256 return "dynamicreduce2d" 257 258 259class DynamicReduce2DInnerBench(DynamicReduce2DBench): 260 def __init__(self, mode, device, dtype, dim0, dim1): 261 super().__init__(mode, device, dtype, 1, dim0, dim1) 262 263 @staticmethod 264 def default_configs(): 265 parent_config = DynamicReduce2DBench.default_configs()[0] 266 return [parent_config[1:]] 267 268 def config(self): 269 parent_config = super().config() 270 return parent_config[1:] 271 272 @staticmethod 273 def module(): 274 return "reduce2d_dynamic_inner" 275 276 277class DynamicReduce2DOuterBench(DynamicReduce2DBench): 278 def __init__(self, mode, device, dtype, dim0, dim1): 279 super().__init__(mode, device, dtype, 0, dim0, dim1) 280 281 @staticmethod 282 def default_configs(): 283 parent_config = DynamicReduce2DBench.default_configs()[0] 284 return [parent_config[1:]] 285 286 def config(self): 287 parent_config = super().config() 288 return parent_config[1:] 289 290 @staticmethod 291 def module(): 292 return "reduce2d_dynamic_outer" 293 294 295benchmark.register_benchmark_class(DynamicReduce2DInnerBench) 296benchmark.register_benchmark_class(DynamicReduce2DOuterBench) 297