xref: /aosp_15_r20/external/pytorch/aten/src/ATen/native/cuda/IGammaKernel.cu (revision da0073e96a02ea20f0ac840b70461e3646d07c45)
1 #define TORCH_ASSERT_NO_OPERATORS
2 #include <ATen/Dispatch.h>
3 #include <ATen/native/DispatchStub.h>
4 #include <ATen/native/cuda/Loops.cuh>
5 #include <ATen/native/cuda/Math.cuh>
6 #include <ATen/native/TensorIterator.h>
7 #include <ATen/native/BinaryOps.h>
8 
9 // NOTE: CUDA on Windows requires that the enclosing function
10 // of a __device__ lambda not have internal linkage.
11 
12 // TODO: review jiterating igamma and igammac if/when a persistent (across processes)
13 //   cache is implemented, because they take a VERY long time to compile
14 // TODO: it's also odd these ops use gpu_kernel_with_scalars
15 
16 namespace {
17 
18 /*
19  * This implementation of the regularized incomplete gamma functions and
20  * their helper functions are derived from the implementation of SciPy's
21  * gammainc, Cephes's igam and igamc, and Boost's Lanczos approximations.
22  * See NOTICE for the licenses.
23  */
24 // regularized lower & upper incomplete gamma
25 template <typename scalar_t>
ratevl(scalar_t x,const scalar_t num[],int64_t M,const scalar_t denom[],int64_t N)26 __host__ __device__ scalar_t ratevl(scalar_t x, const scalar_t num[], int64_t M,
27     const scalar_t denom[], int64_t N) {
28   // evaluating rational function, i.e., the ratio of two polynomials
29   // the coefficients for numerator are given by `num` while coeffs for
30   // denumerator are given by `denom`
31 
32   using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
33   int64_t i, dir;
34   accscalar_t y, num_ans, denom_ans;
35   accscalar_t absx = ::fabs(x);
36   const accscalar_t *p;
37 
38   if (absx > 1) {
39     /* Evaluate as a polynomial in 1/x. */
40     dir = -1;
41     p = num + M;
42     y = 1 / x;
43   }
44   else {
45     dir = 1;
46     p = num;
47     y = x;
48   }
49 
50   /* Evaluate the numerator */
51   num_ans = *p;
52   p += dir;
53   for (i = 1; i <= M; i++) {
54     num_ans = num_ans * y + *p;
55     p += dir;
56   }
57   /* Evaluate the denominator */
58   if (absx > 1) {
59     p = denom + N;
60   }
61   else {
62     p = denom;
63   }
64 
65   denom_ans = *p;
66   p += dir;
67   for (i = 1; i <= N; i++) {
68     denom_ans = denom_ans * y + *p;
69     p += dir;
70   }
71   if (absx > 1) {
72     i = N - M;
73     return ::pow(x, static_cast<accscalar_t>(i)) * num_ans / denom_ans;
74   }
75   else {
76     return num_ans / denom_ans;
77   }
78 }
79 
80 template <typename scalar_t>
lanczos_sum_expg_scaled(scalar_t x)81 __host__ __device__ scalar_t lanczos_sum_expg_scaled(scalar_t x) {
82   // lanczos approximation
83   using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
84 
85   static const accscalar_t lanczos_sum_expg_scaled_num[13] = {
86     0.006061842346248906525783753964555936883222,
87     0.5098416655656676188125178644804694509993,
88     19.51992788247617482847860966235652136208,
89     449.9445569063168119446858607650988409623,
90     6955.999602515376140356310115515198987526,
91     75999.29304014542649875303443598909137092,
92     601859.6171681098786670226533699352302507,
93     3481712.15498064590882071018964774556468,
94     14605578.08768506808414169982791359218571,
95     43338889.32467613834773723740590533316085,
96     86363131.28813859145546927288977868422342,
97     103794043.1163445451906271053616070238554,
98     56906521.91347156388090791033559122686859
99   };
100   static const accscalar_t lanczos_sum_expg_scaled_denom[13] = {
101     1.,
102     66.,
103     1925.,
104     32670.,
105     357423.,
106     2637558.,
107     13339535.,
108     45995730.,
109     105258076.,
110     150917976.,
111     120543840.,
112     39916800.,
113     0
114   };
115   return ratevl(static_cast<accscalar_t>(x), lanczos_sum_expg_scaled_num,
116       sizeof(lanczos_sum_expg_scaled_num) / sizeof(lanczos_sum_expg_scaled_num[0]) - 1,
117       lanczos_sum_expg_scaled_denom,
118       sizeof(lanczos_sum_expg_scaled_denom) / sizeof(lanczos_sum_expg_scaled_denom[0]) - 1);
119 }
120 
121 template <typename scalar_t>
_igam_helper_fac(scalar_t a,scalar_t x)122 __host__ __device__ scalar_t _igam_helper_fac(scalar_t a, scalar_t x) {
123   // compute x^a * exp(-a) / gamma(a)
124   // corrected from (15) and (16) in [igam2] by replacing exp(x - a) with
125   // exp(a - x).
126 
127   using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
128   accscalar_t ax, fac, res, num, numfac;
129   static const accscalar_t MAXLOG = std::is_same<accscalar_t,double>::value ?
130     7.09782712893383996843E2 : 88.72283905206835;
131   static const accscalar_t EXP1 = 2.718281828459045;
132   static const accscalar_t lanczos_g = 6.024680040776729583740234375;
133 
134   if (::fabs(a - x) > 0.4 * ::fabs(a)) {
135     ax = a * ::log(x) - x - ::lgamma(a);
136     if (ax < -MAXLOG) {
137       return 0.0;
138     }
139     return ::exp(ax);
140   }
141 
142   fac = a + lanczos_g - 0.5;
143   res = ::sqrt(fac / EXP1) / lanczos_sum_expg_scaled(a);
144 
145   if ((a < 200) && (x < 200)) {
146     res *= ::exp(a - x) * ::pow(x / fac, a);
147   }
148   else {
149     num = x - a - lanczos_g + 0.5;
150     numfac = num / fac;
151     res *= ::exp(a * (::log1p(numfac) - numfac) + x * (0.5 - lanczos_g) / fac);
152   }
153   return res;
154 }
155 
156 template <typename scalar_t>
_igam_helper_series(scalar_t a,scalar_t x)157 __host__ __device__ scalar_t _igam_helper_series(scalar_t a, scalar_t x) {
158   // Compute igam using DLMF 8.11.4. [igam1]
159 
160   using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
161   static const accscalar_t MACHEP = std::is_same<accscalar_t, double>::value ?
162     1.11022302462515654042E-16 : 5.9604644775390625E-8;
163   static const int MAXITER = 2000;
164 
165   int i;
166   accscalar_t ans, ax, c, r;
167 
168   ax = _igam_helper_fac(a, x);
169   if (ax == 0.0) {
170     return 0.0;
171   }
172 
173   /* power series */
174   r = a;
175   c = 1.0;
176   ans = 1.0;
177 
178   for (i = 0; i < MAXITER; i++) {
179     r += 1.0;
180     c *= x / r;
181     ans += c;
182     if (c <= MACHEP * ans) {
183       break;
184     }
185   }
186   return (ans * ax / a);
187 }
188 
189 template <typename scalar_t>
_igamc_helper_series(scalar_t a,scalar_t x)190 __host__ __device__ scalar_t _igamc_helper_series(scalar_t a, scalar_t x) {
191   // Compute igamc using DLMF 8.7.3 [igam1]. This is related to the series in
192   // _igam_helper_series but extra care is taken to avoid cancellation.
193 
194   using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
195   int n;
196   accscalar_t fac = 1;
197   accscalar_t sum = 0;
198   accscalar_t term, logx;
199   static const int MAXITER = 2000;
200   static const accscalar_t MACHEP = std::is_same<accscalar_t, double>::value ?
201     1.11022302462515654042E-16 : 5.9604644775390625E-8;
202 
203   for (n = 1; n < MAXITER; n++) {
204     fac *= -x / n;
205     term = fac / (a + n);
206     sum += term;
207     if (::fabs(term) <= MACHEP * ::fabs(sum)) {
208         break;
209     }
210   }
211 
212   logx = ::log(x);
213   term = -::expm1(a * logx - ::lgamma(1+a));
214   return term - ::exp(a * logx - ::lgamma(a)) * sum;
215 }
216 
217 template <typename scalar_t>
_igam_helper_asymptotic_series(scalar_t a,scalar_t x,bool igam)218 __host__ __device__ scalar_t _igam_helper_asymptotic_series(scalar_t a, scalar_t x, bool igam) {
219   // Compute igam/igamc using DLMF 8.12.3/8.12.4 [igam1]
220 
221   using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
222   static const accscalar_t d[25][25] =
223     {{-3.3333333333333333e-1, 8.3333333333333333e-2, -1.4814814814814815e-2, 1.1574074074074074e-3, 3.527336860670194e-4, -1.7875514403292181e-4, 3.9192631785224378e-5, -2.1854485106799922e-6, -1.85406221071516e-6, 8.296711340953086e-7, -1.7665952736826079e-7, 6.7078535434014986e-9, 1.0261809784240308e-8, -4.3820360184533532e-9, 9.1476995822367902e-10, -2.551419399494625e-11, -5.8307721325504251e-11, 2.4361948020667416e-11, -5.0276692801141756e-12, 1.1004392031956135e-13, 3.3717632624009854e-13, -1.3923887224181621e-13, 2.8534893807047443e-14, -5.1391118342425726e-16, -1.9752288294349443e-15},
224     {-1.8518518518518519e-3, -3.4722222222222222e-3, 2.6455026455026455e-3, -9.9022633744855967e-4, 2.0576131687242798e-4, -4.0187757201646091e-7, -1.8098550334489978e-5, 7.6491609160811101e-6, -1.6120900894563446e-6, 4.6471278028074343e-9, 1.378633446915721e-7, -5.752545603517705e-8, 1.1951628599778147e-8, -1.7543241719747648e-11, -1.0091543710600413e-9, 4.1627929918425826e-10, -8.5639070264929806e-11, 6.0672151016047586e-14, 7.1624989648114854e-12, -2.9331866437714371e-12, 5.9966963656836887e-13, -2.1671786527323314e-16, -4.9783399723692616e-14, 2.0291628823713425e-14, -4.13125571381061e-15},
225     {4.1335978835978836e-3, -2.6813271604938272e-3, 7.7160493827160494e-4, 2.0093878600823045e-6, -1.0736653226365161e-4, 5.2923448829120125e-5, -1.2760635188618728e-5, 3.4235787340961381e-8, 1.3721957309062933e-6, -6.298992138380055e-7, 1.4280614206064242e-7, -2.0477098421990866e-10, -1.4092529910867521e-8, 6.228974084922022e-9, -1.3670488396617113e-9, 9.4283561590146782e-13, 1.2872252400089318e-10, -5.5645956134363321e-11, 1.1975935546366981e-11, -4.1689782251838635e-15, -1.0940640427884594e-12, 4.6622399463901357e-13, -9.905105763906906e-14, 1.8931876768373515e-17, 8.8592218725911273e-15},
226     {6.4943415637860082e-4, 2.2947209362139918e-4, -4.6918949439525571e-4, 2.6772063206283885e-4, -7.5618016718839764e-5, -2.3965051138672967e-7, 1.1082654115347302e-5, -5.6749528269915966e-6, 1.4230900732435884e-6, -2.7861080291528142e-11, -1.6958404091930277e-7, 8.0994649053880824e-8, -1.9111168485973654e-8, 2.3928620439808118e-12, 2.0620131815488798e-9, -9.4604966618551322e-10, 2.1541049775774908e-10, -1.388823336813903e-14, -2.1894761681963939e-11, 9.7909989511716851e-12, -2.1782191880180962e-12, 6.2088195734079014e-17, 2.126978363279737e-13, -9.3446887915174333e-14, 2.0453671226782849e-14},
227     {-8.618882909167117e-4, 7.8403922172006663e-4, -2.9907248030319018e-4, -1.4638452578843418e-6, 6.6414982154651222e-5, -3.9683650471794347e-5, 1.1375726970678419e-5, 2.5074972262375328e-10, -1.6954149536558306e-6, 8.9075075322053097e-7, -2.2929348340008049e-7, 2.956794137544049e-11, 2.8865829742708784e-8, -1.4189739437803219e-8, 3.4463580499464897e-9, -2.3024517174528067e-13, -3.9409233028046405e-10, 1.8602338968504502e-10, -4.356323005056618e-11, 1.2786001016296231e-15, 4.6792750266579195e-12, -2.1492464706134829e-12, 4.9088156148096522e-13, -6.3385914848915603e-18, -5.0453320690800944e-14},
228     {-3.3679855336635815e-4, -6.9728137583658578e-5, 2.7727532449593921e-4, -1.9932570516188848e-4, 6.7977804779372078e-5, 1.419062920643967e-7, -1.3594048189768693e-5, 8.0184702563342015e-6, -2.2914811765080952e-6, -3.252473551298454e-10, 3.4652846491085265e-7, -1.8447187191171343e-7, 4.8240967037894181e-8, -1.7989466721743515e-14, -6.3061945000135234e-9, 3.1624176287745679e-9, -7.8409242536974293e-10, 5.1926791652540407e-15, 9.3589442423067836e-11, -4.5134262161632782e-11, 1.0799129993116827e-11, -3.661886712685252e-17, -1.210902069055155e-12, 5.6807435849905643e-13, -1.3249659916340829e-13},
229     {5.3130793646399222e-4, -5.9216643735369388e-4, 2.7087820967180448e-4, 7.9023532326603279e-7, -8.1539693675619688e-5, 5.6116827531062497e-5, -1.8329116582843376e-5, -3.0796134506033048e-9, 3.4651553688036091e-6, -2.0291327396058604e-6, 5.7887928631490037e-7, 2.338630673826657e-13, -8.8286007463304835e-8, 4.7435958880408128e-8, -1.2545415020710382e-8, 8.6496488580102925e-14, 1.6846058979264063e-9, -8.5754928235775947e-10, 2.1598224929232125e-10, -7.6132305204761539e-16, -2.6639822008536144e-11, 1.3065700536611057e-11, -3.1799163902367977e-12, 4.7109761213674315e-18, 3.6902800842763467e-13},
230     {3.4436760689237767e-4, 5.1717909082605922e-5, -3.3493161081142236e-4, 2.812695154763237e-4, -1.0976582244684731e-4, -1.2741009095484485e-7, 2.7744451511563644e-5, -1.8263488805711333e-5, 5.7876949497350524e-6, 4.9387589339362704e-10, -1.0595367014026043e-6, 6.1667143761104075e-7, -1.7562973359060462e-7, -1.2974473287015439e-12, 2.695423606288966e-8, -1.4578352908731271e-8, 3.887645959386175e-9, -3.8810022510194121e-17, -5.3279941738772867e-10, 2.7437977643314845e-10, -6.9957960920705679e-11, 2.5899863874868481e-17, 8.8566890996696381e-12, -4.403168815871311e-12, 1.0865561947091654e-12},
231     {-6.5262391859530942e-4, 8.3949872067208728e-4, -4.3829709854172101e-4, -6.969091458420552e-7, 1.6644846642067548e-4, -1.2783517679769219e-4, 4.6299532636913043e-5, 4.5579098679227077e-9, -1.0595271125805195e-5, 6.7833429048651666e-6, -2.1075476666258804e-6, -1.7213731432817145e-11, 3.7735877416110979e-7, -2.1867506700122867e-7, 6.2202288040189269e-8, 6.5977038267330006e-16, -9.5903864974256858e-9, 5.2132144922808078e-9, -1.3991589583935709e-9, 5.382058999060575e-16, 1.9484714275467745e-10, -1.0127287556389682e-10, 2.6077347197254926e-11, -5.0904186999932993e-18, -3.3721464474854592e-12},
232     {-5.9676129019274625e-4, -7.2048954160200106e-5, 6.7823088376673284e-4, -6.4014752602627585e-4, 2.7750107634328704e-4, 1.8197008380465151e-7, -8.4795071170685032e-5, 6.105192082501531e-5, -2.1073920183404862e-5, -8.8585890141255994e-10, 4.5284535953805377e-6, -2.8427815022504408e-6, 8.7082341778646412e-7, 3.6886101871706965e-12, -1.5344695190702061e-7, 8.862466778790695e-8, -2.5184812301826817e-8, -1.0225912098215092e-14, 3.8969470758154777e-9, -2.1267304792235635e-9, 5.7370135528051385e-10, -1.887749850169741e-19, -8.0931538694657866e-11, 4.2382723283449199e-11, -1.1002224534207726e-11},
233     {1.3324454494800656e-3, -1.9144384985654775e-3, 1.1089369134596637e-3, 9.932404122642299e-7, -5.0874501293093199e-4, 4.2735056665392884e-4, -1.6858853767910799e-4, -8.1301893922784998e-9, 4.5284402370562147e-5, -3.127053674781734e-5, 1.044986828530338e-5, 4.8435226265680926e-11, -2.1482565873456258e-6, 1.329369701097492e-6, -4.0295693092101029e-7, -1.7567877666323291e-13, 7.0145043163668257e-8, -4.040787734999483e-8, 1.1474026743371963e-8, 3.9642746853563325e-18, -1.7804938269892714e-9, 9.7480262548731646e-10, -2.6405338676507616e-10, 5.794875163403742e-18, 3.7647749553543836e-11},
234     {1.579727660730835e-3, 1.6251626278391582e-4, -2.0633421035543276e-3, 2.1389686185689098e-3, -1.0108559391263003e-3, -3.9912705529919201e-7, 3.6235025084764691e-4, -2.8143901463712154e-4, 1.0449513336495887e-4, 2.1211418491830297e-9, -2.5779417251947842e-5, 1.7281818956040463e-5, -5.6413773872904282e-6, -1.1024320105776174e-11, 1.1223224418895175e-6, -6.8693396379526735e-7, 2.0653236975414887e-7, 4.6714772409838506e-14, -3.5609886164949055e-8, 2.0470855345905963e-8, -5.8091738633283358e-9, -1.332821287582869e-16, 9.0354604391335133e-10, -4.9598782517330834e-10, 1.3481607129399749e-10},
235     {-4.0725121195140166e-3, 6.4033628338080698e-3, -4.0410161081676618e-3, -2.183732802866233e-6, 2.1740441801254639e-3, -1.9700440518418892e-3, 8.3595469747962458e-4, 1.9445447567109655e-8, -2.5779387120421696e-4, 1.9009987368139304e-4, -6.7696499937438965e-5, -1.4440629666426572e-10, 1.5712512518742269e-5, -1.0304008744776893e-5, 3.304517767401387e-6, 7.9829760242325709e-13, -6.4097794149313004e-7, 3.8894624761300056e-7, -1.1618347644948869e-7, -2.816808630596451e-15, 1.9878012911297093e-8, -1.1407719956357511e-8, 3.2355857064185555e-9, 4.1759468293455945e-20, -5.0423112718105824e-10},
236     {-5.9475779383993003e-3, -5.4016476789260452e-4, 8.7910413550767898e-3, -9.8576315587856125e-3, 5.0134695031021538e-3, 1.2807521786221875e-6, -2.0626019342754683e-3, 1.7109128573523058e-3, -6.7695312714133799e-4, -6.9011545676562133e-9, 1.8855128143995902e-4, -1.3395215663491969e-4, 4.6263183033528039e-5, 4.0034230613321351e-11, -1.0255652921494033e-5, 6.612086372797651e-6, -2.0913022027253008e-6, -2.0951775649603837e-13, 3.9756029041993247e-7, -2.3956211978815887e-7, 7.1182883382145864e-8, 8.925574873053455e-16, -1.2101547235064676e-8, 6.9350618248334386e-9, -1.9661464453856102e-9},
237     {1.7402027787522711e-2, -2.9527880945699121e-2, 2.0045875571402799e-2, 7.0289515966903407e-6, -1.2375421071343148e-2, 1.1976293444235254e-2, -5.4156038466518525e-3, -6.3290893396418616e-8, 1.8855118129005065e-3, -1.473473274825001e-3, 5.5515810097708387e-4, 5.2406834412550662e-10, -1.4357913535784836e-4, 9.9181293224943297e-5, -3.3460834749478311e-5, -3.5755837291098993e-12, 7.1560851960630076e-6, -4.5516802628155526e-6, 1.4236576649271475e-6, 1.8803149082089664e-14, -2.6623403898929211e-7, 1.5950642189595716e-7, -4.7187514673841102e-8, -6.5107872958755177e-17, 7.9795091026746235e-9},
238     {3.0249124160905891e-2, 2.4817436002649977e-3, -4.9939134373457022e-2, 5.9915643009307869e-2, -3.2483207601623391e-2, -5.7212968652103441e-6, 1.5085251778569354e-2, -1.3261324005088445e-2, 5.5515262632426148e-3, 3.0263182257030016e-8, -1.7229548406756723e-3, 1.2893570099929637e-3, -4.6845138348319876e-4, -1.830259937893045e-10, 1.1449739014822654e-4, -7.7378565221244477e-5, 2.5625836246985201e-5, 1.0766165333192814e-12, -5.3246809282422621e-6, 3.349634863064464e-6, -1.0381253128684018e-6, -5.608909920621128e-15, 1.9150821930676591e-7, -1.1418365800203486e-7, 3.3654425209171788e-8},
239     {-9.9051020880159045e-2, 1.7954011706123486e-1, -1.2989606383463778e-1, -3.1478872752284357e-5, 9.0510635276848131e-2, -9.2828824411184397e-2, 4.4412112839877808e-2, 2.7779236316835888e-7, -1.7229543805449697e-2, 1.4182925050891573e-2, -5.6214161633747336e-3, -2.39598509186381e-9, 1.6029634366079908e-3, -1.1606784674435773e-3, 4.1001337768153873e-4, 1.8365800754090661e-11, -9.5844256563655903e-5, 6.3643062337764708e-5, -2.076250624489065e-5, -1.1806020912804483e-13, 4.2131808239120649e-6, -2.6262241337012467e-6, 8.0770620494930662e-7, 6.0125912123632725e-16, -1.4729737374018841e-7},
240     {-1.9994542198219728e-1, -1.5056113040026424e-2, 3.6470239469348489e-1, -4.6435192311733545e-1, 2.6640934719197893e-1, 3.4038266027147191e-5, -1.3784338709329624e-1, 1.276467178337056e-1, -5.6213828755200985e-2, -1.753150885483011e-7, 1.9235592956768113e-2, -1.5088821281095315e-2, 5.7401854451350123e-3, 1.0622382710310225e-9, -1.5335082692563998e-3, 1.0819320643228214e-3, -3.7372510193945659e-4, -6.6170909729031985e-12, 8.4263617380909628e-5, -5.5150706827483479e-5, 1.7769536448348069e-5, 3.8827923210205533e-14, -3.53513697488768e-6, 2.1865832130045269e-6, -6.6812849447625594e-7},
241     {7.2438608504029431e-1, -1.3918010932653375, 1.0654143352413968, 1.876173868950258e-4, -8.2705501176152696e-1, 8.9352433347828414e-1, -4.4971003995291339e-1, -1.6107401567546652e-6, 1.9235590165271091e-1, -1.6597702160042609e-1, 6.8882222681814333e-2, 1.3910091724608687e-8, -2.146911561508663e-2, 1.6228980898865892e-2, -5.9796016172584256e-3, -1.1287469112826745e-10, 1.5167451119784857e-3, -1.0478634293553899e-3, 3.5539072889126421e-4, 8.1704322111801517e-13, -7.7773013442452395e-5, 5.0291413897007722e-5, -1.6035083867000518e-5, 1.2469354315487605e-14, 3.1369106244517615e-6},
242     {1.6668949727276811, 1.165462765994632e-1, -3.3288393225018906, 4.4692325482864037, -2.6977693045875807, -2.600667859891061e-4, 1.5389017615694539, -1.4937962361134612, 6.8881964633233148e-1, 1.3077482004552385e-6, -2.5762963325596288e-1, 2.1097676102125449e-1, -8.3714408359219882e-2, -7.7920428881354753e-9, 2.4267923064833599e-2, -1.7813678334552311e-2, 6.3970330388900056e-3, 4.9430807090480523e-11, -1.5554602758465635e-3, 1.0561196919903214e-3, -3.5277184460472902e-4, 9.3002334645022459e-14, 7.5285855026557172e-5, -4.8186515569156351e-5, 1.5227271505597605e-5},
243     {-6.6188298861372935, 1.3397985455142589e+1, -1.0789350606845146e+1, -1.4352254537875018e-3, 9.2333694596189809, -1.0456552819547769e+1, 5.5105526029033471, 1.2024439690716742e-5, -2.5762961164755816, 2.3207442745387179, -1.0045728797216284, -1.0207833290021914e-7, 3.3975092171169466e-1, -2.6720517450757468e-1, 1.0235252851562706e-1, 8.4329730484871625e-10, -2.7998284958442595e-2, 2.0066274144976813e-2, -7.0554368915086242e-3, 1.9402238183698188e-12, 1.6562888105449611e-3, -1.1082898580743683e-3, 3.654545161310169e-4, -5.1290032026971794e-11, -7.6340103696869031e-5},
244     {-1.7112706061976095e+1, -1.1208044642899116, 3.7131966511885444e+1, -5.2298271025348962e+1, 3.3058589696624618e+1, 2.4791298976200222e-3, -2.061089403411526e+1, 2.088672775145582e+1, -1.0045703956517752e+1, -1.2238783449063012e-5, 4.0770134274221141, -3.473667358470195, 1.4329352617312006, 7.1359914411879712e-8, -4.4797257159115612e-1, 3.4112666080644461e-1, -1.2699786326594923e-1, -2.8953677269081528e-10, 3.3125776278259863e-2, -2.3274087021036101e-2, 8.0399993503648882e-3, -1.177805216235265e-9, -1.8321624891071668e-3, 1.2108282933588665e-3, -3.9479941246822517e-4},
245     {7.389033153567425e+1, -1.5680141270402273e+2, 1.322177542759164e+2, 1.3692876877324546e-2, -1.2366496885920151e+2, 1.4620689391062729e+2, -8.0365587724865346e+1, -1.1259851148881298e-4, 4.0770132196179938e+1, -3.8210340013273034e+1, 1.719522294277362e+1, 9.3519707955168356e-7, -6.2716159907747034, 5.1168999071852637, -2.0319658112299095, -4.9507215582761543e-9, 5.9626397294332597e-1, -4.4220765337238094e-1, 1.6079998700166273e-1, -2.4733786203223402e-8, -4.0307574759979762e-2, 2.7849050747097869e-2, -9.4751858992054221e-3, 6.419922235909132e-6, 2.1250180774699461e-3},
246     {2.1216837098382522e+2, 1.3107863022633868e+1, -4.9698285932871748e+2, 7.3121595266969204e+2, -4.8213821720890847e+2, -2.8817248692894889e-2, 3.2616720302947102e+2, -3.4389340280087117e+2, 1.7195193870816232e+2, 1.4038077378096158e-4, -7.52594195897599e+1, 6.651969984520934e+1, -2.8447519748152462e+1, -7.613702615875391e-7, 9.5402237105304373, -7.5175301113311376, 2.8943997568871961, -4.6612194999538201e-7, -8.0615149598794088e-1, 5.8483006570631029e-1, -2.0845408972964956e-1, 1.4765818959305817e-4, 5.1000433863753019e-2, -3.3066252141883665e-2, 1.5109265210467774e-2},
247     {-9.8959643098322368e+2, 2.1925555360905233e+3, -1.9283586782723356e+3, -1.5925738122215253e-1, 1.9569985945919857e+3, -2.4072514765081556e+3, 1.3756149959336496e+3, 1.2920735237496668e-3, -7.525941715948055e+2, 7.3171668742208716e+2, -3.4137023466220065e+2, -9.9857390260608043e-6, 1.3356313181291573e+2, -1.1276295161252794e+2, 4.6310396098204458e+1, -7.9237387133614756e-6, -1.4510726927018646e+1, 1.1111771248100563e+1, -4.1690817945270892, 3.1008219800117808e-3, 1.1220095449981468, -7.6052379926149916e-1, 3.6262236505085254e-1, 2.216867741940747e-1, 4.8683443692930507e-1}};
248 
249   int k, n, sgn;
250   int maxpow = 0;
251   static const accscalar_t MACHEP = std::is_same<accscalar_t, double>::value ?
252     1.11022302462515654042E-16 : 5.9604644775390625E-8;
253   accscalar_t lambda = x / a;
254   accscalar_t sigma = (x - a) / a;
255   accscalar_t eta, res, ck, ckterm, term, absterm;
256   accscalar_t absoldterm = INFINITY;
257   accscalar_t etapow[25] = {1};
258   accscalar_t sum = 0;
259   accscalar_t afac = 1;
260 
261   if (igam) {
262     sgn = -1;
263   }
264   else {
265     sgn = 1;
266   }
267 
268   if (lambda > 1) {
269     eta = ::sqrt(-2 * (::log1p(sigma) - sigma));
270   }
271   else if (lambda < 1) {
272     eta = -::sqrt(-2 * (::log1p(sigma) - sigma));
273   }
274   else {
275     eta = 0;
276   }
277   res = 0.5 * ::erfc(sgn * eta * ::sqrt(a / 2));
278 
279   for (k = 0; k < 25; k++) {
280     ck = d[k][0];
281     for (n = 1; n < 25; n++) {
282       if (n > maxpow) {
283         etapow[n] = eta * etapow[n-1];
284         maxpow += 1;
285       }
286       ckterm = d[k][n]*etapow[n];
287       ck += ckterm;
288       if (std::fabs(ckterm) < MACHEP * std::fabs(ck)) {
289         break;
290       }
291     }
292     term = ck * afac;
293     absterm = std::fabs(term);
294     if (absterm > absoldterm) {
295       break;
296     }
297     sum += term;
298     if (absterm < MACHEP * std::fabs(sum)) {
299       break;
300     }
301     absoldterm = absterm;
302     afac /= a;
303   }
304   res += sgn * ::exp(-0.5 * a * eta * eta) * sum / ::sqrt(2 * 3.1415926535 * a);
305 
306   return res;
307 }
308 
309 template <typename scalar_t>
_igamc_helper_continued_fraction(scalar_t a,scalar_t x)310 __host__ __device__ scalar_t _igamc_helper_continued_fraction(scalar_t a, scalar_t x) {
311   // Compute igamc using DLMF 8.9.2. [igam1]
312 
313   using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
314   int i;
315   accscalar_t ans, ax, c, yc, r, t, y, z;
316   accscalar_t pk, pkm1, pkm2, qk, qkm1, qkm2;
317   static const int MAXITER = 2000;
318   static const accscalar_t MACHEP = std::is_same<accscalar_t, double>::value ?
319     1.11022302462515654042E-16 : 5.9604644775390625E-8;
320   static const accscalar_t BIG = std::is_same<accscalar_t,double>::value ?
321     4.503599627370496e15 : 16777216.;
322   static const accscalar_t BIGINV = std::is_same<accscalar_t,double>::value ?
323     2.22044604925031308085e-16 : 5.9604644775390625E-8;
324 
325   ax = _igam_helper_fac(a, x);
326   if (ax == 0.0) {
327     return 0.0;
328   }
329 
330   /* continued fraction */
331   y = 1.0 - a;
332   z = x + y + 1.0;
333   c = 0.0;
334   pkm2 = 1.0;
335   qkm2 = x;
336   pkm1 = x + 1.0;
337   qkm1 = z * x;
338   ans = pkm1 / qkm1;
339 
340   for (i = 0; i < MAXITER; i++) {
341     c += 1.0;
342     y += 1.0;
343     z += 2.0;
344     yc = y * c;
345     pk = pkm1 * z - pkm2 * yc;
346     qk = qkm1 * z - qkm2 * yc;
347     if (qk != 0) {
348       r = pk / qk;
349       t = ::fabs((ans - r) / r);
350       ans = r;
351     }
352     else {
353       t = 1.0;
354     }
355     pkm2 = pkm1;
356     pkm1 = pk;
357     qkm2 = qkm1;
358     qkm1 = qk;
359     if (::fabs(pk) > BIG) {
360       pkm2 *= BIGINV;
361       pkm1 *= BIGINV;
362       qkm2 *= BIGINV;
363       qkm1 *= BIGINV;
364     }
365     if (t <= MACHEP) {
366       break;
367     }
368   }
369   return ans * ax;
370 }
371 
372 template <typename scalar_t>
calc_igammac(scalar_t a,scalar_t x)373 __noinline__ __host__ __device__ scalar_t calc_igammac(scalar_t a, scalar_t x) {
374   /* the calculation of the regularized upper incomplete gamma function
375    * is done differently based on the values of a and x:
376    * - if x and/or a is at the boundary of defined region, then assign the
377    *   result at the boundary
378    * - if a is large and a ~ x, then using Uniform Asymptotic Expansions for
379    *   Large Parameter (see DLMF 8.12.4 [igam1])
380    * - if x > 1.1 and x < a, using the substraction from the regularized lower
381    *   incomplete gamma
382    * - otherwise, calculate the series from [igam2] eq (5)
383    */
384 
385   using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
386   accscalar_t absxma_a;
387 
388   static const accscalar_t SMALL = 20.0;
389   static const accscalar_t LARGE = 200.0;
390   static const accscalar_t SMALLRATIO = 0.3;
391   static const accscalar_t LARGERATIO = 4.5;
392 
393   if ((x < 0) || (a < 0)) {
394     // out of defined-region of the function
395     return std::numeric_limits<accscalar_t>::quiet_NaN();
396   }
397   else if (a == 0) {
398     if (x > 0) {
399       return 0.0;
400     }
401     else {
402       return std::numeric_limits<accscalar_t>::quiet_NaN();
403     }
404   }
405   else if (x == 0) {
406     return 1.0;
407   }
408   else if (::isinf(static_cast<accscalar_t>(a))) {
409     if (::isinf(static_cast<accscalar_t>(x))) {
410       return std::numeric_limits<accscalar_t>::quiet_NaN();
411     }
412     return 1.0;
413   }
414   else if (::isinf(static_cast<accscalar_t>(x))) {
415     return 0.0;
416   }
417 
418   absxma_a = ::fabs(x - a) / a;
419   if ((a > SMALL) && (a < LARGE) && (absxma_a < SMALLRATIO)) {
420      return _igam_helper_asymptotic_series(a, x, 0);
421   }
422   else if ((a > LARGE) && (absxma_a < LARGERATIO / ::sqrt(a))) {
423      return _igam_helper_asymptotic_series(a, x, 0);
424   }
425 
426   if (x > 1.1) {
427     if (x < a) {
428       return 1.0 - _igam_helper_series(a, x);
429     }
430     else {
431       return _igamc_helper_continued_fraction(a, x);
432     }
433   }
434   else if (x <= 0.5) {
435     if (-0.4 / ::log(x) < a) {
436       return 1.0 - _igam_helper_series(a, x);
437     }
438     else {
439       return _igamc_helper_series(a, x);
440     }
441   }
442   else {
443     if (x * 1.1 < a) {
444       return 1.0 - _igam_helper_series(a, x);
445     }
446     else {
447       return _igamc_helper_series(a, x);
448     }
449   }
450 }
451 
452 // NOTE: this __noinline__ is important -- otherwise, observed compile times significantly
453 // increase.  The same kernel seems to get recompiled multiple times via gpu_kernel_with_scalars,
454 // multiple dtypes, etc.
455 template <typename scalar_t>
calc_igamma(scalar_t a,scalar_t x)456 __noinline__ __host__ __device__ scalar_t calc_igamma(scalar_t a, scalar_t x) {
457   /* the calculation of the regularized lower incomplete gamma function
458    * is done differently based on the values of a and x:
459    * - if x and/or a is at the boundary of defined region, then assign the
460    *   result at the boundary
461    * - if a is large and a ~ x, then using Uniform Asymptotic Expansions for
462    *   Large Parameter (see DLMF 8.12.3 [igam1])
463    * - if x > 1 and x > a, using the substraction from the regularized upper
464    *   incomplete gamma
465    * - otherwise, calculate the series from [igam2] eq (4)
466    */
467 
468   using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
469   accscalar_t absxma_a;
470   static const accscalar_t SMALL = 20.0;
471   static const accscalar_t LARGE = 200.0;
472   static const accscalar_t SMALLRATIO = 0.3;
473   static const accscalar_t LARGERATIO = 4.5;
474 
475   // boundary values following SciPy
476   if ((x < 0) || (a < 0)) {
477     // out of defined-region of the function
478     return std::numeric_limits<accscalar_t>::quiet_NaN();
479   }
480   else if (a == 0) {
481     if (x > 0) {
482       return 1.0;
483     }
484     else {
485       return std::numeric_limits<accscalar_t>::quiet_NaN();
486     }
487   }
488   else if (x == 0) {
489     return 0.0; // zero integration limit
490   }
491   else if (::isinf(static_cast<accscalar_t>(a))) {
492     if (::isinf(static_cast<accscalar_t>(x))) {
493       return std::numeric_limits<accscalar_t>::quiet_NaN();
494     }
495     return 0.0;
496   }
497   else if (::isinf(static_cast<accscalar_t>(x))) {
498     return 1.0;
499   }
500 
501   /* Asymptotic regime where a ~ x. */
502   absxma_a = ::fabs(x - a) / a;
503   if ((a > SMALL) && (a < LARGE) && (absxma_a < SMALLRATIO)) {
504     return _igam_helper_asymptotic_series(a, x, 1);
505   }
506   else if ((a > LARGE) && (absxma_a < LARGERATIO / ::sqrt(a))) {
507     return _igam_helper_asymptotic_series(a, x, 1);
508   }
509 
510   if ((x > 1.0) && (x > a)) {
511     return 1.0 - calc_igammac(a, x);
512   }
513 
514   return _igam_helper_series(a, x);
515 }
516 
517 template<typename scalar_t>
518 struct CalcIgamma{
CalcIgamma__anon80ada4390111::CalcIgamma519   CalcIgamma(bool calc_igammac): calc_igammac_(calc_igammac){}
520   bool calc_igammac_;
operator ()__anon80ada4390111::CalcIgamma521   __device__ scalar_t operator() (scalar_t a, scalar_t b) const {
522     if (calc_igammac_) {
523       return calc_igammac(a,b);
524     } else {
525       return calc_igamma(a,b);
526     }
527   }
528 };
529 
530 }
531 
532 // end of regularized lower & upper incomplete gamma
533 
534 namespace at::native {
535 
igamma_kernel_cuda(TensorIteratorBase & iter)536 void igamma_kernel_cuda(TensorIteratorBase& iter) {
537   AT_DISPATCH_FLOATING_TYPES(iter.common_dtype(), "igamma_cuda", [&]() {
538     gpu_kernel(iter, CalcIgamma<scalar_t>(false));
539   });
540 }
541 
igammac_kernel_cuda(TensorIteratorBase & iter)542 void igammac_kernel_cuda(TensorIteratorBase& iter) {
543   AT_DISPATCH_FLOATING_TYPES(iter.common_dtype(), "igammac_cuda", [&]() {
544     gpu_kernel(iter, CalcIgamma<scalar_t>(true));
545   });
546 }
547 
548 REGISTER_DISPATCH(igamma_stub, &igamma_kernel_cuda);
549 REGISTER_DISPATCH(igammac_stub, &igammac_kernel_cuda);
550 
551 // DO NOT ADD ANY NEW KERNELS HERE
552 // CUDA compilation times grow quickly.  It's perfectly acceptable to have a file per kernel.
553 
554 } // namespace at::native
555