1 #define TORCH_ASSERT_ONLY_METHOD_OPERATORS
2 #include <ATen/core/Tensor.h>
3 #include <ATen/ceil_div.h>
4 #include <ATen/Dispatch.h>
5 #include <ATen/cuda/CUDAContext.h>
6 #include <ATen/native/BucketizationUtils.h>
7 #include <ATen/native/Resize.h>
8
9 #ifndef AT_PER_OPERATOR_HEADERS
10 #include <ATen/Functions.h>
11 #include <ATen/NativeFunctions.h>
12 #else
13 #include <ATen/ops/bucketize_native.h>
14 #include <ATen/ops/empty.h>
15 #include <ATen/ops/searchsorted_native.h>
16 #endif
17
18 namespace at::native {
19
20 // Implement a numpy like searchsorted and a TF like bucketize function running on cuda
21 // See details in ATen/native/Bucketization.cpp
22
23 namespace {
24
25 template<typename input_t>
lower_bound(const input_t * data_ss,int64_t start,int64_t end,const input_t val,const int64_t * data_sort)26 __device__ int64_t lower_bound(const input_t *data_ss, int64_t start, int64_t end, const input_t val, const int64_t *data_sort) {
27 // sorter gives relative ordering for ND tensors, so we need to save and add the non-updated start as an offset
28 // i.e. the second row of a 3x3 tensors starts at element 3 but sorter's second row only contains 0, 1, or 2
29 const int64_t orig_start = start;
30 while (start < end) {
31 const int64_t mid = start + ((end - start) >> 1);
32 const input_t mid_val = data_sort ? data_ss[orig_start + data_sort[mid]] : data_ss[mid];
33 if (!(mid_val >= val)) {
34 start = mid + 1;
35 }
36 else {
37 end = mid;
38 }
39 }
40 return start;
41 }
42
43 template<typename input_t>
upper_bound(const input_t * data_ss,int64_t start,int64_t end,const input_t val,const int64_t * data_sort)44 __device__ int64_t upper_bound(const input_t *data_ss, int64_t start, int64_t end, const input_t val, const int64_t *data_sort) {
45 // sorter gives relative ordering for ND tensors, so we need to save and add the non-updated start as an offset
46 // i.e. the second row of a 3x3 tensors starts at element 3 but sorter's second row only contains 0, 1, or 2
47 const int64_t orig_start = start;
48 while (start < end) {
49 const int64_t mid = start + ((end - start) >> 1);
50 const input_t mid_val = data_sort ? data_ss[orig_start + data_sort[mid]] : data_ss[mid];
51 if (!(mid_val > val)) {
52 start = mid + 1;
53 }
54 else {
55 end = mid;
56 }
57 }
58 return start;
59 }
60
61 template<typename input_t, typename output_t>
searchsorted_cuda_kernel(output_t * data_out,const input_t * data_in,const input_t * data_bd,const int64_t * data_sort,int64_t idim_in,int64_t idim_bd,int64_t numel_in,bool right,bool is_1d_boundaries)62 __global__ void searchsorted_cuda_kernel(
63 output_t *data_out,
64 const input_t *data_in,
65 const input_t *data_bd,
66 const int64_t *data_sort,
67 int64_t idim_in,
68 int64_t idim_bd,
69 int64_t numel_in,
70 bool right,
71 bool is_1d_boundaries) {
72
73 for (int64_t tid = blockIdx.x * blockDim.x + threadIdx.x; tid < numel_in; tid += blockDim.x * gridDim.x) {
74 // If boundaries tensor is 1d, we always search the entire boundary tensor
75 int64_t start_bd = is_1d_boundaries ? 0 : tid / idim_in * idim_bd;
76 int64_t end_bd = start_bd + idim_bd;
77
78 int64_t pos = !right ?
79 lower_bound<input_t>(data_bd, start_bd, end_bd, data_in[tid], data_sort) - start_bd :
80 upper_bound<input_t>(data_bd, start_bd, end_bd, data_in[tid], data_sort) - start_bd;
81
82 // type conversion might happen here
83 data_out[tid] = pos;
84 }
85 }
86
87 template<typename input_t, typename output_t>
searchsorted_cuda_contiguous(Tensor & result,const Tensor & input,const Tensor & boundaries,const bool & right,const Tensor & sorter)88 void searchsorted_cuda_contiguous(Tensor& result, const Tensor& input, const Tensor& boundaries, const bool& right, const Tensor& sorter) {
89 int64_t numel_in = input.numel();
90 bool is_scalar_input = input.dim() == 0 && numel_in == 1;
91 // inner most dim size of input and boundaries
92 int64_t idim_in = is_scalar_input ? 1 : input.sizes().back();
93 int64_t idim_bd = boundaries.sizes().back();
94
95 const input_t *data_in = input.const_data_ptr<input_t>();
96 const input_t *data_bd = boundaries.const_data_ptr<input_t>();
97 const int64_t *data_sort = sorter.defined() ? sorter.const_data_ptr<int64_t>() : nullptr;
98 output_t *data_out = result.mutable_data_ptr<output_t>();
99
100 int64_t maxThread = at::cuda::getCurrentDeviceProperties()->maxThreadsPerBlock;
101 int64_t maxGrid = 1024;
102 dim3 block = dim3(std::min(maxThread, numel_in));
103 dim3 grid = dim3(std::min(maxGrid, ceil_div<int64_t>(numel_in, block.x)));
104 at::cuda::CUDAStream stream = at::cuda::getCurrentCUDAStream();
105
106 searchsorted_cuda_kernel<<<grid, block, 0, stream>>>(
107 data_out, data_in, data_bd, data_sort, idim_in, idim_bd, numel_in, right, boundaries.dim() == 1);
108 C10_CUDA_KERNEL_LAUNCH_CHECK();
109 }
110
dispatch(Tensor & result,const Tensor & input,const Tensor & boundaries,bool out_int32,bool right,const Tensor & sorter)111 void dispatch(
112 Tensor& result,
113 const Tensor& input,
114 const Tensor& boundaries,
115 bool out_int32,
116 bool right,
117 const Tensor& sorter) {
118 if (!out_int32) {
119 AT_DISPATCH_ALL_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, input.scalar_type(), "searchsorted_out_cuda", [&] {
120 searchsorted_cuda_contiguous<scalar_t, int64_t>(result, input, boundaries, right, sorter);
121 });
122 }
123 else {
124 AT_DISPATCH_ALL_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, input.scalar_type(), "searchsorted_out_cuda", [&] {
125 searchsorted_cuda_contiguous<scalar_t, int>(result, input, boundaries, right, sorter);
126 });
127 }
128 }
129
130 }
131
searchsorted_out_cuda(const Tensor & sorted_sequence,const Tensor & self,bool out_int32,bool right,const std::optional<c10::string_view> side_opt,const std::optional<Tensor> & sorter_opt,Tensor & result)132 Tensor& searchsorted_out_cuda(
133 const Tensor& sorted_sequence,
134 const Tensor& self,
135 bool out_int32,
136 bool right,
137 const std::optional<c10::string_view> side_opt,
138 const std::optional<Tensor>& sorter_opt,
139 Tensor& result) {
140 // See [Note: hacky wrapper removal for optional tensor]
141 c10::MaybeOwned<Tensor> sorter_maybe_owned = at::borrow_from_optional_tensor(sorter_opt);
142 const Tensor& sorter = *sorter_maybe_owned;
143 searchsorted_pre_check(sorted_sequence, self, result, out_int32, right, side_opt, sorter);
144 resize_output(result, self.sizes());
145
146 // we have two inputs to set right, pre_check checks that they aren't set to opposites
147 bool is_right = (side_opt && *side_opt == "right") || right;
148 if (self.numel() == 0) {
149 return result;
150 }
151
152 // for non-contiguous result tensors, we write the output to a contiguous copy so we can later copy back, maintaining the original result tensor
153 Tensor out = result;
154 if (!result.is_contiguous()) {
155 out = result.contiguous();
156 }
157 if (sorted_sequence.is_contiguous() && self.is_contiguous() && sorted_sequence.dtype() == self.dtype() && sorter.is_contiguous()) {
158 dispatch(out, self, sorted_sequence, out_int32, is_right, sorter);
159 }
160 else {
161 Tensor trimmed_input;
162 Tensor trimmed_boundaries;
163 Tensor trimmed_sorter;
164 searchsorted_maybe_trim_input_tensors(trimmed_input, trimmed_boundaries, trimmed_sorter, self, sorted_sequence, sorter);
165 const Tensor& final_input = trimmed_input.defined() ? trimmed_input : self;
166 const Tensor& final_boundaries = trimmed_boundaries.defined() ? trimmed_boundaries : sorted_sequence;
167 const Tensor& final_sorter = trimmed_sorter.defined() ? trimmed_sorter : sorter;
168 dispatch(out, final_input, final_boundaries, out_int32, is_right, final_sorter);
169 }
170
171 // if result is non-contiguous, we wrote the answer to a copied version, so we copy back to the original result tensor
172 if (!result.is_contiguous()) {
173 result.copy_(out);
174 }
175 return result;
176 }
177
searchsorted_out_cuda(const Tensor & sorted_sequence,const Scalar & self,bool out_int32,bool right,const std::optional<c10::string_view> side_opt,const std::optional<Tensor> & sorter_opt,Tensor & result)178 Tensor& searchsorted_out_cuda(
179 const Tensor& sorted_sequence,
180 const Scalar& self,
181 bool out_int32,
182 bool right,
183 const std::optional<c10::string_view> side_opt,
184 const std::optional<Tensor>& sorter_opt,
185 Tensor& result) {
186 const Tensor& scalar_tensor = searchsorted_scalar_tensor(self, sorted_sequence.device());
187 return searchsorted_out_cuda(sorted_sequence, scalar_tensor, out_int32, right, side_opt, sorter_opt, result);
188 }
189
searchsorted_cuda(const Tensor & sorted_sequence,const Tensor & self,bool out_int32,bool right,const std::optional<c10::string_view> side_opt,const std::optional<Tensor> & sorter)190 Tensor searchsorted_cuda(
191 const Tensor& sorted_sequence,
192 const Tensor& self,
193 bool out_int32,
194 bool right,
195 const std::optional<c10::string_view> side_opt,
196 const std::optional<Tensor>& sorter) {
197 ScalarType scalar_type = out_int32 ? ScalarType::Int : ScalarType::Long;
198 c10::TensorOptions options = TensorOptions().device(self.options().device()).dtype(scalar_type);
199 Tensor result = at::empty({0}, options, MemoryFormat::Contiguous);
200 at::native::searchsorted_out_cuda(sorted_sequence, self, out_int32, right, side_opt, sorter, result);
201 return result;
202 }
203
searchsorted_cuda(const Tensor & sorted_sequence,const Scalar & self,bool out_int32,bool right,const std::optional<c10::string_view> side_opt,const std::optional<Tensor> & sorter)204 Tensor searchsorted_cuda(
205 const Tensor& sorted_sequence,
206 const Scalar& self,
207 bool out_int32,
208 bool right,
209 const std::optional<c10::string_view> side_opt,
210 const std::optional<Tensor>& sorter) {
211 const Tensor& scalar_tensor = searchsorted_scalar_tensor(self, sorted_sequence.device());
212 return searchsorted_cuda(sorted_sequence, scalar_tensor, out_int32, right, side_opt, sorter);
213 }
214
bucketize_out_cuda(const Tensor & self,const Tensor & boundaries,bool out_int32,bool right,Tensor & result)215 Tensor& bucketize_out_cuda(const Tensor& self, const Tensor& boundaries, bool out_int32, bool right, Tensor& result) {
216 TORCH_CHECK(boundaries.dim() == 1, "boundaries tensor must be 1 dimension, but got dim(", boundaries.dim(), ")");
217 at::native::searchsorted_out_cuda(boundaries, self, out_int32, right, std::nullopt, std::nullopt, result);
218 return result;
219 }
220
bucketize_cuda(const Tensor & self,const Tensor & boundaries,bool out_int32,bool right)221 Tensor bucketize_cuda(const Tensor& self, const Tensor& boundaries, bool out_int32, bool right) {
222 ScalarType scalar_type = out_int32 ? ScalarType::Int : ScalarType::Long;
223 c10::TensorOptions options = TensorOptions().device(self.options().device()).dtype(scalar_type);
224 Tensor result = at::empty({0}, options, MemoryFormat::Contiguous);
225 at::native::bucketize_out_cuda(self, boundaries, out_int32, right, result);
226 return result;
227 }
228
bucketize_cuda(const Scalar & self,const Tensor & boundaries,bool out_int32,bool right)229 Tensor bucketize_cuda(const Scalar& self, const Tensor& boundaries, bool out_int32, bool right) {
230 return bucketize_cuda(searchsorted_scalar_tensor(self, boundaries.device()), boundaries, out_int32, right);
231 }
232
233 } // namespace at::native
234