1 #define TORCH_ASSERT_ONLY_METHOD_OPERATORS
2 #include <ATen/core/Tensor.h>
3 #include <ATen/Dispatch.h>
4
5 #include <ATen/native/Histogram.h>
6 #include <ATen/native/Resize.h>
7
8 #ifndef AT_PER_OPERATOR_HEADERS
9 #include <ATen/Functions.h>
10 #include <ATen/NativeFunctions.h>
11 #else
12 #include <ATen/ops/_histogramdd_bin_edges.h>
13 #include <ATen/ops/_histogramdd_bin_edges_native.h>
14 #include <ATen/ops/_histogramdd_from_bin_cts.h>
15 #include <ATen/ops/_histogramdd_from_bin_cts_native.h>
16 #include <ATen/ops/_histogramdd_from_bin_tensors.h>
17 #include <ATen/ops/_histogramdd_from_bin_tensors_native.h>
18 #include <ATen/ops/aminmax.h>
19 #include <ATen/ops/empty.h>
20 #include <ATen/ops/histc_native.h>
21 #include <ATen/ops/histogram_native.h>
22 #include <ATen/ops/histogramdd_native.h>
23 #include <ATen/ops/linspace.h>
24 #endif
25
26 #include <numeric>
27 #include <tuple>
28 #include <vector>
29 #include <functional>
30 #include <c10/util/ArrayRef.h>
31 #include <c10/core/ScalarType.h>
32 #include <c10/core/DefaultDtype.h>
33 #include <c10/util/irange.h>
34
35 /* Implements a numpy-like histogramdd function running on cpu
36 * https://numpy.org/doc/stable/reference/generated/numpy.histogramdd.html
37 *
38 * See the docstr for torch.histogramdd in torch/functional.py for further explanation.
39 *
40 * - torch.histogramdd(input, bins, range=None, weight=None, density=False)
41 * input - tensor with shape (M, N). input is interpreted as M coordinates in N-dimensional space.
42 * If a tensor with more than 2 dimensions is passed, all but the last dimension will be flattened.
43 * bins - int[] of length N or tensor list of length N. If int[], defines the number of equal-width bins
44 * in each dimension. If tensor list, defines the sequences of bin edges, including rightmost edges,
45 * for each dimension.
46 * range - float[] of length 2 * N, optional. If specified, defines the leftmost and rightmost bin edges
47 * for each dimension.
48 * weight - tensor, optional. If provided, weight should have the same shape as input excluding its last dimension.
49 * Each N-dimensional value in input contributes its associated weight towards its bin's result.
50 * If weight is not specified, each value has weight 1 by default.
51 * density - bool, optional. If false (default), the result will contain the total count (weight) in each bin.
52 * If True, each count (weight) is divided by the total count (total weight), then divided by the
53 * volume of its associated bin.
54 *
55 * Returns:
56 * hist - N-dimensional tensor containing the values of the histogram.
57 * bin_edges - tensor list of length N containing the edges of the histogram bins in each dimension.
58 * Bins include their left edge and exclude their right edge, with the exception of the
59 * rightmost bin in each dimension which includes both of its edges.
60 *
61 * Restrictions are defined in histogram_check_inputs() and in select_outer_bin_edges().
62 */
63
64 namespace at::native {
65
66 DEFINE_DISPATCH(histogramdd_stub);
67 DEFINE_DISPATCH(histogramdd_linear_stub);
68 DEFINE_DISPATCH(histogram_select_outer_bin_edges_stub);
69
70 namespace {
71
72 /* Checks properties of input tensors input, bins, and weight.
73 */
histogramdd_check_inputs(const Tensor & input,const TensorList & bins,const std::optional<Tensor> & weight)74 void histogramdd_check_inputs(const Tensor& input, const TensorList& bins, const std::optional<Tensor>& weight) {
75 TORCH_CHECK(input.dim() >= 2, "torch.histogramdd: input tensor should have at least 2 dimensions, but got ",
76 input.dim());
77
78 const int64_t N = input.size(-1);
79
80 TORCH_CHECK(static_cast<int64_t>(bins.size()) == N, "torch.histogramdd: expected ", N, " sequences of bin edges for a ", N,
81 "-dimensional histogram but got ", bins.size());
82
83 auto input_dtype = input.dtype();
84 for (const auto dim : c10::irange(N)) {
85 const Tensor& dim_bins = bins[dim];
86
87 auto bins_dtype = dim_bins.dtype();
88 TORCH_CHECK(input_dtype == bins_dtype, "torch.histogramdd: input tensor and bins tensors should",
89 " have the same dtype, but got input with dtype ", input_dtype,
90 " and bins for dimension ", dim, " with dtype ", bins_dtype);
91
92 const int64_t dim_bins_dim = dim_bins.dim();
93 TORCH_CHECK(dim_bins_dim == 1, "torch.histogramdd: bins tensor should have one dimension,",
94 " but got ", dim_bins_dim, " dimensions in the bins tensor for dimension ", dim);
95
96 const int64_t numel = dim_bins.numel();
97 TORCH_CHECK(numel > 0, "torch.histogramdd: bins tensor should have at least 1 element,",
98 " but got ", numel, " elements in the bins tensor for dimension ", dim);
99 }
100
101 if (weight.has_value()) {
102 TORCH_CHECK(input.dtype() == weight.value().dtype(), "torch.histogramdd: if weight tensor is provided,"
103 " input tensor and weight tensor should have the same dtype, but got input(", input.dtype(), ")",
104 ", and weight(", weight.value().dtype(), ")");
105
106 /* If a weight tensor is provided, we expect its shape to match that of
107 * the input tensor excluding its innermost dimension N.
108 */
109 auto input_sizes = input.sizes().vec();
110 input_sizes.pop_back();
111
112 auto weight_sizes = weight.value().sizes().vec();
113 if (weight_sizes.empty()) {
114 // correctly handle scalars
115 weight_sizes = {1};
116 }
117
118 TORCH_CHECK(input_sizes == weight_sizes, "torch.histogramdd: if weight tensor is provided it should have"
119 " the same shape as the input tensor excluding its innermost dimension, but got input with shape ",
120 input.sizes(), " and weight with shape ", weight.value().sizes());
121 }
122 }
123
124 /* Checks properties of output tensors hist and bin_edges, then resizes them.
125 */
histogramdd_prepare_out(const Tensor & input,const std::vector<int64_t> & bin_ct,const Tensor & hist,const TensorList & bin_edges)126 void histogramdd_prepare_out(const Tensor& input, const std::vector<int64_t>& bin_ct,
127 const Tensor& hist, const TensorList& bin_edges) {
128 const int64_t N = input.size(-1);
129
130 TORCH_INTERNAL_ASSERT((int64_t)bin_ct.size() == N);
131 TORCH_INTERNAL_ASSERT((int64_t)bin_edges.size() == N);
132
133 TORCH_CHECK(input.dtype() == hist.dtype(), "torch.histogram: input tensor and hist tensor should",
134 " have the same dtype, but got input ", input.dtype(), " and hist ", hist.dtype());
135
136 for (const auto dim : c10::irange(N)) {
137 TORCH_CHECK(input.dtype() == bin_edges[dim].dtype(), "torch.histogram: input tensor and bin_edges tensor should",
138 " have the same dtype, but got input ", input.dtype(), " and bin_edges ", bin_edges[dim].dtype(),
139 " for dimension ", dim);
140
141 TORCH_CHECK(bin_ct[dim] > 0,
142 "torch.histogram(): bins must be > 0, but got ", bin_ct[dim], " for dimension ", dim);
143
144 at::native::resize_output(bin_edges[dim], bin_ct[dim] + 1);
145 }
146
147 at::native::resize_output(hist, bin_ct);
148 }
149
histogramdd_prepare_out(const Tensor & input,TensorList bins,const Tensor & hist,const TensorList & bin_edges)150 void histogramdd_prepare_out(const Tensor& input, TensorList bins,
151 const Tensor& hist, const TensorList& bin_edges) {
152 std::vector<int64_t> bin_ct(bins.size());
153 std::transform(bins.begin(), bins.end(), bin_ct.begin(), [](Tensor t) { return t.numel() - 1; });
154 histogramdd_prepare_out(input, bin_ct, hist, bin_edges);
155 }
156
157 /* Determines the outermost bin edges. For simplicity when calling into aminmax,
158 * assumes that input has already been reshaped to (M, N).
159 */
160 std::pair<std::vector<double>, std::vector<double>>
select_outer_bin_edges(const Tensor & input,std::optional<c10::ArrayRef<double>> range)161 select_outer_bin_edges(const Tensor& input, std::optional<c10::ArrayRef<double>> range) {
162 TORCH_INTERNAL_ASSERT(input.dim() == 2, "expected input to have shape (M, N)");
163 const int64_t N = input.size(-1);
164
165 // Default ranges for empty input matching numpy.histogram's default
166 std::vector<double> leftmost_edges(N, 0.);
167 std::vector<double> rightmost_edges(N, 1.);
168
169 if (range.has_value()) {
170 // range is specified
171 TORCH_CHECK((int64_t)range.value().size() == 2 * N, "torch.histogramdd: for a ", N, "-dimensional histogram",
172 " range should have ", 2 * N, " elements, but got ", range.value().size());
173
174 for (const auto dim : c10::irange(N)) {
175 leftmost_edges[dim] = range.value()[2 * dim];
176 rightmost_edges[dim] = range.value()[2 * dim + 1];
177 }
178 } else if (input.numel() > 0) {
179 // non-empty input
180
181 histogram_select_outer_bin_edges_stub(input.device().type(), input, N, leftmost_edges, rightmost_edges);
182 }
183
184 for (const auto dim : c10::irange(N)) {
185 double leftmost_edge = leftmost_edges[dim];
186 double rightmost_edge = rightmost_edges[dim];
187
188 TORCH_CHECK(std::isfinite(leftmost_edge) && std::isfinite(rightmost_edge),
189 "torch.histogramdd: dimension ", dim, "'s range [",
190 leftmost_edge, ", ", rightmost_edge, "] is not finite");
191
192 TORCH_CHECK(leftmost_edge <= rightmost_edge, "torch.histogramdd: min should not exceed max, but got",
193 " min ", leftmost_edge, " max ", rightmost_edge, " for dimension ", dim);
194
195 // Expand empty range to match numpy behavior and avoid division by 0 in normalization
196 if (leftmost_edge == rightmost_edge) {
197 leftmost_edges[dim] -= 0.5;
198 rightmost_edges[dim] += 0.5;
199 }
200 }
201
202 return std::make_pair(leftmost_edges, rightmost_edges);
203 }
204
205 /* histc's version of the logic for outermost bin edges.
206 */
histc_select_outer_bin_edges(const Tensor & input,const Scalar & min,const Scalar & max)207 std::pair<double, double> histc_select_outer_bin_edges(const Tensor& input,
208 const Scalar& min, const Scalar& max) {
209 double leftmost_edge = min.to<double>();
210 double rightmost_edge = max.to<double>();
211
212 if (leftmost_edge == rightmost_edge && input.numel() > 0) {
213 auto extrema = aminmax(input);
214 leftmost_edge = std::get<0>(extrema).item<double>();
215 rightmost_edge = std::get<1>(extrema).item<double>();
216 }
217
218 if (leftmost_edge == rightmost_edge) {
219 leftmost_edge -= 1;
220 rightmost_edge += 1;
221 }
222
223 TORCH_CHECK(!(std::isinf(leftmost_edge) || std::isinf(rightmost_edge) ||
224 std::isnan(leftmost_edge) || std::isnan(rightmost_edge)),
225 "torch.histc: range of [", leftmost_edge, ", ", rightmost_edge, "] is not finite");
226
227 TORCH_CHECK(leftmost_edge < rightmost_edge, "torch.histc: max must be larger than min");
228
229 return std::make_pair(leftmost_edge, rightmost_edge);
230 }
231
232 } // namespace
233
allocate_bin_edges_tensors(const Tensor & self)234 static std::vector<Tensor> allocate_bin_edges_tensors(const Tensor& self) {
235 TORCH_CHECK(self.dim() >= 2, "torch.histogramdd: input tensor should have at least 2 dimensions");
236 const int64_t N = self.size(-1);
237 std::vector<Tensor> bin_edges_out(N);
238 for (const auto dim : c10::irange(N)) {
239 bin_edges_out[dim] = at::empty({0}, self.options(), MemoryFormat::Contiguous);
240 }
241 return bin_edges_out;
242 }
243
244 /* Versions of histogramdd in which bins is a Tensor[] defining the sequences of bin edges.
245 */
histogramdd_out(const Tensor & self,TensorList bins,const std::optional<Tensor> & weight,bool density,Tensor & hist,TensorList & bin_edges)246 static Tensor& histogramdd_out(const Tensor& self, TensorList bins,
247 const std::optional<Tensor>& weight, bool density,
248 Tensor& hist, TensorList& bin_edges) {
249 histogramdd_check_inputs(self, bins, weight);
250 histogramdd_prepare_out(self, bins, hist, bin_edges);
251
252 for (const auto dim : c10::irange(bins.size())) {
253 bin_edges[dim].copy_(bins[dim]);
254 }
255
256 histogramdd_stub(self.device().type(), self, weight, density, hist, bin_edges);
257 return hist;
258 }
259
_histogramdd(const Tensor & self,TensorList bins,const std::optional<Tensor> & weight,bool density)260 Tensor _histogramdd(const Tensor& self, TensorList bins,
261 const std::optional<Tensor>& weight, bool density) {
262 Tensor hist = at::empty({0}, self.options(), MemoryFormat::Contiguous);
263 std::vector<Tensor> bin_edges_out = allocate_bin_edges_tensors(self);
264 TensorList bin_edges_out_tl(bin_edges_out);
265
266 histogramdd_out(self, bins, weight, density, hist, bin_edges_out_tl);
267 return hist;
268 }
269
270 /* Versions of histogramdd in which bins is an int[]
271 * defining the number of bins in each dimension.
272 */
histogramdd_bin_edges_out(const Tensor & self,IntArrayRef bin_ct,std::optional<c10::ArrayRef<double>> range,const std::optional<Tensor> & weight,bool density,std::vector<Tensor> & bin_edges_out)273 static std::vector<Tensor>& histogramdd_bin_edges_out(const Tensor& self, IntArrayRef bin_ct,
274 std::optional<c10::ArrayRef<double>> range,
275 const std::optional<Tensor>& weight, bool density,
276 std::vector<Tensor>& bin_edges_out) {
277 TensorList bin_edges_out_tl(bin_edges_out);
278
279 const int64_t N = self.size(-1);
280 const int64_t M = std::accumulate(self.sizes().begin(), self.sizes().end() - 1,
281 (int64_t)1, std::multiplies<int64_t>());
282 Tensor reshaped_self = self.reshape({ M, N });
283
284 auto outer_bin_edges = select_outer_bin_edges(reshaped_self, range);
285
286 const int64_t bin_size = bin_ct.size();
287 TORCH_CHECK(
288 N == bin_size,
289 "histogramdd: The size of bins must be equal to the innermost dimension of the input.");
290 for (const auto dim : c10::irange(N)) {
291 at::linspace_out(bin_edges_out[dim], outer_bin_edges.first[dim], outer_bin_edges.second[dim],
292 bin_ct[dim] + 1);
293 }
294
295 return bin_edges_out;
296 }
297
histogramdd_bin_edges(const Tensor & self,IntArrayRef bin_ct,std::optional<c10::ArrayRef<double>> range,const std::optional<Tensor> & weight,bool density)298 std::vector<Tensor> histogramdd_bin_edges(const Tensor& self, IntArrayRef bin_ct,
299 std::optional<c10::ArrayRef<double>> range,
300 const std::optional<Tensor>& weight, bool density) {
301 std::vector<Tensor> bin_edges_out = allocate_bin_edges_tensors(self);
302 return histogramdd_bin_edges_out(self, bin_ct, range, weight, density, bin_edges_out);
303 }
304
histogramdd_out(const Tensor & self,IntArrayRef bin_ct,std::optional<c10::ArrayRef<double>> range,const std::optional<Tensor> & weight,bool density,Tensor & hist,TensorList & bin_edges)305 static Tensor& histogramdd_out(const Tensor& self, IntArrayRef bin_ct,
306 std::optional<c10::ArrayRef<double>> range,
307 const std::optional<Tensor>& weight, bool density,
308 Tensor& hist, TensorList& bin_edges) {
309 std::vector<Tensor> bins = histogramdd_bin_edges(self, bin_ct, range, weight, density);
310
311 histogramdd_check_inputs(self, bins, weight);
312 histogramdd_prepare_out(self, bins, hist, bin_edges);
313
314 for (const auto dim : c10::irange(bins.size())) {
315 bin_edges[dim].copy_(bins[dim]);
316 }
317
318 histogramdd_linear_stub(self.device().type(), self, weight, density, hist, bin_edges, true);
319 return hist;
320 }
321
_histogramdd(const Tensor & self,IntArrayRef bin_ct,std::optional<c10::ArrayRef<double>> range,const std::optional<Tensor> & weight,bool density)322 Tensor _histogramdd(const Tensor& self, IntArrayRef bin_ct,
323 std::optional<c10::ArrayRef<double>> range,
324 const std::optional<Tensor>& weight, bool density) {
325 Tensor hist = at::empty({0}, self.options(), MemoryFormat::Contiguous);
326 std::vector<Tensor> bin_edges_out = allocate_bin_edges_tensors(self);
327 TensorList bin_edges_out_tl(bin_edges_out);
328
329 histogramdd_out(self, bin_ct, range, weight, density, hist, bin_edges_out_tl);
330 return hist;
331 }
332
333 /* Versions of histogram in which bins is a Tensor defining the sequence of bin edges.
334 */
335 std::tuple<Tensor&, Tensor&>
histogram_out(const Tensor & self,const Tensor & bins,const std::optional<Tensor> & weight,bool density,Tensor & hist,Tensor & bin_edges)336 histogram_out(const Tensor& self, const Tensor& bins,
337 const std::optional<Tensor>& weight, bool density,
338 Tensor& hist, Tensor& bin_edges) {
339 Tensor reshaped_self = self.reshape({ self.numel(), 1 });
340 std::optional<Tensor> reshaped_weight = weight.has_value()
341 ? weight.value().reshape({ weight.value().numel() }) : weight;
342 TensorList bins_in = bins;
343 TensorList bins_out = bin_edges;
344
345 histogramdd_out(reshaped_self, bins_in, reshaped_weight, density, hist, bins_out);
346
347 return std::forward_as_tuple(hist, bin_edges);
348 }
349
350 std::tuple<Tensor, Tensor>
histogram(const Tensor & self,const Tensor & bins,const std::optional<Tensor> & weight,bool density)351 histogram(const Tensor& self, const Tensor& bins,
352 const std::optional<Tensor>& weight, bool density) {
353 Tensor hist = at::empty({0}, self.options(), MemoryFormat::Contiguous);
354 Tensor bin_edges = at::empty({0}, bins.options(), MemoryFormat::Contiguous);
355 return histogram_out(self, bins, weight, density, hist, bin_edges);
356 }
357
358 /* Versions of histogram in which bins is an integer specifying the number of equal-width bins.
359 */
360 std::tuple<Tensor&, Tensor&>
histogram_out(const Tensor & self,int64_t bin_ct,std::optional<c10::ArrayRef<double>> range,const std::optional<Tensor> & weight,bool density,Tensor & hist,Tensor & bin_edges)361 histogram_out(const Tensor& self, int64_t bin_ct, std::optional<c10::ArrayRef<double>> range,
362 const std::optional<Tensor>& weight, bool density,
363 Tensor& hist, Tensor& bin_edges) {
364 Tensor reshaped_self = self.reshape({ self.numel(), 1 });
365 std::optional<Tensor> reshaped_weight = weight.has_value()
366 ? weight.value().reshape({ weight.value().numel() }) : weight;
367 TensorList bins_in = bin_edges;
368 TensorList bins_out = bin_edges;
369
370 histogramdd_prepare_out(reshaped_self, std::vector<int64_t>{bin_ct}, hist, bins_out);
371 auto outer_bin_edges = select_outer_bin_edges(reshaped_self, range);
372 at::linspace_out(bin_edges, outer_bin_edges.first[0], outer_bin_edges.second[0], bin_ct + 1);
373
374 histogramdd_check_inputs(reshaped_self, bins_in, reshaped_weight);
375
376 histogramdd_linear_stub(reshaped_self.device().type(), reshaped_self, reshaped_weight, density, hist, bin_edges, true);
377 return std::forward_as_tuple(hist, bin_edges);
378 }
379
380 std::tuple<Tensor, Tensor>
histogram(const Tensor & self,int64_t bin_ct,std::optional<c10::ArrayRef<double>> range,const std::optional<Tensor> & weight,bool density)381 histogram(const Tensor& self, int64_t bin_ct, std::optional<c10::ArrayRef<double>> range,
382 const std::optional<Tensor>& weight, bool density) {
383 Tensor hist = at::empty({0}, self.options(), MemoryFormat::Contiguous);
384 Tensor bin_edges_out = at::empty({0}, self.options());
385 return histogram_out(self, bin_ct, range, weight, density, hist, bin_edges_out);
386 }
387
388 /* Narrowed interface for the legacy torch.histc function.
389 */
histogram_histc_out(const Tensor & self,int64_t bin_ct,const Scalar & min,const Scalar & max,Tensor & hist)390 Tensor& histogram_histc_out(const Tensor& self, int64_t bin_ct,
391 const Scalar& min, const Scalar& max, Tensor& hist) {
392 Tensor bin_edges = at::empty({0}, self.options());
393
394 Tensor reshaped = self.reshape({ self.numel(), 1 });
395 TensorList bins_in = bin_edges;
396 TensorList bins_out = bin_edges;
397
398 histogramdd_prepare_out(reshaped, std::vector<int64_t>{bin_ct}, hist, bins_out);
399
400 auto outer_bin_edges = histc_select_outer_bin_edges(self, min, max);
401 at::linspace_out(bin_edges, outer_bin_edges.first, outer_bin_edges.second, bin_ct + 1);
402
403 histogramdd_check_inputs(reshaped, bins_in, {});
404
405 histogramdd_linear_stub(reshaped.device().type(), reshaped,
406 std::optional<Tensor>(), false, hist, bin_edges, false);
407 return hist;
408 }
409
histogram_histc(const Tensor & self,int64_t bin_ct,const Scalar & min,const Scalar & max)410 Tensor histogram_histc(const Tensor& self, int64_t bin_ct,
411 const Scalar& min, const Scalar& max) {
412 Tensor hist = at::empty({0}, self.options(), MemoryFormat::Contiguous);
413 return histogram_histc_out(self, bin_ct, min, max, hist);
414 }
415
histogramdd(const Tensor & self,TensorList bins,std::optional<ArrayRef<double>>,const std::optional<Tensor> & weight,bool density)416 std::tuple<Tensor, std::vector<Tensor>> histogramdd(
417 const Tensor &self, TensorList bins, std::optional<ArrayRef<double>> /*range*/,
418 const std::optional<Tensor> &weight, bool density) {
419 auto hist = at::_histogramdd_from_bin_tensors(self, bins, weight, density);
420 return std::tuple<Tensor, std::vector<Tensor>>{
421 std::move(hist), bins.vec()};
422 }
423
histogramdd(const Tensor & self,IntArrayRef bins,std::optional<ArrayRef<double>> range,const std::optional<Tensor> & weight,bool density)424 std::tuple<Tensor, std::vector<Tensor>> histogramdd(
425 const Tensor &self, IntArrayRef bins, std::optional<ArrayRef<double>> range,
426 const std::optional<Tensor> &weight, bool density) {
427 auto bin_edges = at::_histogramdd_bin_edges(self, bins, range, weight, density);
428 auto hist = at::_histogramdd_from_bin_cts(self, bins, range, weight, density);
429 return std::tuple<Tensor, std::vector<Tensor>>{
430 std::move(hist), std::move(bin_edges)};
431 }
432
histogramdd(const Tensor & self,int64_t bins,std::optional<ArrayRef<double>> range,const std::optional<Tensor> & weight,bool density)433 std::tuple<Tensor, std::vector<Tensor>> histogramdd(
434 const Tensor &self, int64_t bins, std::optional<ArrayRef<double>> range,
435 const std::optional<Tensor> &weight, bool density) {
436 DimVector bins_v(self.size(-1), bins);
437 return at::native::histogramdd(self, bins_v, range, weight, density);
438 }
439
440 } // namespace at::native
441