1 #pragma once
2
3 #include <ATen/ExpandUtils.h>
4 #include <ATen/ScalarOps.h>
5 #include <ATen/core/Tensor.h>
6 #include <ATen/core/TensorBody.h>
7 #include <c10/core/SymInt.h>
8 #include <c10/util/irange.h>
9 #include <optional>
10
11 #ifndef AT_PER_OPERATOR_HEADERS
12 #include <ATen/Functions.h>
13 #include <ATen/NativeFunctions.h>
14 #else
15 #include <ATen/ops/alias.h>
16 #include <ATen/ops/empty.h>
17 #include <ATen/ops/scalar_tensor.h>
18 #include <ATen/ops/zeros.h>
19 #endif
20
21 #include <ATen/core/List.h>
22
23 #include <utility>
24
25 namespace at::indexing {
26
27 constexpr int64_t INDEX_MIN = c10::SymInt::min_representable_int();
28 constexpr int64_t INDEX_MAX = -(INDEX_MIN + 1);
29
30 enum class TensorIndexType { None, Ellipsis, SymInt, Boolean, Slice, Tensor };
31
32 constexpr std::nullopt_t None = std::nullopt;
33
34 struct TORCH_API EllipsisIndexType final {
35 EllipsisIndexType() = default;
36 };
37 TORCH_API extern const EllipsisIndexType Ellipsis;
38
39 struct TORCH_API Slice final {
40 public:
41 Slice(
42 std::optional<c10::SymInt> start_index = std::nullopt,
43 std::optional<c10::SymInt> stop_index = std::nullopt,
44 std::optional<c10::SymInt> step_index = std::nullopt) {
45 if (!step_index.has_value()) {
46 step_ = c10::SymInt(1);
47 } else {
48 step_ = std::move(step_index).value();
49 }
50
51 TORCH_CHECK_VALUE(
52 step_.sym_ne(0).expect_true(__FILE__, __LINE__),
53 "slice step cannot be zero");
54
55 if (!start_index.has_value()) {
56 start_ = c10::SymInt(step_ < 0 ? INDEX_MAX : 0);
57 } else {
58 start_ = std::move(start_index).value();
59 }
60
61 if (!stop_index.has_value()) {
62 stop_ = c10::SymInt(step_ < 0 ? INDEX_MIN : INDEX_MAX);
63 } else {
64 stop_ = std::move(stop_index).value();
65 }
66 }
67
startfinal68 inline c10::SymInt start() const {
69 return start_;
70 }
71
stopfinal72 inline c10::SymInt stop() const {
73 return stop_;
74 }
75
stepfinal76 inline c10::SymInt step() const {
77 return step_;
78 }
79
80 private:
81 c10::SymInt start_;
82 c10::SymInt stop_;
83 c10::SymInt step_;
84 };
85
86 TORCH_API std::ostream& operator<<(std::ostream& stream, const Slice& slice);
87
88 // `at::indexing::TensorIndex` is used for converting C++ tensor indices such as
89 // `{None, "...", Ellipsis, 0, true, Slice(1, None, 2), torch::tensor({1, 2})}`
90 // into its equivalent `std::vector<TensorIndex>`, so that further tensor
91 // indexing operations can be performed using the supplied indices.
92 //
93 // There is one-to-one correspondence between Python and C++ tensor index types:
94 // Python | C++
95 // -----------------------------------------------------
96 // `None` | `at::indexing::None`
97 // `Ellipsis` | `at::indexing::Ellipsis`
98 // `...` | `"..."`
99 // `123` | `123`
100 // `True` / `False` | `true` / `false`
101 // `:` | `Slice()` / `Slice(None, None)`
102 // `::` | `Slice()` / `Slice(None, None, None)`
103 // `1:` | `Slice(1, None)`
104 // `1::` | `Slice(1, None, None)`
105 // `:3` | `Slice(None, 3)`
106 // `:3:` | `Slice(None, 3, None)`
107 // `::2` | `Slice(None, None, 2)`
108 // `1:3` | `Slice(1, 3)`
109 // `1::2` | `Slice(1, None, 2)`
110 // `:3:2` | `Slice(None, 3, 2)`
111 // `1:3:2` | `Slice(1, 3, 2)`
112 // `torch.tensor([1, 2])`) | `torch::tensor({1, 2})`
113 struct TORCH_API TensorIndex final {
114 // Case 1: `at::indexing::None`
TensorIndexfinal115 TensorIndex(std::nullopt_t) : type_(TensorIndexType::None) {}
116
117 // Case 2: "..." / `at::indexing::Ellipsis`
TensorIndexfinal118 TensorIndex(at::indexing::EllipsisIndexType)
119 : type_(TensorIndexType::Ellipsis) {}
TensorIndexfinal120 TensorIndex(const char* str) : TensorIndex(at::indexing::Ellipsis) {
121 TORCH_CHECK_VALUE(
122 strcmp(str, "...") == 0,
123 "Expected \"...\" to represent an ellipsis index, but got \"",
124 str,
125 "\"");
126 }
127
128 // Case 3: (Sym) Integer value
TensorIndexfinal129 TensorIndex(SymInt integer)
130 : integer_(std::move(integer)), type_(TensorIndexType::SymInt) {}
TensorIndexfinal131 TensorIndex(int64_t integer) : TensorIndex(SymInt(integer)) {}
TensorIndexfinal132 TensorIndex(int integer) : TensorIndex(SymInt(integer)) {}
133
134 // Case 4: Boolean value
135 template <class T, class = std::enable_if_t<std::is_same_v<bool, T>>>
TensorIndexfinal136 TensorIndex(T boolean) : boolean_(boolean), type_(TensorIndexType::Boolean) {}
137
138 // Case 5: Slice represented in `at::indexing::Slice` form
TensorIndexfinal139 TensorIndex(Slice slice)
140 : slice_(std::move(slice)), type_(TensorIndexType::Slice) {}
141
142 // Case 6: Tensor value
TensorIndexfinal143 TensorIndex(Tensor tensor)
144 : tensor_(std::move(tensor)), type_(TensorIndexType::Tensor) {}
145
is_nonefinal146 inline bool is_none() const {
147 return type_ == TensorIndexType::None;
148 }
149
is_ellipsisfinal150 inline bool is_ellipsis() const {
151 return type_ == TensorIndexType::Ellipsis;
152 }
153
is_integerfinal154 inline bool is_integer() const {
155 return type_ == TensorIndexType::SymInt;
156 }
157
integerfinal158 inline SymInt integer() const {
159 return integer_;
160 }
161
is_booleanfinal162 inline bool is_boolean() const {
163 return type_ == TensorIndexType::Boolean;
164 }
165
booleanfinal166 inline bool boolean() const {
167 return boolean_;
168 }
169
is_slicefinal170 inline bool is_slice() const {
171 return type_ == TensorIndexType::Slice;
172 }
173
slicefinal174 inline const Slice& slice() const {
175 return slice_;
176 }
177
is_tensorfinal178 inline bool is_tensor() const {
179 return type_ == TensorIndexType::Tensor;
180 }
181
tensorfinal182 inline const Tensor& tensor() const {
183 return tensor_;
184 }
185
186 private:
187 SymInt integer_ = 0;
188 bool boolean_ = false;
189 Slice slice_;
190 Tensor tensor_;
191 TensorIndexType type_;
192 };
193
194 TORCH_API std::ostream& operator<<(
195 std::ostream& stream,
196 const TensorIndex& tensor_index);
197 TORCH_API std::ostream& operator<<(
198 std::ostream& stream,
199 const std::vector<TensorIndex>& tensor_indices);
200
201 namespace impl {
applySlice(const Tensor & self,int64_t dim,c10::SymInt start,c10::SymInt stop,c10::SymInt step,bool disable_slice_optimization,const at::Device & self_device,const std::optional<SymIntArrayRef> & self_sizes)202 inline Tensor applySlice(
203 const Tensor& self,
204 int64_t dim,
205 c10::SymInt start,
206 c10::SymInt stop,
207 c10::SymInt step,
208 bool disable_slice_optimization,
209 const at::Device& self_device,
210 const std::optional<SymIntArrayRef>& self_sizes) {
211 // TODO: implement negative step
212 TORCH_CHECK_VALUE(
213 step.sym_gt(0).expect_true(__FILE__, __LINE__),
214 "step must be greater than zero");
215
216 // See NOTE [nested tensor size for indexing]
217 if (self_sizes.has_value()) {
218 // Skip this optimization if we are tracing, as the trace may be polymorphic
219 // over the shape of the `self` tensor, and we still want to record
220 // the slice.
221 SymInt length = (self_device == at::kCPU || self_device == at::kCUDA)
222 ? (*self_sizes)[dim]
223 : self.sym_size(dim);
224 if (!disable_slice_optimization &&
225 TORCH_GUARD_SIZE_OBLIVIOUS(start.sym_eq(0)) &&
226 TORCH_GUARD_SIZE_OBLIVIOUS(length.sym_eq(stop)) && step == 1) {
227 return self;
228 }
229 }
230 return self.slice_symint(
231 dim, std::move(start), std::move(stop), std::move(step));
232 }
233
applySelect(const Tensor & self,int64_t dim,SymInt index,int64_t real_dim,const at::Device &,const std::optional<SymIntArrayRef> & self_sizes)234 inline Tensor applySelect(
235 const Tensor& self,
236 int64_t dim,
237 SymInt index,
238 int64_t real_dim,
239 const at::Device& /*self_device*/,
240 const std::optional<SymIntArrayRef>& self_sizes) {
241 // See NOTE [nested tensor size for indexing]
242 if (self_sizes.has_value()) {
243 auto maybe_index = index.maybe_as_int();
244 if (maybe_index.has_value()) {
245 TORCH_CHECK_INDEX(
246 !(maybe_index.value() == 0 && dim == 0 && self_sizes->empty()),
247 "invalid index of a 0-dim tensor. ",
248 "Use `tensor.item()` in Python or `tensor.item<T>()` in C++ to convert a 0-dim tensor to a number");
249 }
250
251 auto size = (*self_sizes)[dim];
252 // Note: `size >= -index` is not equivalent to `size > -1 - index` if index
253 // is INT64_MIN For std::numeric_limits<int64_t>::min() result of unary
254 // minus is undefined by the standard but in practice is equal to self. On
255 // the other hand, indexing wraping is valid for all negative int64_t
256 // values, as x[INT64_MIN] is the same as x[INT64_MAX]
257 TORCH_CHECK_INDEX(
258 size > -1 - index && size > index,
259 "index ",
260 index,
261 " is out of bounds for dimension ",
262 real_dim,
263 " with size ",
264 size);
265 }
266
267 // if the index is negative, do not normalize it because that would fix the
268 // index on the current tensor size in the tracer. aten::select also works on
269 // negative indices
270 return self.select_symint(dim, std::move(index));
271 }
272
boolToIndexingTensorCPUOrCUDA(const Tensor & self,bool value)273 inline Tensor boolToIndexingTensorCPUOrCUDA(const Tensor& self, bool value) {
274 // booleans add a dimension of size 1. true indexes this dimension as if 0:,
275 // false as empty.
276 if (value) {
277 return at::empty({1}, self.options().dtype(kLong)).fill_(0.);
278 } else {
279 return at::empty({0}, self.options().dtype(kLong));
280 }
281 }
282
boolToIndexingTensorNonNativeDeviceType(const Tensor & self,bool value)283 inline Tensor boolToIndexingTensorNonNativeDeviceType(
284 const Tensor& self,
285 bool value) {
286 // booleans add a dimension of size 1. true indexes this dimension as if 0:,
287 // false as empty.
288 if (value) {
289 return at::zeros({1}, self.options().dtype(kLong));
290 } else {
291 return at::empty({0}, self.options().dtype(kLong));
292 }
293 }
294
boolToIndexingTensor(const Tensor & self,bool value,const at::Device & self_device)295 inline Tensor boolToIndexingTensor(
296 const Tensor& self,
297 bool value,
298 const at::Device& self_device) {
299 if (self_device == at::kCPU || self_device == at::kCUDA) {
300 return boolToIndexingTensorCPUOrCUDA(self, value);
301 } else {
302 return boolToIndexingTensorNonNativeDeviceType(self, value);
303 }
304 }
305
scalarToTensorNonNativeDeviceType(const Scalar & v,const TensorOptions & options)306 inline Tensor scalarToTensorNonNativeDeviceType(
307 const Scalar& v,
308 const TensorOptions& options) {
309 return at::scalar_tensor(v, options);
310 }
311
recordTensorIndex(const Tensor & tensor,std::vector<Tensor> & outIndices,int64_t * dim_ptr)312 inline void recordTensorIndex(
313 const Tensor& tensor,
314 std::vector<Tensor>& outIndices,
315 int64_t* dim_ptr) {
316 // TODO: check scalarType
317 outIndices.resize(*dim_ptr + 1);
318 outIndices[*dim_ptr] = tensor;
319 (*dim_ptr)++;
320 };
321
typeConvertIndices(const Tensor &,std::vector<Tensor> && indices)322 inline c10::List<::std::optional<Tensor>> typeConvertIndices(
323 const Tensor& /*self*/,
324 std::vector<Tensor>&& indices) {
325 c10::List<::std::optional<Tensor>> converted_inds;
326 converted_inds.reserve(indices.size());
327 for (auto&& i : std::move(indices)) {
328 converted_inds.push_back(std::move(i));
329 }
330 return converted_inds;
331 }
332
333 // NOTE: Why do we mirror instead of replace the `count_specified_dimensions`
334 // function in torch/csrc/autograd/python_variable_indexing.cpp? It's because
335 // `count_specified_dimensions` is on the hot path of Python tensor multi-dim
336 // indexing (i.e. it's called by `applySlicing` which is called by
337 // `THPVariable_getitem` / `THPVariable_setitem` when handling indexing of more
338 // than one dimension). If we were to merge the Python/C++
339 // `count_specified_dimensions` function, on the Python side we would have to
340 // construct a `std::vector` container to be consumed by the C++
341 // `count_specified_dimensions` function, which adds 100s of nanoseconds
342 // overhead and is undesirable.
count_specified_dimensions(const ArrayRef<TensorIndex> & indices)343 inline int64_t count_specified_dimensions(
344 const ArrayRef<TensorIndex>& indices) {
345 // Count the number of indexed dimensions (everything but ellipsis and None)
346 int64_t count = 0;
347 for (auto& obj : indices) {
348 if (obj.is_tensor()) {
349 auto& tensor = obj.tensor();
350 if (tensor.scalar_type() == kByte || tensor.scalar_type() == kBool) {
351 count += tensor.dim();
352 } else {
353 count++;
354 }
355 } else if (!obj.is_none() && !obj.is_ellipsis() && !obj.is_boolean()) {
356 count++;
357 }
358 }
359 return count;
360 }
361 } // namespace impl
362
363 // NOTE: Many functions below are only for consumption from Python indexing
364 // implementation, they include:
365 //
366 // - `Tensor scalarToTensor(...)`
367 // - `IntArrayRef slicePrefix1sSize(...)`
368 // - `void copy_to(...)`
369 // - `Tensor handleDimInMultiDimIndexing(...)`
370 // - `Tensor dispatch_index(...)`
371 // - `Tensor dispatch_index_put_(...)`
372 // - `Tensor get_item(...)`
373 // - `void set_item(...)`
374 //
375 // The rest of the functions are in `at::indexing::impl` namespace, signifying
376 // that they shouldn't be used from Python indexing implementation.
scalarToTensor(const Scalar & v,const TensorOptions & options,const at::Device & self_device)377 inline Tensor scalarToTensor(
378 const Scalar& v,
379 const TensorOptions& options,
380 const at::Device& self_device) {
381 if (self_device == at::kCPU && !v.isSymbolic()) {
382 return at::detail::scalar_tensor_static(
383 v, options.dtype_opt()->toScalarType(), self_device);
384 } else {
385 return impl::scalarToTensorNonNativeDeviceType(v, options);
386 }
387 }
388
389 // To match numpy semantics:
390 // As a special case for backwards compatibility,
391 // strip away unit dimensions from the left of 'src'
slicePrefix1sSize(const SymIntArrayRef & sizes)392 inline SymIntArrayRef slicePrefix1sSize(const SymIntArrayRef& sizes) {
393 size_t first_non1_src = sizes.size();
394 for (const auto i : c10::irange(sizes.size())) {
395 // Unbacked SymInt has different behavior, but this is sound because
396 // failing to slice will only ever cause an error, not divergent
397 // behavior
398 if (!sizes[i].has_hint() || sizes[i] != 1) {
399 first_non1_src = i;
400 break;
401 }
402 }
403
404 return sizes.slice(first_non1_src);
405 }
406
copy_to(const Tensor & dst,const Tensor & src)407 inline void copy_to(const Tensor& dst, const Tensor& src) {
408 if (dst.sym_sizes().equals(src.sym_sizes())) {
409 // A shortcut to avoid generating hard-coded constant sizes during tracing.
410 // This is not a perfect solution: when src & dst have different shapes,
411 // constants will still appear. Users can workaround that case by
412 // dst[index..] = src.reshape(..)
413 dst.copy_(src);
414 return;
415 } else if (src.dim() == 0 && src.device().type() == at::kCPU) {
416 dst.fill_(src);
417 return;
418 }
419 auto src_view = src.view_symint(slicePrefix1sSize(src.sym_sizes()));
420 c10::MaybeOwned<Tensor> b_src = expand_inplace(dst, src_view, "setitem");
421 dst.copy_(*b_src);
422 }
423
424 // See NOTE [ Setting `disable_slice_optimization` when calling C++ tensor
425 // indexing functions from Python ]
handleDimInMultiDimIndexing(const Tensor & prev_dim_result,const Tensor & original_tensor,const TensorIndex & index,int64_t * dim_ptr,int64_t * specified_dims_ptr,int64_t real_dim,std::vector<Tensor> & outIndices,bool disable_slice_optimization,const at::Device & original_tensor_device,const std::optional<SymIntArrayRef> & prev_dim_result_sizes)426 inline Tensor handleDimInMultiDimIndexing(
427 const Tensor& prev_dim_result,
428 const Tensor& original_tensor,
429 const TensorIndex& index,
430 int64_t* dim_ptr,
431 int64_t* specified_dims_ptr,
432 int64_t real_dim,
433 std::vector<Tensor>& outIndices,
434 bool disable_slice_optimization,
435 const at::Device& original_tensor_device,
436 const std::optional<SymIntArrayRef>& prev_dim_result_sizes) {
437 if (index.is_integer()) {
438 return impl::applySelect(
439 prev_dim_result,
440 *dim_ptr,
441 index.integer(),
442 real_dim,
443 original_tensor_device,
444 prev_dim_result_sizes);
445 } else if (index.is_slice()) {
446 Tensor result = impl::applySlice(
447 prev_dim_result,
448 *dim_ptr,
449 index.slice().start(),
450 index.slice().stop(),
451 index.slice().step(),
452 /*disable_slice_optimization=*/disable_slice_optimization,
453 original_tensor_device,
454 prev_dim_result_sizes);
455 (*dim_ptr)++;
456 return result;
457 } else if (index.is_ellipsis()) {
458 (*dim_ptr) += original_tensor.dim() - (*specified_dims_ptr);
459 return prev_dim_result;
460 } else if (index.is_none()) {
461 Tensor result = prev_dim_result.unsqueeze(*dim_ptr);
462 (*dim_ptr)++;
463 return result;
464 } else if (index.is_boolean()) {
465 Tensor result = prev_dim_result.unsqueeze(*dim_ptr);
466 impl::recordTensorIndex(
467 impl::boolToIndexingTensor(
468 result, index.boolean(), original_tensor_device),
469 outIndices,
470 dim_ptr);
471 return result;
472 } else if (index.is_tensor()) {
473 Tensor result = prev_dim_result;
474 const Tensor& tensor = index.tensor();
475 auto scalar_type = tensor.scalar_type();
476 if (tensor.dim() == 0 &&
477 at::isIntegralType(scalar_type, /*includeBool=*/true)) {
478 if (scalar_type != at::kByte && scalar_type != at::kBool) {
479 result = impl::applySelect(
480 result,
481 *dim_ptr,
482 tensor.item<int64_t>(),
483 real_dim,
484 original_tensor_device,
485 prev_dim_result_sizes);
486 } else {
487 result = result.unsqueeze(*dim_ptr);
488 if (scalar_type == at::kBool) {
489 impl::recordTensorIndex(
490 impl::boolToIndexingTensor(
491 result, tensor.item<bool>() != 0, original_tensor_device),
492 outIndices,
493 dim_ptr);
494 } else {
495 impl::recordTensorIndex(
496 impl::boolToIndexingTensor(
497 result, tensor.item<uint8_t>() != 0, original_tensor_device),
498 outIndices,
499 dim_ptr);
500 }
501 }
502 } else {
503 impl::recordTensorIndex(tensor, outIndices, dim_ptr);
504 }
505 return result;
506 } else {
507 TORCH_INTERNAL_ASSERT(false, "Invalid TensorIndex type");
508 }
509 }
510
511 namespace impl {
512 // This mirrors `applySlicing` in
513 // torch/csrc/autograd/python_variable_indexing.cpp
applySlicing(const Tensor & self,const ArrayRef<TensorIndex> & indices,std::vector<Tensor> & outIndices,bool disable_slice_optimization,const at::Device & self_device,const std::optional<SymIntArrayRef> & self_sizes)514 inline Tensor applySlicing(
515 const Tensor& self,
516 const ArrayRef<TensorIndex>& indices,
517 std::vector<Tensor>& outIndices,
518 bool disable_slice_optimization,
519 const at::Device& self_device,
520 const std::optional<SymIntArrayRef>& self_sizes) {
521 int64_t dim = 0;
522 int64_t specified_dims = impl::count_specified_dimensions(indices);
523
524 // See NOTE [nested tensor size for indexing]
525 if (self_sizes.has_value()) {
526 TORCH_CHECK_INDEX(
527 specified_dims <= (int64_t)self_sizes->size(),
528 "too many indices for tensor of dimension ",
529 (int)self_sizes->size());
530 }
531
532 Tensor result = self;
533 for (const auto i : c10::irange(indices.size())) {
534 auto& obj = indices[i];
535 // See NOTE [nested tensor size for indexing]
536 std::optional<SymIntArrayRef> result_sizes = result.is_nested()
537 ? std::optional<SymIntArrayRef>(std::nullopt)
538 : std::optional<SymIntArrayRef>(result.sym_sizes());
539 result = handleDimInMultiDimIndexing(
540 /*prev_dim_result=*/result,
541 /*original_tensor=*/self,
542 /*index=*/obj,
543 /*dim_ptr=*/&dim,
544 /*specified_dims_ptr=*/&specified_dims,
545 /*real_dim=*/static_cast<int64_t>(i),
546 /*outIndices=*/outIndices,
547 /*disable_slice_optimization=*/disable_slice_optimization,
548 /*original_tensor_device=*/self_device,
549 /*prev_dim_result_sizes=*/result_sizes);
550 }
551 return result;
552 }
553 } // namespace impl
554
dispatch_index(const Tensor & self,std::vector<Tensor> && indices)555 inline Tensor dispatch_index(
556 const Tensor& self,
557 std::vector<Tensor>&& indices) {
558 return self.index(impl::typeConvertIndices(self, std::move(indices)));
559 }
560
dispatch_index_put_(Tensor & self,std::vector<Tensor> && indices,const Tensor & value)561 inline Tensor dispatch_index_put_(
562 Tensor& self,
563 std::vector<Tensor>&& indices,
564 const Tensor& value) {
565 return self.index_put_(
566 impl::typeConvertIndices(self, std::move(indices)), value);
567 }
568
569 // NOTE [ Setting `disable_slice_optimization` when calling C++ tensor indexing
570 // functions from Python ]
571 //
572 // Question: When should we set `disable_slice_optimization` to `true` when
573 // calling C++ tensor indexing functions from Python indexing code?
574 //
575 // Answer: What "slice optimization" means: when we have a slicing expression
576 // like `x[0:5, 0]`, where the sliced tensor was of size 5 in dimension 0, we
577 // would skip dispatching the actual slice call as an optimization. However,
578 // here are the cases where we DON'T want this optimization:
579 //
580 // 1. When we are doing 1-D slicing (e.g. `tensor[:]`).
581 // Reason: we always return a shallow copy for expressions such as
582 // `tensor[:]` / `tensor[...]` / `tensor[:, :]`. (Note that for `tensor[:,
583 // :]`, we return an alias of `tensor` by doing the following:
584 // ```
585 // Tensor sliced = impl::applySlicing(self, indices, tensorIndices,
586 // disable_slice_optimization, self_device, self_sizes); if
587 // (tensorIndices.empty()) {
588 // if (sliced.is_same(self)) {
589 // // ensure we return a shallow copy for things like x[...]
590 // sliced = at::alias(sliced);
591 // }
592 // return sliced;
593 // }
594 // ```)
595 // 2. When we are doing JIT tracing.
596 // Reason: JIT tracing needs the `self.slice(...)` call to properly trace the
597 // slice operation.
598
599 // This mirrors `THPVariable_getitem` in
600 // torch/csrc/autograd/python_variable_indexing.cpp See NOTE [ Setting
601 // `disable_slice_optimization` when calling C++ tensor indexing functions from
602 // Python ]
603 inline Tensor get_item(
604 const Tensor& self,
605 const ArrayRef<TensorIndex>& indices,
606 bool disable_slice_optimization = false) {
607 at::Device self_device = self.device();
608 // NOTE [nested tensor size for indexing]
609 // nested tensor does not have a size (yet) so for now we represent its size
610 // as null may need to be changed after we reach a better solution for nested
611 // tensor size
612 std::optional<SymIntArrayRef> self_sizes = self.is_nested()
613 ? std::optional<SymIntArrayRef>(std::nullopt)
614 : std::optional<SymIntArrayRef>(self.sym_sizes());
615
616 // handle simple types: integers, slices, none, ellipsis, bool
617 if (indices.size() == 1) {
618 const TensorIndex& index = indices[0];
619 if (index.is_integer()) {
620 return impl::applySelect(
621 self, 0, index.integer(), 0, self_device, self_sizes);
622 } else if (index.is_slice()) {
623 return impl::applySlice(
624 self,
625 0,
626 index.slice().start(),
627 index.slice().stop(),
628 index.slice().step(),
629 /*disable_slice_optimization=*/true,
630 self_device,
631 self_sizes);
632 } else if (index.is_none()) {
633 return self.unsqueeze(0);
634 } else if (index.is_ellipsis()) {
635 return at::alias(self);
636 } else if (index.is_boolean()) {
637 Tensor result = self.unsqueeze(0);
638 return dispatch_index(
639 result,
640 std::vector<Tensor>{impl::boolToIndexingTensor(
641 result, index.boolean(), self_device)});
642 }
643 }
644
645 std::vector<Tensor> tensorIndices;
646 Tensor sliced = impl::applySlicing(
647 self,
648 indices,
649 tensorIndices,
650 disable_slice_optimization,
651 self_device,
652 self_sizes);
653 if (tensorIndices.empty()) {
654 if (sliced.is_same(self)) {
655 // ensure we return a shallow copy for things like x[...]
656 sliced = at::alias(sliced);
657 }
658 return sliced;
659 }
660
661 // indexing by tensors ("advanced" indexing)
662 return dispatch_index(sliced, std::move(tensorIndices));
663 }
664
665 // This mirrors `THPVariable_setitem` in
666 // torch/csrc/autograd/python_variable_indexing.cpp for "the assigned value is a
667 // Tensor" case See NOTE [ Setting `disable_slice_optimization` when calling C++
668 // tensor indexing functions from Python ]
669 inline void set_item(
670 const Tensor& self,
671 const ArrayRef<TensorIndex>& indices,
672 const Tensor& value,
673 bool disable_slice_optimization = false) {
674 at::Device self_device = self.device();
675 SymIntArrayRef self_sizes = self.sym_sizes();
676
677 // handle simple types: integers, slices, ellipsis, bool
678 if (indices.size() == 1) {
679 const TensorIndex& index = indices[0];
680 if (index.is_boolean() && !index.boolean()) {
681 // do nothing for false (technically we should check the size, but we
682 // don't have real 0-sized shapes.
683 return;
684 } else if (index.is_ellipsis()) {
685 copy_to(self, value);
686 return;
687 } else if (index.is_none() || (index.is_boolean() && index.boolean())) {
688 copy_to(self.unsqueeze(0), value);
689 return;
690 } else if (index.is_integer()) {
691 copy_to(
692 impl::applySelect(
693 self, 0, index.integer(), 0, self_device, self_sizes),
694 value);
695 return;
696 } else if (index.is_slice()) {
697 copy_to(
698 impl::applySlice(
699 self,
700 0,
701 index.slice().start(),
702 index.slice().stop(),
703 index.slice().step(),
704 /*disable_slice_optimization=*/disable_slice_optimization,
705 self_device,
706 self_sizes),
707 value);
708 return;
709 }
710 }
711
712 std::vector<Tensor> tensorIndices;
713 Tensor sliced = impl::applySlicing(
714 self,
715 indices,
716 tensorIndices,
717 disable_slice_optimization,
718 self_device,
719 self_sizes);
720 if (tensorIndices.empty()) {
721 copy_to(sliced, value);
722 return;
723 }
724
725 SymIntArrayRef valueSizes = value.sym_sizes();
726 SymIntArrayRef slicedValueSizes = slicePrefix1sSize(valueSizes);
727 Tensor valuesSliced;
728 if (!valueSizes.equals(slicedValueSizes)) {
729 valuesSliced = value.view_symint(slicedValueSizes);
730 } else {
731 valuesSliced = value;
732 }
733 dispatch_index_put_(sliced, std::move(tensorIndices), valuesSliced);
734 return;
735 }
736
737 } // namespace at::indexing
738