1 /* Set of hash utility functions to help maintaining the invariant that
2 if a==b then hash(a)==hash(b)
3
4 All the utility functions (_Py_Hash*()) return "-1" to signify an error.
5 */
6 #include "Python.h"
7
8 #ifdef __APPLE__
9 # include <libkern/OSByteOrder.h>
10 #elif defined(HAVE_LE64TOH) && defined(HAVE_ENDIAN_H)
11 # include <endian.h>
12 #elif defined(HAVE_LE64TOH) && defined(HAVE_SYS_ENDIAN_H)
13 # include <sys/endian.h>
14 #endif
15
16 #ifdef __cplusplus
17 extern "C" {
18 #endif
19
20 _Py_HashSecret_t _Py_HashSecret = {{0}};
21
22 #if Py_HASH_ALGORITHM == Py_HASH_EXTERNAL
23 extern PyHash_FuncDef PyHash_Func;
24 #else
25 static PyHash_FuncDef PyHash_Func;
26 #endif
27
28 /* Count _Py_HashBytes() calls */
29 #ifdef Py_HASH_STATS
30 #define Py_HASH_STATS_MAX 32
31 static Py_ssize_t hashstats[Py_HASH_STATS_MAX + 1] = {0};
32 #endif
33
34 /* For numeric types, the hash of a number x is based on the reduction
35 of x modulo the prime P = 2**_PyHASH_BITS - 1. It's designed so that
36 hash(x) == hash(y) whenever x and y are numerically equal, even if
37 x and y have different types.
38
39 A quick summary of the hashing strategy:
40
41 (1) First define the 'reduction of x modulo P' for any rational
42 number x; this is a standard extension of the usual notion of
43 reduction modulo P for integers. If x == p/q (written in lowest
44 terms), the reduction is interpreted as the reduction of p times
45 the inverse of the reduction of q, all modulo P; if q is exactly
46 divisible by P then define the reduction to be infinity. So we've
47 got a well-defined map
48
49 reduce : { rational numbers } -> { 0, 1, 2, ..., P-1, infinity }.
50
51 (2) Now for a rational number x, define hash(x) by:
52
53 reduce(x) if x >= 0
54 -reduce(-x) if x < 0
55
56 If the result of the reduction is infinity (this is impossible for
57 integers, floats and Decimals) then use the predefined hash value
58 _PyHASH_INF for x >= 0, or -_PyHASH_INF for x < 0, instead.
59 _PyHASH_INF and -_PyHASH_INF are also used for the
60 hashes of float and Decimal infinities.
61
62 NaNs hash with a pointer hash. Having distinct hash values prevents
63 catastrophic pileups from distinct NaN instances which used to always
64 have the same hash value but would compare unequal.
65
66 A selling point for the above strategy is that it makes it possible
67 to compute hashes of decimal and binary floating-point numbers
68 efficiently, even if the exponent of the binary or decimal number
69 is large. The key point is that
70
71 reduce(x * y) == reduce(x) * reduce(y) (modulo _PyHASH_MODULUS)
72
73 provided that {reduce(x), reduce(y)} != {0, infinity}. The reduction of a
74 binary or decimal float is never infinity, since the denominator is a power
75 of 2 (for binary) or a divisor of a power of 10 (for decimal). So we have,
76 for nonnegative x,
77
78 reduce(x * 2**e) == reduce(x) * reduce(2**e) % _PyHASH_MODULUS
79
80 reduce(x * 10**e) == reduce(x) * reduce(10**e) % _PyHASH_MODULUS
81
82 and reduce(10**e) can be computed efficiently by the usual modular
83 exponentiation algorithm. For reduce(2**e) it's even better: since
84 P is of the form 2**n-1, reduce(2**e) is 2**(e mod n), and multiplication
85 by 2**(e mod n) modulo 2**n-1 just amounts to a rotation of bits.
86
87 */
88
89 Py_hash_t _Py_HashPointer(const void *);
90
91 Py_hash_t
_Py_HashDouble(PyObject * inst,double v)92 _Py_HashDouble(PyObject *inst, double v)
93 {
94 int e, sign;
95 double m;
96 Py_uhash_t x, y;
97
98 if (!Py_IS_FINITE(v)) {
99 if (Py_IS_INFINITY(v))
100 return v > 0 ? _PyHASH_INF : -_PyHASH_INF;
101 else
102 return _Py_HashPointer(inst);
103 }
104
105 m = frexp(v, &e);
106
107 sign = 1;
108 if (m < 0) {
109 sign = -1;
110 m = -m;
111 }
112
113 /* process 28 bits at a time; this should work well both for binary
114 and hexadecimal floating point. */
115 x = 0;
116 while (m) {
117 x = ((x << 28) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - 28);
118 m *= 268435456.0; /* 2**28 */
119 e -= 28;
120 y = (Py_uhash_t)m; /* pull out integer part */
121 m -= y;
122 x += y;
123 if (x >= _PyHASH_MODULUS)
124 x -= _PyHASH_MODULUS;
125 }
126
127 /* adjust for the exponent; first reduce it modulo _PyHASH_BITS */
128 e = e >= 0 ? e % _PyHASH_BITS : _PyHASH_BITS-1-((-1-e) % _PyHASH_BITS);
129 x = ((x << e) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - e);
130
131 x = x * sign;
132 if (x == (Py_uhash_t)-1)
133 x = (Py_uhash_t)-2;
134 return (Py_hash_t)x;
135 }
136
137 Py_hash_t
_Py_HashPointerRaw(const void * p)138 _Py_HashPointerRaw(const void *p)
139 {
140 size_t y = (size_t)p;
141 /* bottom 3 or 4 bits are likely to be 0; rotate y by 4 to avoid
142 excessive hash collisions for dicts and sets */
143 y = (y >> 4) | (y << (8 * SIZEOF_VOID_P - 4));
144 return (Py_hash_t)y;
145 }
146
147 Py_hash_t
_Py_HashPointer(const void * p)148 _Py_HashPointer(const void *p)
149 {
150 Py_hash_t x = _Py_HashPointerRaw(p);
151 if (x == -1) {
152 x = -2;
153 }
154 return x;
155 }
156
157 Py_hash_t
_Py_HashBytes(const void * src,Py_ssize_t len)158 _Py_HashBytes(const void *src, Py_ssize_t len)
159 {
160 Py_hash_t x;
161 /*
162 We make the hash of the empty string be 0, rather than using
163 (prefix ^ suffix), since this slightly obfuscates the hash secret
164 */
165 if (len == 0) {
166 return 0;
167 }
168
169 #ifdef Py_HASH_STATS
170 hashstats[(len <= Py_HASH_STATS_MAX) ? len : 0]++;
171 #endif
172
173 #if Py_HASH_CUTOFF > 0
174 if (len < Py_HASH_CUTOFF) {
175 /* Optimize hashing of very small strings with inline DJBX33A. */
176 Py_uhash_t hash;
177 const unsigned char *p = src;
178 hash = 5381; /* DJBX33A starts with 5381 */
179
180 switch(len) {
181 /* ((hash << 5) + hash) + *p == hash * 33 + *p */
182 case 7: hash = ((hash << 5) + hash) + *p++; /* fallthrough */
183 case 6: hash = ((hash << 5) + hash) + *p++; /* fallthrough */
184 case 5: hash = ((hash << 5) + hash) + *p++; /* fallthrough */
185 case 4: hash = ((hash << 5) + hash) + *p++; /* fallthrough */
186 case 3: hash = ((hash << 5) + hash) + *p++; /* fallthrough */
187 case 2: hash = ((hash << 5) + hash) + *p++; /* fallthrough */
188 case 1: hash = ((hash << 5) + hash) + *p++; break;
189 default:
190 Py_UNREACHABLE();
191 }
192 hash ^= len;
193 hash ^= (Py_uhash_t) _Py_HashSecret.djbx33a.suffix;
194 x = (Py_hash_t)hash;
195 }
196 else
197 #endif /* Py_HASH_CUTOFF */
198 x = PyHash_Func.hash(src, len);
199
200 if (x == -1)
201 return -2;
202 return x;
203 }
204
205 void
_PyHash_Fini(void)206 _PyHash_Fini(void)
207 {
208 #ifdef Py_HASH_STATS
209 fprintf(stderr, "len calls total\n");
210 Py_ssize_t total = 0;
211 for (int i = 1; i <= Py_HASH_STATS_MAX; i++) {
212 total += hashstats[i];
213 fprintf(stderr, "%2i %8zd %8zd\n", i, hashstats[i], total);
214 }
215 total += hashstats[0];
216 fprintf(stderr, "> %8zd %8zd\n", hashstats[0], total);
217 #endif
218 }
219
220 PyHash_FuncDef *
PyHash_GetFuncDef(void)221 PyHash_GetFuncDef(void)
222 {
223 return &PyHash_Func;
224 }
225
226 /* Optimized memcpy() for Windows */
227 #ifdef _MSC_VER
228 # if SIZEOF_PY_UHASH_T == 4
229 # define PY_UHASH_CPY(dst, src) do { \
230 dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; \
231 } while(0)
232 # elif SIZEOF_PY_UHASH_T == 8
233 # define PY_UHASH_CPY(dst, src) do { \
234 dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; \
235 dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; \
236 } while(0)
237 # else
238 # error SIZEOF_PY_UHASH_T must be 4 or 8
239 # endif /* SIZEOF_PY_UHASH_T */
240 #else /* not Windows */
241 # define PY_UHASH_CPY(dst, src) memcpy(dst, src, SIZEOF_PY_UHASH_T)
242 #endif /* _MSC_VER */
243
244
245 #if Py_HASH_ALGORITHM == Py_HASH_FNV
246 /* **************************************************************************
247 * Modified Fowler-Noll-Vo (FNV) hash function
248 */
249 static Py_hash_t
fnv(const void * src,Py_ssize_t len)250 fnv(const void *src, Py_ssize_t len)
251 {
252 const unsigned char *p = src;
253 Py_uhash_t x;
254 Py_ssize_t remainder, blocks;
255 union {
256 Py_uhash_t value;
257 unsigned char bytes[SIZEOF_PY_UHASH_T];
258 } block;
259
260 #ifdef Py_DEBUG
261 assert(_Py_HashSecret_Initialized);
262 #endif
263 remainder = len % SIZEOF_PY_UHASH_T;
264 if (remainder == 0) {
265 /* Process at least one block byte by byte to reduce hash collisions
266 * for strings with common prefixes. */
267 remainder = SIZEOF_PY_UHASH_T;
268 }
269 blocks = (len - remainder) / SIZEOF_PY_UHASH_T;
270
271 x = (Py_uhash_t) _Py_HashSecret.fnv.prefix;
272 x ^= (Py_uhash_t) *p << 7;
273 while (blocks--) {
274 PY_UHASH_CPY(block.bytes, p);
275 x = (_PyHASH_MULTIPLIER * x) ^ block.value;
276 p += SIZEOF_PY_UHASH_T;
277 }
278 /* add remainder */
279 for (; remainder > 0; remainder--)
280 x = (_PyHASH_MULTIPLIER * x) ^ (Py_uhash_t) *p++;
281 x ^= (Py_uhash_t) len;
282 x ^= (Py_uhash_t) _Py_HashSecret.fnv.suffix;
283 if (x == (Py_uhash_t) -1) {
284 x = (Py_uhash_t) -2;
285 }
286 return x;
287 }
288
289 static PyHash_FuncDef PyHash_Func = {fnv, "fnv", 8 * SIZEOF_PY_HASH_T,
290 16 * SIZEOF_PY_HASH_T};
291
292 #endif /* Py_HASH_ALGORITHM == Py_HASH_FNV */
293
294
295 /* **************************************************************************
296 <MIT License>
297 Copyright (c) 2013 Marek Majkowski <[email protected]>
298
299 Permission is hereby granted, free of charge, to any person obtaining a copy
300 of this software and associated documentation files (the "Software"), to deal
301 in the Software without restriction, including without limitation the rights
302 to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
303 copies of the Software, and to permit persons to whom the Software is
304 furnished to do so, subject to the following conditions:
305
306 The above copyright notice and this permission notice shall be included in
307 all copies or substantial portions of the Software.
308
309 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
310 IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
311 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
312 AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
313 LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
314 OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
315 THE SOFTWARE.
316 </MIT License>
317
318 Original location:
319 https://github.com/majek/csiphash/
320
321 Solution inspired by code from:
322 Samuel Neves (supercop/crypto_auth/siphash24/little)
323 djb (supercop/crypto_auth/siphash24/little2)
324 Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)
325
326 Modified for Python by Christian Heimes:
327 - C89 / MSVC compatibility
328 - _rotl64() on Windows
329 - letoh64() fallback
330 */
331
332 /* byte swap little endian to host endian
333 * Endian conversion not only ensures that the hash function returns the same
334 * value on all platforms. It is also required to for a good dispersion of
335 * the hash values' least significant bits.
336 */
337 #if PY_LITTLE_ENDIAN
338 # define _le64toh(x) ((uint64_t)(x))
339 #elif defined(__APPLE__)
340 # define _le64toh(x) OSSwapLittleToHostInt64(x)
341 #elif defined(HAVE_LETOH64)
342 # define _le64toh(x) le64toh(x)
343 #else
344 # define _le64toh(x) (((uint64_t)(x) << 56) | \
345 (((uint64_t)(x) << 40) & 0xff000000000000ULL) | \
346 (((uint64_t)(x) << 24) & 0xff0000000000ULL) | \
347 (((uint64_t)(x) << 8) & 0xff00000000ULL) | \
348 (((uint64_t)(x) >> 8) & 0xff000000ULL) | \
349 (((uint64_t)(x) >> 24) & 0xff0000ULL) | \
350 (((uint64_t)(x) >> 40) & 0xff00ULL) | \
351 ((uint64_t)(x) >> 56))
352 #endif
353
354
355 #ifdef _MSC_VER
356 # define ROTATE(x, b) _rotl64(x, b)
357 #else
358 # define ROTATE(x, b) (uint64_t)( ((x) << (b)) | ( (x) >> (64 - (b))) )
359 #endif
360
361 #define HALF_ROUND(a,b,c,d,s,t) \
362 a += b; c += d; \
363 b = ROTATE(b, s) ^ a; \
364 d = ROTATE(d, t) ^ c; \
365 a = ROTATE(a, 32);
366
367 #define SINGLE_ROUND(v0,v1,v2,v3) \
368 HALF_ROUND(v0,v1,v2,v3,13,16); \
369 HALF_ROUND(v2,v1,v0,v3,17,21);
370
371 #define DOUBLE_ROUND(v0,v1,v2,v3) \
372 SINGLE_ROUND(v0,v1,v2,v3); \
373 SINGLE_ROUND(v0,v1,v2,v3);
374
375
376 static uint64_t
siphash13(uint64_t k0,uint64_t k1,const void * src,Py_ssize_t src_sz)377 siphash13(uint64_t k0, uint64_t k1, const void *src, Py_ssize_t src_sz) {
378 uint64_t b = (uint64_t)src_sz << 56;
379 const uint8_t *in = (const uint8_t*)src;
380
381 uint64_t v0 = k0 ^ 0x736f6d6570736575ULL;
382 uint64_t v1 = k1 ^ 0x646f72616e646f6dULL;
383 uint64_t v2 = k0 ^ 0x6c7967656e657261ULL;
384 uint64_t v3 = k1 ^ 0x7465646279746573ULL;
385
386 uint64_t t;
387 uint8_t *pt;
388
389 while (src_sz >= 8) {
390 uint64_t mi;
391 memcpy(&mi, in, sizeof(mi));
392 mi = _le64toh(mi);
393 in += sizeof(mi);
394 src_sz -= sizeof(mi);
395 v3 ^= mi;
396 SINGLE_ROUND(v0,v1,v2,v3);
397 v0 ^= mi;
398 }
399
400 t = 0;
401 pt = (uint8_t *)&t;
402 switch (src_sz) {
403 case 7: pt[6] = in[6]; /* fall through */
404 case 6: pt[5] = in[5]; /* fall through */
405 case 5: pt[4] = in[4]; /* fall through */
406 case 4: memcpy(pt, in, sizeof(uint32_t)); break;
407 case 3: pt[2] = in[2]; /* fall through */
408 case 2: pt[1] = in[1]; /* fall through */
409 case 1: pt[0] = in[0]; /* fall through */
410 }
411 b |= _le64toh(t);
412
413 v3 ^= b;
414 SINGLE_ROUND(v0,v1,v2,v3);
415 v0 ^= b;
416 v2 ^= 0xff;
417 SINGLE_ROUND(v0,v1,v2,v3);
418 SINGLE_ROUND(v0,v1,v2,v3);
419 SINGLE_ROUND(v0,v1,v2,v3);
420
421 /* modified */
422 t = (v0 ^ v1) ^ (v2 ^ v3);
423 return t;
424 }
425
426 #if Py_HASH_ALGORITHM == Py_HASH_SIPHASH24
427 static uint64_t
siphash24(uint64_t k0,uint64_t k1,const void * src,Py_ssize_t src_sz)428 siphash24(uint64_t k0, uint64_t k1, const void *src, Py_ssize_t src_sz) {
429 uint64_t b = (uint64_t)src_sz << 56;
430 const uint8_t *in = (const uint8_t*)src;
431
432 uint64_t v0 = k0 ^ 0x736f6d6570736575ULL;
433 uint64_t v1 = k1 ^ 0x646f72616e646f6dULL;
434 uint64_t v2 = k0 ^ 0x6c7967656e657261ULL;
435 uint64_t v3 = k1 ^ 0x7465646279746573ULL;
436
437 uint64_t t;
438 uint8_t *pt;
439
440 while (src_sz >= 8) {
441 uint64_t mi;
442 memcpy(&mi, in, sizeof(mi));
443 mi = _le64toh(mi);
444 in += sizeof(mi);
445 src_sz -= sizeof(mi);
446 v3 ^= mi;
447 DOUBLE_ROUND(v0,v1,v2,v3);
448 v0 ^= mi;
449 }
450
451 t = 0;
452 pt = (uint8_t *)&t;
453 switch (src_sz) {
454 case 7: pt[6] = in[6]; /* fall through */
455 case 6: pt[5] = in[5]; /* fall through */
456 case 5: pt[4] = in[4]; /* fall through */
457 case 4: memcpy(pt, in, sizeof(uint32_t)); break;
458 case 3: pt[2] = in[2]; /* fall through */
459 case 2: pt[1] = in[1]; /* fall through */
460 case 1: pt[0] = in[0]; /* fall through */
461 }
462 b |= _le64toh(t);
463
464 v3 ^= b;
465 DOUBLE_ROUND(v0,v1,v2,v3);
466 v0 ^= b;
467 v2 ^= 0xff;
468 DOUBLE_ROUND(v0,v1,v2,v3);
469 DOUBLE_ROUND(v0,v1,v2,v3);
470
471 /* modified */
472 t = (v0 ^ v1) ^ (v2 ^ v3);
473 return t;
474 }
475 #endif
476
477 uint64_t
_Py_KeyedHash(uint64_t key,const void * src,Py_ssize_t src_sz)478 _Py_KeyedHash(uint64_t key, const void *src, Py_ssize_t src_sz)
479 {
480 return siphash13(key, 0, src, src_sz);
481 }
482
483
484 #if Py_HASH_ALGORITHM == Py_HASH_SIPHASH13
485 static Py_hash_t
pysiphash(const void * src,Py_ssize_t src_sz)486 pysiphash(const void *src, Py_ssize_t src_sz) {
487 return (Py_hash_t)siphash13(
488 _le64toh(_Py_HashSecret.siphash.k0), _le64toh(_Py_HashSecret.siphash.k1),
489 src, src_sz);
490 }
491
492 static PyHash_FuncDef PyHash_Func = {pysiphash, "siphash13", 64, 128};
493 #endif
494
495 #if Py_HASH_ALGORITHM == Py_HASH_SIPHASH24
496 static Py_hash_t
pysiphash(const void * src,Py_ssize_t src_sz)497 pysiphash(const void *src, Py_ssize_t src_sz) {
498 return (Py_hash_t)siphash24(
499 _le64toh(_Py_HashSecret.siphash.k0), _le64toh(_Py_HashSecret.siphash.k1),
500 src, src_sz);
501 }
502
503 static PyHash_FuncDef PyHash_Func = {pysiphash, "siphash24", 64, 128};
504 #endif
505
506 #ifdef __cplusplus
507 }
508 #endif
509