1from test import support, seq_tests
2import unittest
3
4import gc
5import pickle
6
7# For tuple hashes, we normally only run a test to ensure that we get
8# the same results across platforms in a handful of cases.  If that's
9# so, there's no real point to running more.  Set RUN_ALL_HASH_TESTS to
10# run more anyway.  That's usually of real interest only when analyzing,
11# or changing, the hash algorithm.  In which case it's usually also
12# most useful to set JUST_SHOW_HASH_RESULTS, to see all the results
13# instead of wrestling with test "failures".  See the bottom of the
14# file for extensive notes on what we're testing here and why.
15RUN_ALL_HASH_TESTS = False
16JUST_SHOW_HASH_RESULTS = False # if RUN_ALL_HASH_TESTS, just display
17
18class TupleTest(seq_tests.CommonTest):
19    type2test = tuple
20
21    def test_getitem_error(self):
22        t = ()
23        msg = "tuple indices must be integers or slices"
24        with self.assertRaisesRegex(TypeError, msg):
25            t['a']
26
27    def test_constructors(self):
28        super().test_constructors()
29        # calling built-in types without argument must return empty
30        self.assertEqual(tuple(), ())
31        t0_3 = (0, 1, 2, 3)
32        t0_3_bis = tuple(t0_3)
33        self.assertTrue(t0_3 is t0_3_bis)
34        self.assertEqual(tuple([]), ())
35        self.assertEqual(tuple([0, 1, 2, 3]), (0, 1, 2, 3))
36        self.assertEqual(tuple(''), ())
37        self.assertEqual(tuple('spam'), ('s', 'p', 'a', 'm'))
38        self.assertEqual(tuple(x for x in range(10) if x % 2),
39                         (1, 3, 5, 7, 9))
40
41    def test_keyword_args(self):
42        with self.assertRaisesRegex(TypeError, 'keyword argument'):
43            tuple(sequence=())
44
45    def test_keywords_in_subclass(self):
46        class subclass(tuple):
47            pass
48        u = subclass([1, 2])
49        self.assertIs(type(u), subclass)
50        self.assertEqual(list(u), [1, 2])
51        with self.assertRaises(TypeError):
52            subclass(sequence=())
53
54        class subclass_with_init(tuple):
55            def __init__(self, arg, newarg=None):
56                self.newarg = newarg
57        u = subclass_with_init([1, 2], newarg=3)
58        self.assertIs(type(u), subclass_with_init)
59        self.assertEqual(list(u), [1, 2])
60        self.assertEqual(u.newarg, 3)
61
62        class subclass_with_new(tuple):
63            def __new__(cls, arg, newarg=None):
64                self = super().__new__(cls, arg)
65                self.newarg = newarg
66                return self
67        u = subclass_with_new([1, 2], newarg=3)
68        self.assertIs(type(u), subclass_with_new)
69        self.assertEqual(list(u), [1, 2])
70        self.assertEqual(u.newarg, 3)
71
72    def test_truth(self):
73        super().test_truth()
74        self.assertTrue(not ())
75        self.assertTrue((42, ))
76
77    def test_len(self):
78        super().test_len()
79        self.assertEqual(len(()), 0)
80        self.assertEqual(len((0,)), 1)
81        self.assertEqual(len((0, 1, 2)), 3)
82
83    def test_iadd(self):
84        super().test_iadd()
85        u = (0, 1)
86        u2 = u
87        u += (2, 3)
88        self.assertTrue(u is not u2)
89
90    def test_imul(self):
91        super().test_imul()
92        u = (0, 1)
93        u2 = u
94        u *= 3
95        self.assertTrue(u is not u2)
96
97    def test_tupleresizebug(self):
98        # Check that a specific bug in _PyTuple_Resize() is squashed.
99        def f():
100            for i in range(1000):
101                yield i
102        self.assertEqual(list(tuple(f())), list(range(1000)))
103
104    # We expect tuples whose base components have deterministic hashes to
105    # have deterministic hashes too - and, indeed, the same hashes across
106    # platforms with hash codes of the same bit width.
107    def test_hash_exact(self):
108        def check_one_exact(t, e32, e64):
109            got = hash(t)
110            expected = e32 if support.NHASHBITS == 32 else e64
111            if got != expected:
112                msg = f"FAIL hash({t!r}) == {got} != {expected}"
113                self.fail(msg)
114
115        check_one_exact((), 750394483, 5740354900026072187)
116        check_one_exact((0,), 1214856301, -8753497827991233192)
117        check_one_exact((0, 0), -168982784, -8458139203682520985)
118        check_one_exact((0.5,), 2077348973, -408149959306781352)
119        check_one_exact((0.5, (), (-2, 3, (4, 6))), 714642271,
120                        -1845940830829704396)
121
122    # Various tests for hashing of tuples to check that we get few collisions.
123    # Does something only if RUN_ALL_HASH_TESTS is true.
124    #
125    # Earlier versions of the tuple hash algorithm had massive collisions
126    # reported at:
127    # - https://bugs.python.org/issue942952
128    # - https://bugs.python.org/issue34751
129    def test_hash_optional(self):
130        from itertools import product
131
132        if not RUN_ALL_HASH_TESTS:
133            return
134
135        # If specified, `expected` is a 2-tuple of expected
136        # (number_of_collisions, pileup) values, and the test fails if
137        # those aren't the values we get.  Also if specified, the test
138        # fails if z > `zlimit`.
139        def tryone_inner(tag, nbins, hashes, expected=None, zlimit=None):
140            from collections import Counter
141
142            nballs = len(hashes)
143            mean, sdev = support.collision_stats(nbins, nballs)
144            c = Counter(hashes)
145            collisions = nballs - len(c)
146            z = (collisions - mean) / sdev
147            pileup = max(c.values()) - 1
148            del c
149            got = (collisions, pileup)
150            failed = False
151            prefix = ""
152            if zlimit is not None and z > zlimit:
153                failed = True
154                prefix = f"FAIL z > {zlimit}; "
155            if expected is not None and got != expected:
156                failed = True
157                prefix += f"FAIL {got} != {expected}; "
158            if failed or JUST_SHOW_HASH_RESULTS:
159                msg = f"{prefix}{tag}; pileup {pileup:,} mean {mean:.1f} "
160                msg += f"coll {collisions:,} z {z:+.1f}"
161                if JUST_SHOW_HASH_RESULTS:
162                    import sys
163                    print(msg, file=sys.__stdout__)
164                else:
165                    self.fail(msg)
166
167        def tryone(tag, xs,
168                   native32=None, native64=None, hi32=None, lo32=None,
169                   zlimit=None):
170            NHASHBITS = support.NHASHBITS
171            hashes = list(map(hash, xs))
172            tryone_inner(tag + f"; {NHASHBITS}-bit hash codes",
173                         1 << NHASHBITS,
174                         hashes,
175                         native32 if NHASHBITS == 32 else native64,
176                         zlimit)
177
178            if NHASHBITS > 32:
179                shift = NHASHBITS - 32
180                tryone_inner(tag + "; 32-bit upper hash codes",
181                             1 << 32,
182                             [h >> shift for h in hashes],
183                             hi32,
184                             zlimit)
185
186                mask = (1 << 32) - 1
187                tryone_inner(tag + "; 32-bit lower hash codes",
188                             1 << 32,
189                             [h & mask for h in hashes],
190                             lo32,
191                             zlimit)
192
193        # Tuples of smallish positive integers are common - nice if we
194        # get "better than random" for these.
195        tryone("range(100) by 3", list(product(range(100), repeat=3)),
196               (0, 0), (0, 0), (4, 1), (0, 0))
197
198        # A previous hash had systematic problems when mixing integers of
199        # similar magnitude but opposite sign, obscurely related to that
200        # j ^ -2 == -j when j is odd.
201        cands = list(range(-10, -1)) + list(range(9))
202
203        # Note:  -1 is omitted because hash(-1) == hash(-2) == -2, and
204        # there's nothing the tuple hash can do to avoid collisions
205        # inherited from collisions in the tuple components' hashes.
206        tryone("-10 .. 8 by 4", list(product(cands, repeat=4)),
207               (0, 0), (0, 0), (0, 0), (0, 0))
208        del cands
209
210        # The hashes here are a weird mix of values where all the
211        # variation is in the lowest bits and across a single high-order
212        # bit - the middle bits are all zeroes. A decent hash has to
213        # both propagate low bits to the left and high bits to the
214        # right.  This is also complicated a bit in that there are
215        # collisions among the hashes of the integers in L alone.
216        L = [n << 60 for n in range(100)]
217        tryone("0..99 << 60 by 3", list(product(L, repeat=3)),
218               (0, 0), (0, 0), (0, 0), (324, 1))
219        del L
220
221        # Used to suffer a massive number of collisions.
222        tryone("[-3, 3] by 18", list(product([-3, 3], repeat=18)),
223               (7, 1), (0, 0), (7, 1), (6, 1))
224
225        # And even worse.  hash(0.5) has only a single bit set, at the
226        # high end. A decent hash needs to propagate high bits right.
227        tryone("[0, 0.5] by 18", list(product([0, 0.5], repeat=18)),
228               (5, 1), (0, 0), (9, 1), (12, 1))
229
230        # Hashes of ints and floats are the same across platforms.
231        # String hashes vary even on a single platform across runs, due
232        # to hash randomization for strings.  So we can't say exactly
233        # what this should do.  Instead we insist that the # of
234        # collisions is no more than 4 sdevs above the theoretically
235        # random mean.  Even if the tuple hash can't achieve that on its
236        # own, the string hash is trying to be decently pseudo-random
237        # (in all bit positions) on _its_ own.  We can at least test
238        # that the tuple hash doesn't systematically ruin that.
239        tryone("4-char tuples",
240               list(product("abcdefghijklmnopqrstuvwxyz", repeat=4)),
241               zlimit=4.0)
242
243        # The "old tuple test".  See https://bugs.python.org/issue942952.
244        # Ensures, for example, that the hash:
245        #   is non-commutative
246        #   spreads closely spaced values
247        #   doesn't exhibit cancellation in tuples like (x,(x,y))
248        N = 50
249        base = list(range(N))
250        xp = list(product(base, repeat=2))
251        inps = base + list(product(base, xp)) + \
252                     list(product(xp, base)) + xp + list(zip(base))
253        tryone("old tuple test", inps,
254               (2, 1), (0, 0), (52, 49), (7, 1))
255        del base, xp, inps
256
257        # The "new tuple test".  See https://bugs.python.org/issue34751.
258        # Even more tortured nesting, and a mix of signed ints of very
259        # small magnitude.
260        n = 5
261        A = [x for x in range(-n, n+1) if x != -1]
262        B = A + [(a,) for a in A]
263        L2 = list(product(A, repeat=2))
264        L3 = L2 + list(product(A, repeat=3))
265        L4 = L3 + list(product(A, repeat=4))
266        # T = list of testcases. These consist of all (possibly nested
267        # at most 2 levels deep) tuples containing at most 4 items from
268        # the set A.
269        T = A
270        T += [(a,) for a in B + L4]
271        T += product(L3, B)
272        T += product(L2, repeat=2)
273        T += product(B, L3)
274        T += product(B, B, L2)
275        T += product(B, L2, B)
276        T += product(L2, B, B)
277        T += product(B, repeat=4)
278        assert len(T) == 345130
279        tryone("new tuple test", T,
280               (9, 1), (0, 0), (21, 5), (6, 1))
281
282    def test_repr(self):
283        l0 = tuple()
284        l2 = (0, 1, 2)
285        a0 = self.type2test(l0)
286        a2 = self.type2test(l2)
287
288        self.assertEqual(str(a0), repr(l0))
289        self.assertEqual(str(a2), repr(l2))
290        self.assertEqual(repr(a0), "()")
291        self.assertEqual(repr(a2), "(0, 1, 2)")
292
293    def _not_tracked(self, t):
294        # Nested tuples can take several collections to untrack
295        gc.collect()
296        gc.collect()
297        self.assertFalse(gc.is_tracked(t), t)
298
299    def _tracked(self, t):
300        self.assertTrue(gc.is_tracked(t), t)
301        gc.collect()
302        gc.collect()
303        self.assertTrue(gc.is_tracked(t), t)
304
305    @support.cpython_only
306    def test_track_literals(self):
307        # Test GC-optimization of tuple literals
308        x, y, z = 1.5, "a", []
309
310        self._not_tracked(())
311        self._not_tracked((1,))
312        self._not_tracked((1, 2))
313        self._not_tracked((1, 2, "a"))
314        self._not_tracked((1, 2, (None, True, False, ()), int))
315        self._not_tracked((object(),))
316        self._not_tracked(((1, x), y, (2, 3)))
317
318        # Tuples with mutable elements are always tracked, even if those
319        # elements are not tracked right now.
320        self._tracked(([],))
321        self._tracked(([1],))
322        self._tracked(({},))
323        self._tracked((set(),))
324        self._tracked((x, y, z))
325
326    def check_track_dynamic(self, tp, always_track):
327        x, y, z = 1.5, "a", []
328
329        check = self._tracked if always_track else self._not_tracked
330        check(tp())
331        check(tp([]))
332        check(tp(set()))
333        check(tp([1, x, y]))
334        check(tp(obj for obj in [1, x, y]))
335        check(tp(set([1, x, y])))
336        check(tp(tuple([obj]) for obj in [1, x, y]))
337        check(tuple(tp([obj]) for obj in [1, x, y]))
338
339        self._tracked(tp([z]))
340        self._tracked(tp([[x, y]]))
341        self._tracked(tp([{x: y}]))
342        self._tracked(tp(obj for obj in [x, y, z]))
343        self._tracked(tp(tuple([obj]) for obj in [x, y, z]))
344        self._tracked(tuple(tp([obj]) for obj in [x, y, z]))
345
346    @support.cpython_only
347    def test_track_dynamic(self):
348        # Test GC-optimization of dynamically constructed tuples.
349        self.check_track_dynamic(tuple, False)
350
351    @support.cpython_only
352    def test_track_subtypes(self):
353        # Tuple subtypes must always be tracked
354        class MyTuple(tuple):
355            pass
356        self.check_track_dynamic(MyTuple, True)
357
358    @support.cpython_only
359    def test_bug7466(self):
360        # Trying to untrack an unfinished tuple could crash Python
361        self._not_tracked(tuple(gc.collect() for i in range(101)))
362
363    def test_repr_large(self):
364        # Check the repr of large list objects
365        def check(n):
366            l = (0,) * n
367            s = repr(l)
368            self.assertEqual(s,
369                '(' + ', '.join(['0'] * n) + ')')
370        check(10)       # check our checking code
371        check(1000000)
372
373    def test_iterator_pickle(self):
374        # Userlist iterators don't support pickling yet since
375        # they are based on generators.
376        data = self.type2test([4, 5, 6, 7])
377        for proto in range(pickle.HIGHEST_PROTOCOL + 1):
378            itorg = iter(data)
379            d = pickle.dumps(itorg, proto)
380            it = pickle.loads(d)
381            self.assertEqual(type(itorg), type(it))
382            self.assertEqual(self.type2test(it), self.type2test(data))
383
384            it = pickle.loads(d)
385            next(it)
386            d = pickle.dumps(it, proto)
387            self.assertEqual(self.type2test(it), self.type2test(data)[1:])
388
389    def test_reversed_pickle(self):
390        data = self.type2test([4, 5, 6, 7])
391        for proto in range(pickle.HIGHEST_PROTOCOL + 1):
392            itorg = reversed(data)
393            d = pickle.dumps(itorg, proto)
394            it = pickle.loads(d)
395            self.assertEqual(type(itorg), type(it))
396            self.assertEqual(self.type2test(it), self.type2test(reversed(data)))
397
398            it = pickle.loads(d)
399            next(it)
400            d = pickle.dumps(it, proto)
401            self.assertEqual(self.type2test(it), self.type2test(reversed(data))[1:])
402
403    def test_no_comdat_folding(self):
404        # Issue 8847: In the PGO build, the MSVC linker's COMDAT folding
405        # optimization causes failures in code that relies on distinct
406        # function addresses.
407        class T(tuple): pass
408        with self.assertRaises(TypeError):
409            [3,] + T((1,2))
410
411    def test_lexicographic_ordering(self):
412        # Issue 21100
413        a = self.type2test([1, 2])
414        b = self.type2test([1, 2, 0])
415        c = self.type2test([1, 3])
416        self.assertLess(a, b)
417        self.assertLess(b, c)
418
419# Notes on testing hash codes.  The primary thing is that Python doesn't
420# care about "random" hash codes.  To the contrary, we like them to be
421# very regular when possible, so that the low-order bits are as evenly
422# distributed as possible.  For integers this is easy: hash(i) == i for
423# all not-huge i except i==-1.
424#
425# For tuples of mixed type there's really no hope of that, so we want
426# "randomish" here instead.  But getting close to pseudo-random in all
427# bit positions is more expensive than we've been willing to pay for.
428#
429# We can tolerate large deviations from random - what we don't want is
430# catastrophic pileups on a relative handful of hash codes.  The dict
431# and set lookup routines remain effective provided that full-width hash
432# codes for not-equal objects are distinct.
433#
434# So we compute various statistics here based on what a "truly random"
435# hash would do, but don't automate "pass or fail" based on those
436# results.  Instead those are viewed as inputs to human judgment, and the
437# automated tests merely ensure we get the _same_ results across
438# platforms.  In fact, we normally don't bother to run them at all -
439# set RUN_ALL_HASH_TESTS to force it.
440#
441# When global JUST_SHOW_HASH_RESULTS is True, the tuple hash statistics
442# are just displayed to stdout.  A typical output line looks like:
443#
444# old tuple test; 32-bit upper hash codes; \
445#             pileup 49 mean 7.4 coll 52 z +16.4
446#
447# "old tuple test" is just a string name for the test being run.
448#
449# "32-bit upper hash codes" means this was run under a 64-bit build and
450# we've shifted away the lower 32 bits of the hash codes.
451#
452# "pileup" is 0 if there were no collisions across those hash codes.
453# It's 1 less than the maximum number of times any single hash code was
454# seen.  So in this case, there was (at least) one hash code that was
455# seen 50 times:  that hash code "piled up" 49 more times than ideal.
456#
457# "mean" is the number of collisions a perfectly random hash function
458# would have yielded, on average.
459#
460# "coll" is the number of collisions actually seen.
461#
462# "z" is "coll - mean" divided by the standard deviation of the number
463# of collisions a perfectly random hash function would suffer.  A
464# positive value is "worse than random", and negative value "better than
465# random".  Anything of magnitude greater than 3 would be highly suspect
466# for a hash function that claimed to be random.  It's essentially
467# impossible that a truly random function would deliver a result 16.4
468# sdevs "worse than random".
469#
470# But we don't care here!  That's why the test isn't coded to fail.
471# Knowing something about how the high-order hash code bits behave
472# provides insight, but is irrelevant to how the dict and set lookup
473# code performs.  The low-order bits are much more important to that,
474# and on the same test those did "just like random":
475#
476# old tuple test; 32-bit lower hash codes; \
477#            pileup 1 mean 7.4 coll 7 z -0.2
478#
479# So there are always tradeoffs to consider.  For another:
480#
481# 0..99 << 60 by 3; 32-bit hash codes; \
482#            pileup 0 mean 116.4 coll 0 z -10.8
483#
484# That was run under a 32-bit build, and is spectacularly "better than
485# random".  On a 64-bit build the wider hash codes are fine too:
486#
487# 0..99 << 60 by 3; 64-bit hash codes; \
488#             pileup 0 mean 0.0 coll 0 z -0.0
489#
490# but their lower 32 bits are poor:
491#
492# 0..99 << 60 by 3; 32-bit lower hash codes; \
493#             pileup 1 mean 116.4 coll 324 z +19.2
494#
495# In a statistical sense that's waaaaay too many collisions, but (a) 324
496# collisions out of a million hash codes isn't anywhere near being a
497# real problem; and, (b) the worst pileup on a single hash code is a measly
498# 1 extra.  It's a relatively poor case for the tuple hash, but still
499# fine for practical use.
500#
501# This isn't, which is what Python 3.7.1 produced for the hashes of
502# itertools.product([0, 0.5], repeat=18).  Even with a fat 64-bit
503# hashcode, the highest pileup was over 16,000 - making a dict/set
504# lookup on one of the colliding values thousands of times slower (on
505# average) than we expect.
506#
507# [0, 0.5] by 18; 64-bit hash codes; \
508#            pileup 16,383 mean 0.0 coll 262,128 z +6073641856.9
509# [0, 0.5] by 18; 32-bit lower hash codes; \
510#            pileup 262,143 mean 8.0 coll 262,143 z +92683.6
511
512if __name__ == "__main__":
513    unittest.main()
514