1# test interactions between int, float, Decimal and Fraction 2 3import unittest 4import random 5import math 6import sys 7import operator 8 9from decimal import Decimal as D 10from fractions import Fraction as F 11 12# Constants related to the hash implementation; hash(x) is based 13# on the reduction of x modulo the prime _PyHASH_MODULUS. 14_PyHASH_MODULUS = sys.hash_info.modulus 15_PyHASH_INF = sys.hash_info.inf 16 17 18class DummyIntegral(int): 19 """Dummy Integral class to test conversion of the Rational to float.""" 20 21 def __mul__(self, other): 22 return DummyIntegral(super().__mul__(other)) 23 __rmul__ = __mul__ 24 25 def __truediv__(self, other): 26 return NotImplemented 27 __rtruediv__ = __truediv__ 28 29 @property 30 def numerator(self): 31 return DummyIntegral(self) 32 33 @property 34 def denominator(self): 35 return DummyIntegral(1) 36 37 38class HashTest(unittest.TestCase): 39 def check_equal_hash(self, x, y): 40 # check both that x and y are equal and that their hashes are equal 41 self.assertEqual(hash(x), hash(y), 42 "got different hashes for {!r} and {!r}".format(x, y)) 43 self.assertEqual(x, y) 44 45 def test_bools(self): 46 self.check_equal_hash(False, 0) 47 self.check_equal_hash(True, 1) 48 49 def test_integers(self): 50 # check that equal values hash equal 51 52 # exact integers 53 for i in range(-1000, 1000): 54 self.check_equal_hash(i, float(i)) 55 self.check_equal_hash(i, D(i)) 56 self.check_equal_hash(i, F(i)) 57 58 # the current hash is based on reduction modulo 2**n-1 for some 59 # n, so pay special attention to numbers of the form 2**n and 2**n-1. 60 for i in range(100): 61 n = 2**i - 1 62 if n == int(float(n)): 63 self.check_equal_hash(n, float(n)) 64 self.check_equal_hash(-n, -float(n)) 65 self.check_equal_hash(n, D(n)) 66 self.check_equal_hash(n, F(n)) 67 self.check_equal_hash(-n, D(-n)) 68 self.check_equal_hash(-n, F(-n)) 69 70 n = 2**i 71 self.check_equal_hash(n, float(n)) 72 self.check_equal_hash(-n, -float(n)) 73 self.check_equal_hash(n, D(n)) 74 self.check_equal_hash(n, F(n)) 75 self.check_equal_hash(-n, D(-n)) 76 self.check_equal_hash(-n, F(-n)) 77 78 # random values of various sizes 79 for _ in range(1000): 80 e = random.randrange(300) 81 n = random.randrange(-10**e, 10**e) 82 self.check_equal_hash(n, D(n)) 83 self.check_equal_hash(n, F(n)) 84 if n == int(float(n)): 85 self.check_equal_hash(n, float(n)) 86 87 def test_binary_floats(self): 88 # check that floats hash equal to corresponding Fractions and Decimals 89 90 # floats that are distinct but numerically equal should hash the same 91 self.check_equal_hash(0.0, -0.0) 92 93 # zeros 94 self.check_equal_hash(0.0, D(0)) 95 self.check_equal_hash(-0.0, D(0)) 96 self.check_equal_hash(-0.0, D('-0.0')) 97 self.check_equal_hash(0.0, F(0)) 98 99 # infinities and nans 100 self.check_equal_hash(float('inf'), D('inf')) 101 self.check_equal_hash(float('-inf'), D('-inf')) 102 103 for _ in range(1000): 104 x = random.random() * math.exp(random.random()*200.0 - 100.0) 105 self.check_equal_hash(x, D.from_float(x)) 106 self.check_equal_hash(x, F.from_float(x)) 107 108 def test_complex(self): 109 # complex numbers with zero imaginary part should hash equal to 110 # the corresponding float 111 112 test_values = [0.0, -0.0, 1.0, -1.0, 0.40625, -5136.5, 113 float('inf'), float('-inf')] 114 115 for zero in -0.0, 0.0: 116 for value in test_values: 117 self.check_equal_hash(value, complex(value, zero)) 118 119 def test_decimals(self): 120 # check that Decimal instances that have different representations 121 # but equal values give the same hash 122 zeros = ['0', '-0', '0.0', '-0.0e10', '000e-10'] 123 for zero in zeros: 124 self.check_equal_hash(D(zero), D(0)) 125 126 self.check_equal_hash(D('1.00'), D(1)) 127 self.check_equal_hash(D('1.00000'), D(1)) 128 self.check_equal_hash(D('-1.00'), D(-1)) 129 self.check_equal_hash(D('-1.00000'), D(-1)) 130 self.check_equal_hash(D('123e2'), D(12300)) 131 self.check_equal_hash(D('1230e1'), D(12300)) 132 self.check_equal_hash(D('12300'), D(12300)) 133 self.check_equal_hash(D('12300.0'), D(12300)) 134 self.check_equal_hash(D('12300.00'), D(12300)) 135 self.check_equal_hash(D('12300.000'), D(12300)) 136 137 def test_fractions(self): 138 # check special case for fractions where either the numerator 139 # or the denominator is a multiple of _PyHASH_MODULUS 140 self.assertEqual(hash(F(1, _PyHASH_MODULUS)), _PyHASH_INF) 141 self.assertEqual(hash(F(-1, 3*_PyHASH_MODULUS)), -_PyHASH_INF) 142 self.assertEqual(hash(F(7*_PyHASH_MODULUS, 1)), 0) 143 self.assertEqual(hash(F(-_PyHASH_MODULUS, 1)), 0) 144 145 # The numbers ABC doesn't enforce that the "true" division 146 # of integers produces a float. This tests that the 147 # Rational.__float__() method has required type conversions. 148 x = F(DummyIntegral(1), DummyIntegral(2), _normalize=False) 149 self.assertRaises(TypeError, lambda: x.numerator/x.denominator) 150 self.assertEqual(float(x), 0.5) 151 152 def test_hash_normalization(self): 153 # Test for a bug encountered while changing long_hash. 154 # 155 # Given objects x and y, it should be possible for y's 156 # __hash__ method to return hash(x) in order to ensure that 157 # hash(x) == hash(y). But hash(x) is not exactly equal to the 158 # result of x.__hash__(): there's some internal normalization 159 # to make sure that the result fits in a C long, and is not 160 # equal to the invalid hash value -1. This internal 161 # normalization must therefore not change the result of 162 # hash(x) for any x. 163 164 class HalibutProxy: 165 def __hash__(self): 166 return hash('halibut') 167 def __eq__(self, other): 168 return other == 'halibut' 169 170 x = {'halibut', HalibutProxy()} 171 self.assertEqual(len(x), 1) 172 173class ComparisonTest(unittest.TestCase): 174 def test_mixed_comparisons(self): 175 176 # ordered list of distinct test values of various types: 177 # int, float, Fraction, Decimal 178 test_values = [ 179 float('-inf'), 180 D('-1e425000000'), 181 -1e308, 182 F(-22, 7), 183 -3.14, 184 -2, 185 0.0, 186 1e-320, 187 True, 188 F('1.2'), 189 D('1.3'), 190 float('1.4'), 191 F(275807, 195025), 192 D('1.414213562373095048801688724'), 193 F(114243, 80782), 194 F(473596569, 84615), 195 7e200, 196 D('infinity'), 197 ] 198 for i, first in enumerate(test_values): 199 for second in test_values[i+1:]: 200 self.assertLess(first, second) 201 self.assertLessEqual(first, second) 202 self.assertGreater(second, first) 203 self.assertGreaterEqual(second, first) 204 205 def test_complex(self): 206 # comparisons with complex are special: equality and inequality 207 # comparisons should always succeed, but order comparisons should 208 # raise TypeError. 209 z = 1.0 + 0j 210 w = -3.14 + 2.7j 211 212 for v in 1, 1.0, F(1), D(1), complex(1): 213 self.assertEqual(z, v) 214 self.assertEqual(v, z) 215 216 for v in 2, 2.0, F(2), D(2), complex(2): 217 self.assertNotEqual(z, v) 218 self.assertNotEqual(v, z) 219 self.assertNotEqual(w, v) 220 self.assertNotEqual(v, w) 221 222 for v in (1, 1.0, F(1), D(1), complex(1), 223 2, 2.0, F(2), D(2), complex(2), w): 224 for op in operator.le, operator.lt, operator.ge, operator.gt: 225 self.assertRaises(TypeError, op, z, v) 226 self.assertRaises(TypeError, op, v, z) 227 228 229if __name__ == '__main__': 230 unittest.main() 231