1.. _tut-brieftourtwo:
2
3**********************************************
4Brief Tour of the Standard Library --- Part II
5**********************************************
6
7This second tour covers more advanced modules that support professional
8programming needs.  These modules rarely occur in small scripts.
9
10
11.. _tut-output-formatting:
12
13Output Formatting
14=================
15
16The :mod:`reprlib` module provides a version of :func:`repr` customized for
17abbreviated displays of large or deeply nested containers::
18
19   >>> import reprlib
20   >>> reprlib.repr(set('supercalifragilisticexpialidocious'))
21   "{'a', 'c', 'd', 'e', 'f', 'g', ...}"
22
23The :mod:`pprint` module offers more sophisticated control over printing both
24built-in and user defined objects in a way that is readable by the interpreter.
25When the result is longer than one line, the "pretty printer" adds line breaks
26and indentation to more clearly reveal data structure::
27
28   >>> import pprint
29   >>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta',
30   ...     'yellow'], 'blue']]]
31   ...
32   >>> pprint.pprint(t, width=30)
33   [[[['black', 'cyan'],
34      'white',
35      ['green', 'red']],
36     [['magenta', 'yellow'],
37      'blue']]]
38
39The :mod:`textwrap` module formats paragraphs of text to fit a given screen
40width::
41
42   >>> import textwrap
43   >>> doc = """The wrap() method is just like fill() except that it returns
44   ... a list of strings instead of one big string with newlines to separate
45   ... the wrapped lines."""
46   ...
47   >>> print(textwrap.fill(doc, width=40))
48   The wrap() method is just like fill()
49   except that it returns a list of strings
50   instead of one big string with newlines
51   to separate the wrapped lines.
52
53The :mod:`locale` module accesses a database of culture specific data formats.
54The grouping attribute of locale's format function provides a direct way of
55formatting numbers with group separators::
56
57   >>> import locale
58   >>> locale.setlocale(locale.LC_ALL, 'English_United States.1252')
59   'English_United States.1252'
60   >>> conv = locale.localeconv()          # get a mapping of conventions
61   >>> x = 1234567.8
62   >>> locale.format("%d", x, grouping=True)
63   '1,234,567'
64   >>> locale.format_string("%s%.*f", (conv['currency_symbol'],
65   ...                      conv['frac_digits'], x), grouping=True)
66   '$1,234,567.80'
67
68
69.. _tut-templating:
70
71Templating
72==========
73
74The :mod:`string` module includes a versatile :class:`~string.Template` class
75with a simplified syntax suitable for editing by end-users.  This allows users
76to customize their applications without having to alter the application.
77
78The format uses placeholder names formed by ``$`` with valid Python identifiers
79(alphanumeric characters and underscores).  Surrounding the placeholder with
80braces allows it to be followed by more alphanumeric letters with no intervening
81spaces.  Writing ``$$`` creates a single escaped ``$``::
82
83   >>> from string import Template
84   >>> t = Template('${village}folk send $$10 to $cause.')
85   >>> t.substitute(village='Nottingham', cause='the ditch fund')
86   'Nottinghamfolk send $10 to the ditch fund.'
87
88The :meth:`~string.Template.substitute` method raises a :exc:`KeyError` when a
89placeholder is not supplied in a dictionary or a keyword argument.  For
90mail-merge style applications, user supplied data may be incomplete and the
91:meth:`~string.Template.safe_substitute` method may be more appropriate ---
92it will leave placeholders unchanged if data is missing::
93
94   >>> t = Template('Return the $item to $owner.')
95   >>> d = dict(item='unladen swallow')
96   >>> t.substitute(d)
97   Traceback (most recent call last):
98     ...
99   KeyError: 'owner'
100   >>> t.safe_substitute(d)
101   'Return the unladen swallow to $owner.'
102
103Template subclasses can specify a custom delimiter.  For example, a batch
104renaming utility for a photo browser may elect to use percent signs for
105placeholders such as the current date, image sequence number, or file format::
106
107   >>> import time, os.path
108   >>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg']
109   >>> class BatchRename(Template):
110   ...     delimiter = '%'
111   ...
112   >>> fmt = input('Enter rename style (%d-date %n-seqnum %f-format):  ')
113   Enter rename style (%d-date %n-seqnum %f-format):  Ashley_%n%f
114
115   >>> t = BatchRename(fmt)
116   >>> date = time.strftime('%d%b%y')
117   >>> for i, filename in enumerate(photofiles):
118   ...     base, ext = os.path.splitext(filename)
119   ...     newname = t.substitute(d=date, n=i, f=ext)
120   ...     print('{0} --> {1}'.format(filename, newname))
121
122   img_1074.jpg --> Ashley_0.jpg
123   img_1076.jpg --> Ashley_1.jpg
124   img_1077.jpg --> Ashley_2.jpg
125
126Another application for templating is separating program logic from the details
127of multiple output formats.  This makes it possible to substitute custom
128templates for XML files, plain text reports, and HTML web reports.
129
130
131.. _tut-binary-formats:
132
133Working with Binary Data Record Layouts
134=======================================
135
136The :mod:`struct` module provides :func:`~struct.pack` and
137:func:`~struct.unpack` functions for working with variable length binary
138record formats.  The following example shows
139how to loop through header information in a ZIP file without using the
140:mod:`zipfile` module.  Pack codes ``"H"`` and ``"I"`` represent two and four
141byte unsigned numbers respectively.  The ``"<"`` indicates that they are
142standard size and in little-endian byte order::
143
144   import struct
145
146   with open('myfile.zip', 'rb') as f:
147       data = f.read()
148
149   start = 0
150   for i in range(3):                      # show the first 3 file headers
151       start += 14
152       fields = struct.unpack('<IIIHH', data[start:start+16])
153       crc32, comp_size, uncomp_size, filenamesize, extra_size = fields
154
155       start += 16
156       filename = data[start:start+filenamesize]
157       start += filenamesize
158       extra = data[start:start+extra_size]
159       print(filename, hex(crc32), comp_size, uncomp_size)
160
161       start += extra_size + comp_size     # skip to the next header
162
163
164.. _tut-multi-threading:
165
166Multi-threading
167===============
168
169Threading is a technique for decoupling tasks which are not sequentially
170dependent.  Threads can be used to improve the responsiveness of applications
171that accept user input while other tasks run in the background.  A related use
172case is running I/O in parallel with computations in another thread.
173
174The following code shows how the high level :mod:`threading` module can run
175tasks in background while the main program continues to run::
176
177   import threading, zipfile
178
179   class AsyncZip(threading.Thread):
180       def __init__(self, infile, outfile):
181           threading.Thread.__init__(self)
182           self.infile = infile
183           self.outfile = outfile
184
185       def run(self):
186           f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)
187           f.write(self.infile)
188           f.close()
189           print('Finished background zip of:', self.infile)
190
191   background = AsyncZip('mydata.txt', 'myarchive.zip')
192   background.start()
193   print('The main program continues to run in foreground.')
194
195   background.join()    # Wait for the background task to finish
196   print('Main program waited until background was done.')
197
198The principal challenge of multi-threaded applications is coordinating threads
199that share data or other resources.  To that end, the threading module provides
200a number of synchronization primitives including locks, events, condition
201variables, and semaphores.
202
203While those tools are powerful, minor design errors can result in problems that
204are difficult to reproduce.  So, the preferred approach to task coordination is
205to concentrate all access to a resource in a single thread and then use the
206:mod:`queue` module to feed that thread with requests from other threads.
207Applications using :class:`~queue.Queue` objects for inter-thread communication and
208coordination are easier to design, more readable, and more reliable.
209
210
211.. _tut-logging:
212
213Logging
214=======
215
216The :mod:`logging` module offers a full featured and flexible logging system.
217At its simplest, log messages are sent to a file or to ``sys.stderr``::
218
219   import logging
220   logging.debug('Debugging information')
221   logging.info('Informational message')
222   logging.warning('Warning:config file %s not found', 'server.conf')
223   logging.error('Error occurred')
224   logging.critical('Critical error -- shutting down')
225
226This produces the following output:
227
228.. code-block:: none
229
230   WARNING:root:Warning:config file server.conf not found
231   ERROR:root:Error occurred
232   CRITICAL:root:Critical error -- shutting down
233
234By default, informational and debugging messages are suppressed and the output
235is sent to standard error.  Other output options include routing messages
236through email, datagrams, sockets, or to an HTTP Server.  New filters can select
237different routing based on message priority: :const:`~logging.DEBUG`,
238:const:`~logging.INFO`, :const:`~logging.WARNING`, :const:`~logging.ERROR`,
239and :const:`~logging.CRITICAL`.
240
241The logging system can be configured directly from Python or can be loaded from
242a user editable configuration file for customized logging without altering the
243application.
244
245
246.. _tut-weak-references:
247
248Weak References
249===============
250
251Python does automatic memory management (reference counting for most objects and
252:term:`garbage collection` to eliminate cycles).  The memory is freed shortly
253after the last reference to it has been eliminated.
254
255This approach works fine for most applications but occasionally there is a need
256to track objects only as long as they are being used by something else.
257Unfortunately, just tracking them creates a reference that makes them permanent.
258The :mod:`weakref` module provides tools for tracking objects without creating a
259reference.  When the object is no longer needed, it is automatically removed
260from a weakref table and a callback is triggered for weakref objects.  Typical
261applications include caching objects that are expensive to create::
262
263   >>> import weakref, gc
264   >>> class A:
265   ...     def __init__(self, value):
266   ...         self.value = value
267   ...     def __repr__(self):
268   ...         return str(self.value)
269   ...
270   >>> a = A(10)                   # create a reference
271   >>> d = weakref.WeakValueDictionary()
272   >>> d['primary'] = a            # does not create a reference
273   >>> d['primary']                # fetch the object if it is still alive
274   10
275   >>> del a                       # remove the one reference
276   >>> gc.collect()                # run garbage collection right away
277   0
278   >>> d['primary']                # entry was automatically removed
279   Traceback (most recent call last):
280     File "<stdin>", line 1, in <module>
281       d['primary']                # entry was automatically removed
282     File "C:/python311/lib/weakref.py", line 46, in __getitem__
283       o = self.data[key]()
284   KeyError: 'primary'
285
286
287.. _tut-list-tools:
288
289Tools for Working with Lists
290============================
291
292Many data structure needs can be met with the built-in list type. However,
293sometimes there is a need for alternative implementations with different
294performance trade-offs.
295
296The :mod:`array` module provides an :class:`~array.array()` object that is like
297a list that stores only homogeneous data and stores it more compactly.  The
298following example shows an array of numbers stored as two byte unsigned binary
299numbers (typecode ``"H"``) rather than the usual 16 bytes per entry for regular
300lists of Python int objects::
301
302   >>> from array import array
303   >>> a = array('H', [4000, 10, 700, 22222])
304   >>> sum(a)
305   26932
306   >>> a[1:3]
307   array('H', [10, 700])
308
309The :mod:`collections` module provides a :class:`~collections.deque()` object
310that is like a list with faster appends and pops from the left side but slower
311lookups in the middle. These objects are well suited for implementing queues
312and breadth first tree searches::
313
314   >>> from collections import deque
315   >>> d = deque(["task1", "task2", "task3"])
316   >>> d.append("task4")
317   >>> print("Handling", d.popleft())
318   Handling task1
319
320::
321
322   unsearched = deque([starting_node])
323   def breadth_first_search(unsearched):
324       node = unsearched.popleft()
325       for m in gen_moves(node):
326           if is_goal(m):
327               return m
328           unsearched.append(m)
329
330In addition to alternative list implementations, the library also offers other
331tools such as the :mod:`bisect` module with functions for manipulating sorted
332lists::
333
334   >>> import bisect
335   >>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python')]
336   >>> bisect.insort(scores, (300, 'ruby'))
337   >>> scores
338   [(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')]
339
340The :mod:`heapq` module provides functions for implementing heaps based on
341regular lists.  The lowest valued entry is always kept at position zero.  This
342is useful for applications which repeatedly access the smallest element but do
343not want to run a full list sort::
344
345   >>> from heapq import heapify, heappop, heappush
346   >>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
347   >>> heapify(data)                      # rearrange the list into heap order
348   >>> heappush(data, -5)                 # add a new entry
349   >>> [heappop(data) for i in range(3)]  # fetch the three smallest entries
350   [-5, 0, 1]
351
352
353.. _tut-decimal-fp:
354
355Decimal Floating Point Arithmetic
356=================================
357
358The :mod:`decimal` module offers a :class:`~decimal.Decimal` datatype for
359decimal floating point arithmetic.  Compared to the built-in :class:`float`
360implementation of binary floating point, the class is especially helpful for
361
362* financial applications and other uses which require exact decimal
363  representation,
364* control over precision,
365* control over rounding to meet legal or regulatory requirements,
366* tracking of significant decimal places, or
367* applications where the user expects the results to match calculations done by
368  hand.
369
370For example, calculating a 5% tax on a 70 cent phone charge gives different
371results in decimal floating point and binary floating point. The difference
372becomes significant if the results are rounded to the nearest cent::
373
374   >>> from decimal import *
375   >>> round(Decimal('0.70') * Decimal('1.05'), 2)
376   Decimal('0.74')
377   >>> round(.70 * 1.05, 2)
378   0.73
379
380The :class:`~decimal.Decimal` result keeps a trailing zero, automatically
381inferring four place significance from multiplicands with two place
382significance.  Decimal reproduces mathematics as done by hand and avoids
383issues that can arise when binary floating point cannot exactly represent
384decimal quantities.
385
386Exact representation enables the :class:`~decimal.Decimal` class to perform
387modulo calculations and equality tests that are unsuitable for binary floating
388point::
389
390   >>> Decimal('1.00') % Decimal('.10')
391   Decimal('0.00')
392   >>> 1.00 % 0.10
393   0.09999999999999995
394
395   >>> sum([Decimal('0.1')]*10) == Decimal('1.0')
396   True
397   >>> sum([0.1]*10) == 1.0
398   False
399
400The :mod:`decimal` module provides arithmetic with as much precision as needed::
401
402   >>> getcontext().prec = 36
403   >>> Decimal(1) / Decimal(7)
404   Decimal('0.142857142857142857142857142857142857')
405
406
407