1.. _tut-brieftourtwo: 2 3********************************************** 4Brief Tour of the Standard Library --- Part II 5********************************************** 6 7This second tour covers more advanced modules that support professional 8programming needs. These modules rarely occur in small scripts. 9 10 11.. _tut-output-formatting: 12 13Output Formatting 14================= 15 16The :mod:`reprlib` module provides a version of :func:`repr` customized for 17abbreviated displays of large or deeply nested containers:: 18 19 >>> import reprlib 20 >>> reprlib.repr(set('supercalifragilisticexpialidocious')) 21 "{'a', 'c', 'd', 'e', 'f', 'g', ...}" 22 23The :mod:`pprint` module offers more sophisticated control over printing both 24built-in and user defined objects in a way that is readable by the interpreter. 25When the result is longer than one line, the "pretty printer" adds line breaks 26and indentation to more clearly reveal data structure:: 27 28 >>> import pprint 29 >>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta', 30 ... 'yellow'], 'blue']]] 31 ... 32 >>> pprint.pprint(t, width=30) 33 [[[['black', 'cyan'], 34 'white', 35 ['green', 'red']], 36 [['magenta', 'yellow'], 37 'blue']]] 38 39The :mod:`textwrap` module formats paragraphs of text to fit a given screen 40width:: 41 42 >>> import textwrap 43 >>> doc = """The wrap() method is just like fill() except that it returns 44 ... a list of strings instead of one big string with newlines to separate 45 ... the wrapped lines.""" 46 ... 47 >>> print(textwrap.fill(doc, width=40)) 48 The wrap() method is just like fill() 49 except that it returns a list of strings 50 instead of one big string with newlines 51 to separate the wrapped lines. 52 53The :mod:`locale` module accesses a database of culture specific data formats. 54The grouping attribute of locale's format function provides a direct way of 55formatting numbers with group separators:: 56 57 >>> import locale 58 >>> locale.setlocale(locale.LC_ALL, 'English_United States.1252') 59 'English_United States.1252' 60 >>> conv = locale.localeconv() # get a mapping of conventions 61 >>> x = 1234567.8 62 >>> locale.format("%d", x, grouping=True) 63 '1,234,567' 64 >>> locale.format_string("%s%.*f", (conv['currency_symbol'], 65 ... conv['frac_digits'], x), grouping=True) 66 '$1,234,567.80' 67 68 69.. _tut-templating: 70 71Templating 72========== 73 74The :mod:`string` module includes a versatile :class:`~string.Template` class 75with a simplified syntax suitable for editing by end-users. This allows users 76to customize their applications without having to alter the application. 77 78The format uses placeholder names formed by ``$`` with valid Python identifiers 79(alphanumeric characters and underscores). Surrounding the placeholder with 80braces allows it to be followed by more alphanumeric letters with no intervening 81spaces. Writing ``$$`` creates a single escaped ``$``:: 82 83 >>> from string import Template 84 >>> t = Template('${village}folk send $$10 to $cause.') 85 >>> t.substitute(village='Nottingham', cause='the ditch fund') 86 'Nottinghamfolk send $10 to the ditch fund.' 87 88The :meth:`~string.Template.substitute` method raises a :exc:`KeyError` when a 89placeholder is not supplied in a dictionary or a keyword argument. For 90mail-merge style applications, user supplied data may be incomplete and the 91:meth:`~string.Template.safe_substitute` method may be more appropriate --- 92it will leave placeholders unchanged if data is missing:: 93 94 >>> t = Template('Return the $item to $owner.') 95 >>> d = dict(item='unladen swallow') 96 >>> t.substitute(d) 97 Traceback (most recent call last): 98 ... 99 KeyError: 'owner' 100 >>> t.safe_substitute(d) 101 'Return the unladen swallow to $owner.' 102 103Template subclasses can specify a custom delimiter. For example, a batch 104renaming utility for a photo browser may elect to use percent signs for 105placeholders such as the current date, image sequence number, or file format:: 106 107 >>> import time, os.path 108 >>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg'] 109 >>> class BatchRename(Template): 110 ... delimiter = '%' 111 ... 112 >>> fmt = input('Enter rename style (%d-date %n-seqnum %f-format): ') 113 Enter rename style (%d-date %n-seqnum %f-format): Ashley_%n%f 114 115 >>> t = BatchRename(fmt) 116 >>> date = time.strftime('%d%b%y') 117 >>> for i, filename in enumerate(photofiles): 118 ... base, ext = os.path.splitext(filename) 119 ... newname = t.substitute(d=date, n=i, f=ext) 120 ... print('{0} --> {1}'.format(filename, newname)) 121 122 img_1074.jpg --> Ashley_0.jpg 123 img_1076.jpg --> Ashley_1.jpg 124 img_1077.jpg --> Ashley_2.jpg 125 126Another application for templating is separating program logic from the details 127of multiple output formats. This makes it possible to substitute custom 128templates for XML files, plain text reports, and HTML web reports. 129 130 131.. _tut-binary-formats: 132 133Working with Binary Data Record Layouts 134======================================= 135 136The :mod:`struct` module provides :func:`~struct.pack` and 137:func:`~struct.unpack` functions for working with variable length binary 138record formats. The following example shows 139how to loop through header information in a ZIP file without using the 140:mod:`zipfile` module. Pack codes ``"H"`` and ``"I"`` represent two and four 141byte unsigned numbers respectively. The ``"<"`` indicates that they are 142standard size and in little-endian byte order:: 143 144 import struct 145 146 with open('myfile.zip', 'rb') as f: 147 data = f.read() 148 149 start = 0 150 for i in range(3): # show the first 3 file headers 151 start += 14 152 fields = struct.unpack('<IIIHH', data[start:start+16]) 153 crc32, comp_size, uncomp_size, filenamesize, extra_size = fields 154 155 start += 16 156 filename = data[start:start+filenamesize] 157 start += filenamesize 158 extra = data[start:start+extra_size] 159 print(filename, hex(crc32), comp_size, uncomp_size) 160 161 start += extra_size + comp_size # skip to the next header 162 163 164.. _tut-multi-threading: 165 166Multi-threading 167=============== 168 169Threading is a technique for decoupling tasks which are not sequentially 170dependent. Threads can be used to improve the responsiveness of applications 171that accept user input while other tasks run in the background. A related use 172case is running I/O in parallel with computations in another thread. 173 174The following code shows how the high level :mod:`threading` module can run 175tasks in background while the main program continues to run:: 176 177 import threading, zipfile 178 179 class AsyncZip(threading.Thread): 180 def __init__(self, infile, outfile): 181 threading.Thread.__init__(self) 182 self.infile = infile 183 self.outfile = outfile 184 185 def run(self): 186 f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED) 187 f.write(self.infile) 188 f.close() 189 print('Finished background zip of:', self.infile) 190 191 background = AsyncZip('mydata.txt', 'myarchive.zip') 192 background.start() 193 print('The main program continues to run in foreground.') 194 195 background.join() # Wait for the background task to finish 196 print('Main program waited until background was done.') 197 198The principal challenge of multi-threaded applications is coordinating threads 199that share data or other resources. To that end, the threading module provides 200a number of synchronization primitives including locks, events, condition 201variables, and semaphores. 202 203While those tools are powerful, minor design errors can result in problems that 204are difficult to reproduce. So, the preferred approach to task coordination is 205to concentrate all access to a resource in a single thread and then use the 206:mod:`queue` module to feed that thread with requests from other threads. 207Applications using :class:`~queue.Queue` objects for inter-thread communication and 208coordination are easier to design, more readable, and more reliable. 209 210 211.. _tut-logging: 212 213Logging 214======= 215 216The :mod:`logging` module offers a full featured and flexible logging system. 217At its simplest, log messages are sent to a file or to ``sys.stderr``:: 218 219 import logging 220 logging.debug('Debugging information') 221 logging.info('Informational message') 222 logging.warning('Warning:config file %s not found', 'server.conf') 223 logging.error('Error occurred') 224 logging.critical('Critical error -- shutting down') 225 226This produces the following output: 227 228.. code-block:: none 229 230 WARNING:root:Warning:config file server.conf not found 231 ERROR:root:Error occurred 232 CRITICAL:root:Critical error -- shutting down 233 234By default, informational and debugging messages are suppressed and the output 235is sent to standard error. Other output options include routing messages 236through email, datagrams, sockets, or to an HTTP Server. New filters can select 237different routing based on message priority: :const:`~logging.DEBUG`, 238:const:`~logging.INFO`, :const:`~logging.WARNING`, :const:`~logging.ERROR`, 239and :const:`~logging.CRITICAL`. 240 241The logging system can be configured directly from Python or can be loaded from 242a user editable configuration file for customized logging without altering the 243application. 244 245 246.. _tut-weak-references: 247 248Weak References 249=============== 250 251Python does automatic memory management (reference counting for most objects and 252:term:`garbage collection` to eliminate cycles). The memory is freed shortly 253after the last reference to it has been eliminated. 254 255This approach works fine for most applications but occasionally there is a need 256to track objects only as long as they are being used by something else. 257Unfortunately, just tracking them creates a reference that makes them permanent. 258The :mod:`weakref` module provides tools for tracking objects without creating a 259reference. When the object is no longer needed, it is automatically removed 260from a weakref table and a callback is triggered for weakref objects. Typical 261applications include caching objects that are expensive to create:: 262 263 >>> import weakref, gc 264 >>> class A: 265 ... def __init__(self, value): 266 ... self.value = value 267 ... def __repr__(self): 268 ... return str(self.value) 269 ... 270 >>> a = A(10) # create a reference 271 >>> d = weakref.WeakValueDictionary() 272 >>> d['primary'] = a # does not create a reference 273 >>> d['primary'] # fetch the object if it is still alive 274 10 275 >>> del a # remove the one reference 276 >>> gc.collect() # run garbage collection right away 277 0 278 >>> d['primary'] # entry was automatically removed 279 Traceback (most recent call last): 280 File "<stdin>", line 1, in <module> 281 d['primary'] # entry was automatically removed 282 File "C:/python311/lib/weakref.py", line 46, in __getitem__ 283 o = self.data[key]() 284 KeyError: 'primary' 285 286 287.. _tut-list-tools: 288 289Tools for Working with Lists 290============================ 291 292Many data structure needs can be met with the built-in list type. However, 293sometimes there is a need for alternative implementations with different 294performance trade-offs. 295 296The :mod:`array` module provides an :class:`~array.array()` object that is like 297a list that stores only homogeneous data and stores it more compactly. The 298following example shows an array of numbers stored as two byte unsigned binary 299numbers (typecode ``"H"``) rather than the usual 16 bytes per entry for regular 300lists of Python int objects:: 301 302 >>> from array import array 303 >>> a = array('H', [4000, 10, 700, 22222]) 304 >>> sum(a) 305 26932 306 >>> a[1:3] 307 array('H', [10, 700]) 308 309The :mod:`collections` module provides a :class:`~collections.deque()` object 310that is like a list with faster appends and pops from the left side but slower 311lookups in the middle. These objects are well suited for implementing queues 312and breadth first tree searches:: 313 314 >>> from collections import deque 315 >>> d = deque(["task1", "task2", "task3"]) 316 >>> d.append("task4") 317 >>> print("Handling", d.popleft()) 318 Handling task1 319 320:: 321 322 unsearched = deque([starting_node]) 323 def breadth_first_search(unsearched): 324 node = unsearched.popleft() 325 for m in gen_moves(node): 326 if is_goal(m): 327 return m 328 unsearched.append(m) 329 330In addition to alternative list implementations, the library also offers other 331tools such as the :mod:`bisect` module with functions for manipulating sorted 332lists:: 333 334 >>> import bisect 335 >>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python')] 336 >>> bisect.insort(scores, (300, 'ruby')) 337 >>> scores 338 [(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')] 339 340The :mod:`heapq` module provides functions for implementing heaps based on 341regular lists. The lowest valued entry is always kept at position zero. This 342is useful for applications which repeatedly access the smallest element but do 343not want to run a full list sort:: 344 345 >>> from heapq import heapify, heappop, heappush 346 >>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0] 347 >>> heapify(data) # rearrange the list into heap order 348 >>> heappush(data, -5) # add a new entry 349 >>> [heappop(data) for i in range(3)] # fetch the three smallest entries 350 [-5, 0, 1] 351 352 353.. _tut-decimal-fp: 354 355Decimal Floating Point Arithmetic 356================================= 357 358The :mod:`decimal` module offers a :class:`~decimal.Decimal` datatype for 359decimal floating point arithmetic. Compared to the built-in :class:`float` 360implementation of binary floating point, the class is especially helpful for 361 362* financial applications and other uses which require exact decimal 363 representation, 364* control over precision, 365* control over rounding to meet legal or regulatory requirements, 366* tracking of significant decimal places, or 367* applications where the user expects the results to match calculations done by 368 hand. 369 370For example, calculating a 5% tax on a 70 cent phone charge gives different 371results in decimal floating point and binary floating point. The difference 372becomes significant if the results are rounded to the nearest cent:: 373 374 >>> from decimal import * 375 >>> round(Decimal('0.70') * Decimal('1.05'), 2) 376 Decimal('0.74') 377 >>> round(.70 * 1.05, 2) 378 0.73 379 380The :class:`~decimal.Decimal` result keeps a trailing zero, automatically 381inferring four place significance from multiplicands with two place 382significance. Decimal reproduces mathematics as done by hand and avoids 383issues that can arise when binary floating point cannot exactly represent 384decimal quantities. 385 386Exact representation enables the :class:`~decimal.Decimal` class to perform 387modulo calculations and equality tests that are unsuitable for binary floating 388point:: 389 390 >>> Decimal('1.00') % Decimal('.10') 391 Decimal('0.00') 392 >>> 1.00 % 0.10 393 0.09999999999999995 394 395 >>> sum([Decimal('0.1')]*10) == Decimal('1.0') 396 True 397 >>> sum([0.1]*10) == 1.0 398 False 399 400The :mod:`decimal` module provides arithmetic with as much precision as needed:: 401 402 >>> getcontext().prec = 36 403 >>> Decimal(1) / Decimal(7) 404 Decimal('0.142857142857142857142857142857142857') 405 406 407