xref: /aosp_15_r20/external/private-join-and-compute/third_party/abseil-cpp-20230125.2/absl/time/time.h (revision a6aa18fbfbf9cb5cd47356a9d1b057768998488c)
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: time.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file defines abstractions for computing with absolute points
20 // in time, durations of time, and formatting and parsing time within a given
21 // time zone. The following abstractions are defined:
22 //
23 //  * `absl::Time` defines an absolute, specific instance in time
24 //  * `absl::Duration` defines a signed, fixed-length span of time
25 //  * `absl::TimeZone` defines geopolitical time zone regions (as collected
26 //     within the IANA Time Zone database (https://www.iana.org/time-zones)).
27 //
28 // Note: Absolute times are distinct from civil times, which refer to the
29 // human-scale time commonly represented by `YYYY-MM-DD hh:mm:ss`. The mapping
30 // between absolute and civil times can be specified by use of time zones
31 // (`absl::TimeZone` within this API). That is:
32 //
33 //   Civil Time = F(Absolute Time, Time Zone)
34 //   Absolute Time = G(Civil Time, Time Zone)
35 //
36 // See civil_time.h for abstractions related to constructing and manipulating
37 // civil time.
38 //
39 // Example:
40 //
41 //   absl::TimeZone nyc;
42 //   // LoadTimeZone() may fail so it's always better to check for success.
43 //   if (!absl::LoadTimeZone("America/New_York", &nyc)) {
44 //      // handle error case
45 //   }
46 //
47 //   // My flight leaves NYC on Jan 2, 2017 at 03:04:05
48 //   absl::CivilSecond cs(2017, 1, 2, 3, 4, 5);
49 //   absl::Time takeoff = absl::FromCivil(cs, nyc);
50 //
51 //   absl::Duration flight_duration = absl::Hours(21) + absl::Minutes(35);
52 //   absl::Time landing = takeoff + flight_duration;
53 //
54 //   absl::TimeZone syd;
55 //   if (!absl::LoadTimeZone("Australia/Sydney", &syd)) {
56 //      // handle error case
57 //   }
58 //   std::string s = absl::FormatTime(
59 //       "My flight will land in Sydney on %Y-%m-%d at %H:%M:%S",
60 //       landing, syd);
61 
62 #ifndef ABSL_TIME_TIME_H_
63 #define ABSL_TIME_TIME_H_
64 
65 #if !defined(_MSC_VER)
66 #include <sys/time.h>
67 #else
68 // We don't include `winsock2.h` because it drags in `windows.h` and friends,
69 // and they define conflicting macros like OPAQUE, ERROR, and more. This has the
70 // potential to break Abseil users.
71 //
72 // Instead we only forward declare `timeval` and require Windows users include
73 // `winsock2.h` themselves. This is both inconsistent and troublesome, but so is
74 // including 'windows.h' so we are picking the lesser of two evils here.
75 struct timeval;
76 #endif
77 #include <chrono>  // NOLINT(build/c++11)
78 #include <cmath>
79 #include <cstdint>
80 #include <ctime>
81 #include <limits>
82 #include <ostream>
83 #include <string>
84 #include <type_traits>
85 #include <utility>
86 
87 #include "absl/base/macros.h"
88 #include "absl/strings/string_view.h"
89 #include "absl/time/civil_time.h"
90 #include "absl/time/internal/cctz/include/cctz/time_zone.h"
91 
92 namespace absl {
93 ABSL_NAMESPACE_BEGIN
94 
95 class Duration;  // Defined below
96 class Time;      // Defined below
97 class TimeZone;  // Defined below
98 
99 namespace time_internal {
100 int64_t IDivDuration(bool satq, Duration num, Duration den, Duration* rem);
101 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixDuration(Duration d);
102 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration ToUnixDuration(Time t);
103 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr int64_t GetRepHi(Duration d);
104 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr uint32_t GetRepLo(Duration d);
105 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration MakeDuration(int64_t hi,
106                                                               uint32_t lo);
107 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration MakeDuration(int64_t hi,
108                                                               int64_t lo);
109 ABSL_ATTRIBUTE_CONST_FUNCTION inline Duration MakePosDoubleDuration(double n);
110 constexpr int64_t kTicksPerNanosecond = 4;
111 constexpr int64_t kTicksPerSecond = 1000 * 1000 * 1000 * kTicksPerNanosecond;
112 template <std::intmax_t N>
113 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration FromInt64(int64_t v,
114                                                            std::ratio<1, N>);
115 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration FromInt64(int64_t v,
116                                                            std::ratio<60>);
117 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration FromInt64(int64_t v,
118                                                            std::ratio<3600>);
119 template <typename T>
120 using EnableIfIntegral = typename std::enable_if<
121     std::is_integral<T>::value || std::is_enum<T>::value, int>::type;
122 template <typename T>
123 using EnableIfFloat =
124     typename std::enable_if<std::is_floating_point<T>::value, int>::type;
125 }  // namespace time_internal
126 
127 // Duration
128 //
129 // The `absl::Duration` class represents a signed, fixed-length amount of time.
130 // A `Duration` is generated using a unit-specific factory function, or is
131 // the result of subtracting one `absl::Time` from another. Durations behave
132 // like unit-safe integers and they support all the natural integer-like
133 // arithmetic operations. Arithmetic overflows and saturates at +/- infinity.
134 // `Duration` should be passed by value rather than const reference.
135 //
136 // Factory functions `Nanoseconds()`, `Microseconds()`, `Milliseconds()`,
137 // `Seconds()`, `Minutes()`, `Hours()` and `InfiniteDuration()` allow for
138 // creation of constexpr `Duration` values
139 //
140 // Examples:
141 //
142 //   constexpr absl::Duration ten_ns = absl::Nanoseconds(10);
143 //   constexpr absl::Duration min = absl::Minutes(1);
144 //   constexpr absl::Duration hour = absl::Hours(1);
145 //   absl::Duration dur = 60 * min;  // dur == hour
146 //   absl::Duration half_sec = absl::Milliseconds(500);
147 //   absl::Duration quarter_sec = 0.25 * absl::Seconds(1);
148 //
149 // `Duration` values can be easily converted to an integral number of units
150 // using the division operator.
151 //
152 // Example:
153 //
154 //   constexpr absl::Duration dur = absl::Milliseconds(1500);
155 //   int64_t ns = dur / absl::Nanoseconds(1);   // ns == 1500000000
156 //   int64_t ms = dur / absl::Milliseconds(1);  // ms == 1500
157 //   int64_t sec = dur / absl::Seconds(1);    // sec == 1 (subseconds truncated)
158 //   int64_t min = dur / absl::Minutes(1);    // min == 0
159 //
160 // See the `IDivDuration()` and `FDivDuration()` functions below for details on
161 // how to access the fractional parts of the quotient.
162 //
163 // Alternatively, conversions can be performed using helpers such as
164 // `ToInt64Microseconds()` and `ToDoubleSeconds()`.
165 class Duration {
166  public:
167   // Value semantics.
Duration()168   constexpr Duration() : rep_hi_(0), rep_lo_(0) {}  // zero-length duration
169 
170   // Copyable.
171 #if !defined(__clang__) && defined(_MSC_VER) && _MSC_VER < 1930
172   // Explicitly defining the constexpr copy constructor avoids an MSVC bug.
Duration(const Duration & d)173   constexpr Duration(const Duration& d)
174       : rep_hi_(d.rep_hi_), rep_lo_(d.rep_lo_) {}
175 #else
176   constexpr Duration(const Duration& d) = default;
177 #endif
178   Duration& operator=(const Duration& d) = default;
179 
180   // Compound assignment operators.
181   Duration& operator+=(Duration d);
182   Duration& operator-=(Duration d);
183   Duration& operator*=(int64_t r);
184   Duration& operator*=(double r);
185   Duration& operator/=(int64_t r);
186   Duration& operator/=(double r);
187   Duration& operator%=(Duration rhs);
188 
189   // Overloads that forward to either the int64_t or double overloads above.
190   // Integer operands must be representable as int64_t.
191   template <typename T, time_internal::EnableIfIntegral<T> = 0>
192   Duration& operator*=(T r) {
193     int64_t x = r;
194     return *this *= x;
195   }
196 
197   template <typename T, time_internal::EnableIfIntegral<T> = 0>
198   Duration& operator/=(T r) {
199     int64_t x = r;
200     return *this /= x;
201   }
202 
203   template <typename T, time_internal::EnableIfFloat<T> = 0>
204   Duration& operator*=(T r) {
205     double x = r;
206     return *this *= x;
207   }
208 
209   template <typename T, time_internal::EnableIfFloat<T> = 0>
210   Duration& operator/=(T r) {
211     double x = r;
212     return *this /= x;
213   }
214 
215   template <typename H>
AbslHashValue(H h,Duration d)216   friend H AbslHashValue(H h, Duration d) {
217     return H::combine(std::move(h), d.rep_hi_, d.rep_lo_);
218   }
219 
220  private:
221   friend constexpr int64_t time_internal::GetRepHi(Duration d);
222   friend constexpr uint32_t time_internal::GetRepLo(Duration d);
223   friend constexpr Duration time_internal::MakeDuration(int64_t hi,
224                                                         uint32_t lo);
Duration(int64_t hi,uint32_t lo)225   constexpr Duration(int64_t hi, uint32_t lo) : rep_hi_(hi), rep_lo_(lo) {}
226   int64_t rep_hi_;
227   uint32_t rep_lo_;
228 };
229 
230 // Relational Operators
231 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator<(Duration lhs,
232                                                        Duration rhs);
233 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator>(Duration lhs,
234                                                        Duration rhs) {
235   return rhs < lhs;
236 }
237 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator>=(Duration lhs,
238                                                         Duration rhs) {
239   return !(lhs < rhs);
240 }
241 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator<=(Duration lhs,
242                                                         Duration rhs) {
243   return !(rhs < lhs);
244 }
245 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator==(Duration lhs,
246                                                         Duration rhs);
247 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator!=(Duration lhs,
248                                                         Duration rhs) {
249   return !(lhs == rhs);
250 }
251 
252 // Additive Operators
253 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration operator-(Duration d);
254 ABSL_ATTRIBUTE_CONST_FUNCTION inline Duration operator+(Duration lhs,
255                                                         Duration rhs) {
256   return lhs += rhs;
257 }
258 ABSL_ATTRIBUTE_CONST_FUNCTION inline Duration operator-(Duration lhs,
259                                                         Duration rhs) {
260   return lhs -= rhs;
261 }
262 
263 // Multiplicative Operators
264 // Integer operands must be representable as int64_t.
265 template <typename T>
266 ABSL_ATTRIBUTE_CONST_FUNCTION Duration operator*(Duration lhs, T rhs) {
267   return lhs *= rhs;
268 }
269 template <typename T>
270 ABSL_ATTRIBUTE_CONST_FUNCTION Duration operator*(T lhs, Duration rhs) {
271   return rhs *= lhs;
272 }
273 template <typename T>
274 ABSL_ATTRIBUTE_CONST_FUNCTION Duration operator/(Duration lhs, T rhs) {
275   return lhs /= rhs;
276 }
277 ABSL_ATTRIBUTE_CONST_FUNCTION inline int64_t operator/(Duration lhs,
278                                                        Duration rhs) {
279   return time_internal::IDivDuration(true, lhs, rhs,
280                                      &lhs);  // trunc towards zero
281 }
282 ABSL_ATTRIBUTE_CONST_FUNCTION inline Duration operator%(Duration lhs,
283                                                         Duration rhs) {
284   return lhs %= rhs;
285 }
286 
287 // IDivDuration()
288 //
289 // Divides a numerator `Duration` by a denominator `Duration`, returning the
290 // quotient and remainder. The remainder always has the same sign as the
291 // numerator. The returned quotient and remainder respect the identity:
292 //
293 //   numerator = denominator * quotient + remainder
294 //
295 // Returned quotients are capped to the range of `int64_t`, with the difference
296 // spilling into the remainder to uphold the above identity. This means that the
297 // remainder returned could differ from the remainder returned by
298 // `Duration::operator%` for huge quotients.
299 //
300 // See also the notes on `InfiniteDuration()` below regarding the behavior of
301 // division involving zero and infinite durations.
302 //
303 // Example:
304 //
305 //   constexpr absl::Duration a =
306 //       absl::Seconds(std::numeric_limits<int64_t>::max());  // big
307 //   constexpr absl::Duration b = absl::Nanoseconds(1);       // small
308 //
309 //   absl::Duration rem = a % b;
310 //   // rem == absl::ZeroDuration()
311 //
312 //   // Here, q would overflow int64_t, so rem accounts for the difference.
313 //   int64_t q = absl::IDivDuration(a, b, &rem);
314 //   // q == std::numeric_limits<int64_t>::max(), rem == a - b * q
IDivDuration(Duration num,Duration den,Duration * rem)315 inline int64_t IDivDuration(Duration num, Duration den, Duration* rem) {
316   return time_internal::IDivDuration(true, num, den,
317                                      rem);  // trunc towards zero
318 }
319 
320 // FDivDuration()
321 //
322 // Divides a `Duration` numerator into a fractional number of units of a
323 // `Duration` denominator.
324 //
325 // See also the notes on `InfiniteDuration()` below regarding the behavior of
326 // division involving zero and infinite durations.
327 //
328 // Example:
329 //
330 //   double d = absl::FDivDuration(absl::Milliseconds(1500), absl::Seconds(1));
331 //   // d == 1.5
332 ABSL_ATTRIBUTE_CONST_FUNCTION double FDivDuration(Duration num, Duration den);
333 
334 // ZeroDuration()
335 //
336 // Returns a zero-length duration. This function behaves just like the default
337 // constructor, but the name helps make the semantics clear at call sites.
ZeroDuration()338 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration ZeroDuration() {
339   return Duration();
340 }
341 
342 // AbsDuration()
343 //
344 // Returns the absolute value of a duration.
AbsDuration(Duration d)345 ABSL_ATTRIBUTE_CONST_FUNCTION inline Duration AbsDuration(Duration d) {
346   return (d < ZeroDuration()) ? -d : d;
347 }
348 
349 // Trunc()
350 //
351 // Truncates a duration (toward zero) to a multiple of a non-zero unit.
352 //
353 // Example:
354 //
355 //   absl::Duration d = absl::Nanoseconds(123456789);
356 //   absl::Duration a = absl::Trunc(d, absl::Microseconds(1));  // 123456us
357 ABSL_ATTRIBUTE_CONST_FUNCTION Duration Trunc(Duration d, Duration unit);
358 
359 // Floor()
360 //
361 // Floors a duration using the passed duration unit to its largest value not
362 // greater than the duration.
363 //
364 // Example:
365 //
366 //   absl::Duration d = absl::Nanoseconds(123456789);
367 //   absl::Duration b = absl::Floor(d, absl::Microseconds(1));  // 123456us
368 ABSL_ATTRIBUTE_CONST_FUNCTION Duration Floor(Duration d, Duration unit);
369 
370 // Ceil()
371 //
372 // Returns the ceiling of a duration using the passed duration unit to its
373 // smallest value not less than the duration.
374 //
375 // Example:
376 //
377 //   absl::Duration d = absl::Nanoseconds(123456789);
378 //   absl::Duration c = absl::Ceil(d, absl::Microseconds(1));   // 123457us
379 ABSL_ATTRIBUTE_CONST_FUNCTION Duration Ceil(Duration d, Duration unit);
380 
381 // InfiniteDuration()
382 //
383 // Returns an infinite `Duration`.  To get a `Duration` representing negative
384 // infinity, use `-InfiniteDuration()`.
385 //
386 // Duration arithmetic overflows to +/- infinity and saturates. In general,
387 // arithmetic with `Duration` infinities is similar to IEEE 754 infinities
388 // except where IEEE 754 NaN would be involved, in which case +/-
389 // `InfiniteDuration()` is used in place of a "nan" Duration.
390 //
391 // Examples:
392 //
393 //   constexpr absl::Duration inf = absl::InfiniteDuration();
394 //   const absl::Duration d = ... any finite duration ...
395 //
396 //   inf == inf + inf
397 //   inf == inf + d
398 //   inf == inf - inf
399 //   -inf == d - inf
400 //
401 //   inf == d * 1e100
402 //   inf == inf / 2
403 //   0 == d / inf
404 //   INT64_MAX == inf / d
405 //
406 //   d < inf
407 //   -inf < d
408 //
409 //   // Division by zero returns infinity, or INT64_MIN/MAX where appropriate.
410 //   inf == d / 0
411 //   INT64_MAX == d / absl::ZeroDuration()
412 //
413 // The examples involving the `/` operator above also apply to `IDivDuration()`
414 // and `FDivDuration()`.
415 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration InfiniteDuration();
416 
417 // Nanoseconds()
418 // Microseconds()
419 // Milliseconds()
420 // Seconds()
421 // Minutes()
422 // Hours()
423 //
424 // Factory functions for constructing `Duration` values from an integral number
425 // of the unit indicated by the factory function's name. The number must be
426 // representable as int64_t.
427 //
428 // NOTE: no "Days()" factory function exists because "a day" is ambiguous.
429 // Civil days are not always 24 hours long, and a 24-hour duration often does
430 // not correspond with a civil day. If a 24-hour duration is needed, use
431 // `absl::Hours(24)`. If you actually want a civil day, use absl::CivilDay
432 // from civil_time.h.
433 //
434 // Example:
435 //
436 //   absl::Duration a = absl::Seconds(60);
437 //   absl::Duration b = absl::Minutes(1);  // b == a
438 template <typename T, time_internal::EnableIfIntegral<T> = 0>
Nanoseconds(T n)439 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration Nanoseconds(T n) {
440   return time_internal::FromInt64(n, std::nano{});
441 }
442 template <typename T, time_internal::EnableIfIntegral<T> = 0>
Microseconds(T n)443 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration Microseconds(T n) {
444   return time_internal::FromInt64(n, std::micro{});
445 }
446 template <typename T, time_internal::EnableIfIntegral<T> = 0>
Milliseconds(T n)447 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration Milliseconds(T n) {
448   return time_internal::FromInt64(n, std::milli{});
449 }
450 template <typename T, time_internal::EnableIfIntegral<T> = 0>
Seconds(T n)451 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration Seconds(T n) {
452   return time_internal::FromInt64(n, std::ratio<1>{});
453 }
454 template <typename T, time_internal::EnableIfIntegral<T> = 0>
Minutes(T n)455 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration Minutes(T n) {
456   return time_internal::FromInt64(n, std::ratio<60>{});
457 }
458 template <typename T, time_internal::EnableIfIntegral<T> = 0>
Hours(T n)459 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration Hours(T n) {
460   return time_internal::FromInt64(n, std::ratio<3600>{});
461 }
462 
463 // Factory overloads for constructing `Duration` values from a floating-point
464 // number of the unit indicated by the factory function's name. These functions
465 // exist for convenience, but they are not as efficient as the integral
466 // factories, which should be preferred.
467 //
468 // Example:
469 //
470 //   auto a = absl::Seconds(1.5);        // OK
471 //   auto b = absl::Milliseconds(1500);  // BETTER
472 template <typename T, time_internal::EnableIfFloat<T> = 0>
Nanoseconds(T n)473 ABSL_ATTRIBUTE_CONST_FUNCTION Duration Nanoseconds(T n) {
474   return n * Nanoseconds(1);
475 }
476 template <typename T, time_internal::EnableIfFloat<T> = 0>
Microseconds(T n)477 ABSL_ATTRIBUTE_CONST_FUNCTION Duration Microseconds(T n) {
478   return n * Microseconds(1);
479 }
480 template <typename T, time_internal::EnableIfFloat<T> = 0>
Milliseconds(T n)481 ABSL_ATTRIBUTE_CONST_FUNCTION Duration Milliseconds(T n) {
482   return n * Milliseconds(1);
483 }
484 template <typename T, time_internal::EnableIfFloat<T> = 0>
Seconds(T n)485 ABSL_ATTRIBUTE_CONST_FUNCTION Duration Seconds(T n) {
486   if (n >= 0) {  // Note: `NaN >= 0` is false.
487     if (n >= static_cast<T>((std::numeric_limits<int64_t>::max)())) {
488       return InfiniteDuration();
489     }
490     return time_internal::MakePosDoubleDuration(n);
491   } else {
492     if (std::isnan(n))
493       return std::signbit(n) ? -InfiniteDuration() : InfiniteDuration();
494     if (n <= (std::numeric_limits<int64_t>::min)()) return -InfiniteDuration();
495     return -time_internal::MakePosDoubleDuration(-n);
496   }
497 }
498 template <typename T, time_internal::EnableIfFloat<T> = 0>
Minutes(T n)499 ABSL_ATTRIBUTE_CONST_FUNCTION Duration Minutes(T n) {
500   return n * Minutes(1);
501 }
502 template <typename T, time_internal::EnableIfFloat<T> = 0>
Hours(T n)503 ABSL_ATTRIBUTE_CONST_FUNCTION Duration Hours(T n) {
504   return n * Hours(1);
505 }
506 
507 // ToInt64Nanoseconds()
508 // ToInt64Microseconds()
509 // ToInt64Milliseconds()
510 // ToInt64Seconds()
511 // ToInt64Minutes()
512 // ToInt64Hours()
513 //
514 // Helper functions that convert a Duration to an integral count of the
515 // indicated unit. These return the same results as the `IDivDuration()`
516 // function, though they usually do so more efficiently; see the
517 // documentation of `IDivDuration()` for details about overflow, etc.
518 //
519 // Example:
520 //
521 //   absl::Duration d = absl::Milliseconds(1500);
522 //   int64_t isec = absl::ToInt64Seconds(d);  // isec == 1
523 ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToInt64Nanoseconds(Duration d);
524 ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToInt64Microseconds(Duration d);
525 ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToInt64Milliseconds(Duration d);
526 ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToInt64Seconds(Duration d);
527 ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToInt64Minutes(Duration d);
528 ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToInt64Hours(Duration d);
529 
530 // ToDoubleNanoseconds()
531 // ToDoubleMicroseconds()
532 // ToDoubleMilliseconds()
533 // ToDoubleSeconds()
534 // ToDoubleMinutes()
535 // ToDoubleHours()
536 //
537 // Helper functions that convert a Duration to a floating point count of the
538 // indicated unit. These functions are shorthand for the `FDivDuration()`
539 // function above; see its documentation for details about overflow, etc.
540 //
541 // Example:
542 //
543 //   absl::Duration d = absl::Milliseconds(1500);
544 //   double dsec = absl::ToDoubleSeconds(d);  // dsec == 1.5
545 ABSL_ATTRIBUTE_CONST_FUNCTION double ToDoubleNanoseconds(Duration d);
546 ABSL_ATTRIBUTE_CONST_FUNCTION double ToDoubleMicroseconds(Duration d);
547 ABSL_ATTRIBUTE_CONST_FUNCTION double ToDoubleMilliseconds(Duration d);
548 ABSL_ATTRIBUTE_CONST_FUNCTION double ToDoubleSeconds(Duration d);
549 ABSL_ATTRIBUTE_CONST_FUNCTION double ToDoubleMinutes(Duration d);
550 ABSL_ATTRIBUTE_CONST_FUNCTION double ToDoubleHours(Duration d);
551 
552 // FromChrono()
553 //
554 // Converts any of the pre-defined std::chrono durations to an absl::Duration.
555 //
556 // Example:
557 //
558 //   std::chrono::milliseconds ms(123);
559 //   absl::Duration d = absl::FromChrono(ms);
560 ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(
561     const std::chrono::nanoseconds& d);
562 ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(
563     const std::chrono::microseconds& d);
564 ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(
565     const std::chrono::milliseconds& d);
566 ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(
567     const std::chrono::seconds& d);
568 ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(
569     const std::chrono::minutes& d);
570 ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(
571     const std::chrono::hours& d);
572 
573 // ToChronoNanoseconds()
574 // ToChronoMicroseconds()
575 // ToChronoMilliseconds()
576 // ToChronoSeconds()
577 // ToChronoMinutes()
578 // ToChronoHours()
579 //
580 // Converts an absl::Duration to any of the pre-defined std::chrono durations.
581 // If overflow would occur, the returned value will saturate at the min/max
582 // chrono duration value instead.
583 //
584 // Example:
585 //
586 //   absl::Duration d = absl::Microseconds(123);
587 //   auto x = absl::ToChronoMicroseconds(d);
588 //   auto y = absl::ToChronoNanoseconds(d);  // x == y
589 //   auto z = absl::ToChronoSeconds(absl::InfiniteDuration());
590 //   // z == std::chrono::seconds::max()
591 ABSL_ATTRIBUTE_CONST_FUNCTION std::chrono::nanoseconds ToChronoNanoseconds(
592     Duration d);
593 ABSL_ATTRIBUTE_CONST_FUNCTION std::chrono::microseconds ToChronoMicroseconds(
594     Duration d);
595 ABSL_ATTRIBUTE_CONST_FUNCTION std::chrono::milliseconds ToChronoMilliseconds(
596     Duration d);
597 ABSL_ATTRIBUTE_CONST_FUNCTION std::chrono::seconds ToChronoSeconds(Duration d);
598 ABSL_ATTRIBUTE_CONST_FUNCTION std::chrono::minutes ToChronoMinutes(Duration d);
599 ABSL_ATTRIBUTE_CONST_FUNCTION std::chrono::hours ToChronoHours(Duration d);
600 
601 // FormatDuration()
602 //
603 // Returns a string representing the duration in the form "72h3m0.5s".
604 // Returns "inf" or "-inf" for +/- `InfiniteDuration()`.
605 ABSL_ATTRIBUTE_CONST_FUNCTION std::string FormatDuration(Duration d);
606 
607 // Output stream operator.
608 inline std::ostream& operator<<(std::ostream& os, Duration d) {
609   return os << FormatDuration(d);
610 }
611 
612 // ParseDuration()
613 //
614 // Parses a duration string consisting of a possibly signed sequence of
615 // decimal numbers, each with an optional fractional part and a unit
616 // suffix.  The valid suffixes are "ns", "us" "ms", "s", "m", and "h".
617 // Simple examples include "300ms", "-1.5h", and "2h45m".  Parses "0" as
618 // `ZeroDuration()`. Parses "inf" and "-inf" as +/- `InfiniteDuration()`.
619 bool ParseDuration(absl::string_view dur_string, Duration* d);
620 
621 // AbslParseFlag()
622 //
623 // Parses a command-line flag string representation `text` into a Duration
624 // value. Duration flags must be specified in a format that is valid input for
625 // `absl::ParseDuration()`.
626 bool AbslParseFlag(absl::string_view text, Duration* dst, std::string* error);
627 
628 
629 // AbslUnparseFlag()
630 //
631 // Unparses a Duration value into a command-line string representation using
632 // the format specified by `absl::ParseDuration()`.
633 std::string AbslUnparseFlag(Duration d);
634 
635 ABSL_DEPRECATED("Use AbslParseFlag() instead.")
636 bool ParseFlag(const std::string& text, Duration* dst, std::string* error);
637 ABSL_DEPRECATED("Use AbslUnparseFlag() instead.")
638 std::string UnparseFlag(Duration d);
639 
640 // Time
641 //
642 // An `absl::Time` represents a specific instant in time. Arithmetic operators
643 // are provided for naturally expressing time calculations. Instances are
644 // created using `absl::Now()` and the `absl::From*()` factory functions that
645 // accept the gamut of other time representations. Formatting and parsing
646 // functions are provided for conversion to and from strings.  `absl::Time`
647 // should be passed by value rather than const reference.
648 //
649 // `absl::Time` assumes there are 60 seconds in a minute, which means the
650 // underlying time scales must be "smeared" to eliminate leap seconds.
651 // See https://developers.google.com/time/smear.
652 //
653 // Even though `absl::Time` supports a wide range of timestamps, exercise
654 // caution when using values in the distant past. `absl::Time` uses the
655 // Proleptic Gregorian calendar, which extends the Gregorian calendar backward
656 // to dates before its introduction in 1582.
657 // See https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar
658 // for more information. Use the ICU calendar classes to convert a date in
659 // some other calendar (http://userguide.icu-project.org/datetime/calendar).
660 //
661 // Similarly, standardized time zones are a reasonably recent innovation, with
662 // the Greenwich prime meridian being established in 1884. The TZ database
663 // itself does not profess accurate offsets for timestamps prior to 1970. The
664 // breakdown of future timestamps is subject to the whim of regional
665 // governments.
666 //
667 // The `absl::Time` class represents an instant in time as a count of clock
668 // ticks of some granularity (resolution) from some starting point (epoch).
669 //
670 // `absl::Time` uses a resolution that is high enough to avoid loss in
671 // precision, and a range that is wide enough to avoid overflow, when
672 // converting between tick counts in most Google time scales (i.e., resolution
673 // of at least one nanosecond, and range +/-100 billion years).  Conversions
674 // between the time scales are performed by truncating (towards negative
675 // infinity) to the nearest representable point.
676 //
677 // Examples:
678 //
679 //   absl::Time t1 = ...;
680 //   absl::Time t2 = t1 + absl::Minutes(2);
681 //   absl::Duration d = t2 - t1;  // == absl::Minutes(2)
682 //
683 class Time {
684  public:
685   // Value semantics.
686 
687   // Returns the Unix epoch.  However, those reading your code may not know
688   // or expect the Unix epoch as the default value, so make your code more
689   // readable by explicitly initializing all instances before use.
690   //
691   // Example:
692   //   absl::Time t = absl::UnixEpoch();
693   //   absl::Time t = absl::Now();
694   //   absl::Time t = absl::TimeFromTimeval(tv);
695   //   absl::Time t = absl::InfinitePast();
696   constexpr Time() = default;
697 
698   // Copyable.
699   constexpr Time(const Time& t) = default;
700   Time& operator=(const Time& t) = default;
701 
702   // Assignment operators.
703   Time& operator+=(Duration d) {
704     rep_ += d;
705     return *this;
706   }
707   Time& operator-=(Duration d) {
708     rep_ -= d;
709     return *this;
710   }
711 
712   // Time::Breakdown
713   //
714   // The calendar and wall-clock (aka "civil time") components of an
715   // `absl::Time` in a certain `absl::TimeZone`. This struct is not
716   // intended to represent an instant in time. So, rather than passing
717   // a `Time::Breakdown` to a function, pass an `absl::Time` and an
718   // `absl::TimeZone`.
719   //
720   // Deprecated. Use `absl::TimeZone::CivilInfo`.
721   struct
722       Breakdown {
723     int64_t year;        // year (e.g., 2013)
724     int month;           // month of year [1:12]
725     int day;             // day of month [1:31]
726     int hour;            // hour of day [0:23]
727     int minute;          // minute of hour [0:59]
728     int second;          // second of minute [0:59]
729     Duration subsecond;  // [Seconds(0):Seconds(1)) if finite
730     int weekday;         // 1==Mon, ..., 7=Sun
731     int yearday;         // day of year [1:366]
732 
733     // Note: The following fields exist for backward compatibility
734     // with older APIs.  Accessing these fields directly is a sign of
735     // imprudent logic in the calling code.  Modern time-related code
736     // should only access this data indirectly by way of FormatTime().
737     // These fields are undefined for InfiniteFuture() and InfinitePast().
738     int offset;             // seconds east of UTC
739     bool is_dst;            // is offset non-standard?
740     const char* zone_abbr;  // time-zone abbreviation (e.g., "PST")
741   };
742 
743   // Time::In()
744   //
745   // Returns the breakdown of this instant in the given TimeZone.
746   //
747   // Deprecated. Use `absl::TimeZone::At(Time)`.
748   Breakdown In(TimeZone tz) const;
749 
750   template <typename H>
AbslHashValue(H h,Time t)751   friend H AbslHashValue(H h, Time t) {
752     return H::combine(std::move(h), t.rep_);
753   }
754 
755  private:
756   friend constexpr Time time_internal::FromUnixDuration(Duration d);
757   friend constexpr Duration time_internal::ToUnixDuration(Time t);
758   friend constexpr bool operator<(Time lhs, Time rhs);
759   friend constexpr bool operator==(Time lhs, Time rhs);
760   friend Duration operator-(Time lhs, Time rhs);
761   friend constexpr Time UniversalEpoch();
762   friend constexpr Time InfiniteFuture();
763   friend constexpr Time InfinitePast();
Time(Duration rep)764   constexpr explicit Time(Duration rep) : rep_(rep) {}
765   Duration rep_;
766 };
767 
768 // Relational Operators
769 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator<(Time lhs, Time rhs) {
770   return lhs.rep_ < rhs.rep_;
771 }
772 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator>(Time lhs, Time rhs) {
773   return rhs < lhs;
774 }
775 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator>=(Time lhs, Time rhs) {
776   return !(lhs < rhs);
777 }
778 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator<=(Time lhs, Time rhs) {
779   return !(rhs < lhs);
780 }
781 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator==(Time lhs, Time rhs) {
782   return lhs.rep_ == rhs.rep_;
783 }
784 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator!=(Time lhs, Time rhs) {
785   return !(lhs == rhs);
786 }
787 
788 // Additive Operators
789 ABSL_ATTRIBUTE_CONST_FUNCTION inline Time operator+(Time lhs, Duration rhs) {
790   return lhs += rhs;
791 }
792 ABSL_ATTRIBUTE_CONST_FUNCTION inline Time operator+(Duration lhs, Time rhs) {
793   return rhs += lhs;
794 }
795 ABSL_ATTRIBUTE_CONST_FUNCTION inline Time operator-(Time lhs, Duration rhs) {
796   return lhs -= rhs;
797 }
798 ABSL_ATTRIBUTE_CONST_FUNCTION inline Duration operator-(Time lhs, Time rhs) {
799   return lhs.rep_ - rhs.rep_;
800 }
801 
802 // UnixEpoch()
803 //
804 // Returns the `absl::Time` representing "1970-01-01 00:00:00.0 +0000".
UnixEpoch()805 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time UnixEpoch() { return Time(); }
806 
807 // UniversalEpoch()
808 //
809 // Returns the `absl::Time` representing "0001-01-01 00:00:00.0 +0000", the
810 // epoch of the ICU Universal Time Scale.
UniversalEpoch()811 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time UniversalEpoch() {
812   // 719162 is the number of days from 0001-01-01 to 1970-01-01,
813   // assuming the Gregorian calendar.
814   return Time(
815       time_internal::MakeDuration(-24 * 719162 * int64_t{3600}, uint32_t{0}));
816 }
817 
818 // InfiniteFuture()
819 //
820 // Returns an `absl::Time` that is infinitely far in the future.
InfiniteFuture()821 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time InfiniteFuture() {
822   return Time(time_internal::MakeDuration((std::numeric_limits<int64_t>::max)(),
823                                           ~uint32_t{0}));
824 }
825 
826 // InfinitePast()
827 //
828 // Returns an `absl::Time` that is infinitely far in the past.
InfinitePast()829 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time InfinitePast() {
830   return Time(time_internal::MakeDuration((std::numeric_limits<int64_t>::min)(),
831                                           ~uint32_t{0}));
832 }
833 
834 // FromUnixNanos()
835 // FromUnixMicros()
836 // FromUnixMillis()
837 // FromUnixSeconds()
838 // FromTimeT()
839 // FromUDate()
840 // FromUniversal()
841 //
842 // Creates an `absl::Time` from a variety of other representations.
843 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixNanos(int64_t ns);
844 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixMicros(int64_t us);
845 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixMillis(int64_t ms);
846 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixSeconds(int64_t s);
847 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromTimeT(time_t t);
848 ABSL_ATTRIBUTE_CONST_FUNCTION Time FromUDate(double udate);
849 ABSL_ATTRIBUTE_CONST_FUNCTION Time FromUniversal(int64_t universal);
850 
851 // ToUnixNanos()
852 // ToUnixMicros()
853 // ToUnixMillis()
854 // ToUnixSeconds()
855 // ToTimeT()
856 // ToUDate()
857 // ToUniversal()
858 //
859 // Converts an `absl::Time` to a variety of other representations.  Note that
860 // these operations round down toward negative infinity where necessary to
861 // adjust to the resolution of the result type.  Beware of possible time_t
862 // over/underflow in ToTime{T,val,spec}() on 32-bit platforms.
863 ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToUnixNanos(Time t);
864 ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToUnixMicros(Time t);
865 ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToUnixMillis(Time t);
866 ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToUnixSeconds(Time t);
867 ABSL_ATTRIBUTE_CONST_FUNCTION time_t ToTimeT(Time t);
868 ABSL_ATTRIBUTE_CONST_FUNCTION double ToUDate(Time t);
869 ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToUniversal(Time t);
870 
871 // DurationFromTimespec()
872 // DurationFromTimeval()
873 // ToTimespec()
874 // ToTimeval()
875 // TimeFromTimespec()
876 // TimeFromTimeval()
877 // ToTimespec()
878 // ToTimeval()
879 //
880 // Some APIs use a timespec or a timeval as a Duration (e.g., nanosleep(2)
881 // and select(2)), while others use them as a Time (e.g. clock_gettime(2)
882 // and gettimeofday(2)), so conversion functions are provided for both cases.
883 // The "to timespec/val" direction is easily handled via overloading, but
884 // for "from timespec/val" the desired type is part of the function name.
885 ABSL_ATTRIBUTE_CONST_FUNCTION Duration DurationFromTimespec(timespec ts);
886 ABSL_ATTRIBUTE_CONST_FUNCTION Duration DurationFromTimeval(timeval tv);
887 ABSL_ATTRIBUTE_CONST_FUNCTION timespec ToTimespec(Duration d);
888 ABSL_ATTRIBUTE_CONST_FUNCTION timeval ToTimeval(Duration d);
889 ABSL_ATTRIBUTE_CONST_FUNCTION Time TimeFromTimespec(timespec ts);
890 ABSL_ATTRIBUTE_CONST_FUNCTION Time TimeFromTimeval(timeval tv);
891 ABSL_ATTRIBUTE_CONST_FUNCTION timespec ToTimespec(Time t);
892 ABSL_ATTRIBUTE_CONST_FUNCTION timeval ToTimeval(Time t);
893 
894 // FromChrono()
895 //
896 // Converts a std::chrono::system_clock::time_point to an absl::Time.
897 //
898 // Example:
899 //
900 //   auto tp = std::chrono::system_clock::from_time_t(123);
901 //   absl::Time t = absl::FromChrono(tp);
902 //   // t == absl::FromTimeT(123)
903 ABSL_ATTRIBUTE_PURE_FUNCTION Time
904 FromChrono(const std::chrono::system_clock::time_point& tp);
905 
906 // ToChronoTime()
907 //
908 // Converts an absl::Time to a std::chrono::system_clock::time_point. If
909 // overflow would occur, the returned value will saturate at the min/max time
910 // point value instead.
911 //
912 // Example:
913 //
914 //   absl::Time t = absl::FromTimeT(123);
915 //   auto tp = absl::ToChronoTime(t);
916 //   // tp == std::chrono::system_clock::from_time_t(123);
917 ABSL_ATTRIBUTE_CONST_FUNCTION std::chrono::system_clock::time_point
918     ToChronoTime(Time);
919 
920 // AbslParseFlag()
921 //
922 // Parses the command-line flag string representation `text` into a Time value.
923 // Time flags must be specified in a format that matches absl::RFC3339_full.
924 //
925 // For example:
926 //
927 //   --start_time=2016-01-02T03:04:05.678+08:00
928 //
929 // Note: A UTC offset (or 'Z' indicating a zero-offset from UTC) is required.
930 //
931 // Additionally, if you'd like to specify a time as a count of
932 // seconds/milliseconds/etc from the Unix epoch, use an absl::Duration flag
933 // and add that duration to absl::UnixEpoch() to get an absl::Time.
934 bool AbslParseFlag(absl::string_view text, Time* t, std::string* error);
935 
936 // AbslUnparseFlag()
937 //
938 // Unparses a Time value into a command-line string representation using
939 // the format specified by `absl::ParseTime()`.
940 std::string AbslUnparseFlag(Time t);
941 
942 ABSL_DEPRECATED("Use AbslParseFlag() instead.")
943 bool ParseFlag(const std::string& text, Time* t, std::string* error);
944 ABSL_DEPRECATED("Use AbslUnparseFlag() instead.")
945 std::string UnparseFlag(Time t);
946 
947 // TimeZone
948 //
949 // The `absl::TimeZone` is an opaque, small, value-type class representing a
950 // geo-political region within which particular rules are used for converting
951 // between absolute and civil times (see https://git.io/v59Ly). `absl::TimeZone`
952 // values are named using the TZ identifiers from the IANA Time Zone Database,
953 // such as "America/Los_Angeles" or "Australia/Sydney". `absl::TimeZone` values
954 // are created from factory functions such as `absl::LoadTimeZone()`. Note:
955 // strings like "PST" and "EDT" are not valid TZ identifiers. Prefer to pass by
956 // value rather than const reference.
957 //
958 // For more on the fundamental concepts of time zones, absolute times, and civil
959 // times, see https://github.com/google/cctz#fundamental-concepts
960 //
961 // Examples:
962 //
963 //   absl::TimeZone utc = absl::UTCTimeZone();
964 //   absl::TimeZone pst = absl::FixedTimeZone(-8 * 60 * 60);
965 //   absl::TimeZone loc = absl::LocalTimeZone();
966 //   absl::TimeZone lax;
967 //   if (!absl::LoadTimeZone("America/Los_Angeles", &lax)) {
968 //     // handle error case
969 //   }
970 //
971 // See also:
972 // - https://github.com/google/cctz
973 // - https://www.iana.org/time-zones
974 // - https://en.wikipedia.org/wiki/Zoneinfo
975 class TimeZone {
976  public:
TimeZone(time_internal::cctz::time_zone tz)977   explicit TimeZone(time_internal::cctz::time_zone tz) : cz_(tz) {}
978   TimeZone() = default;  // UTC, but prefer UTCTimeZone() to be explicit.
979 
980   // Copyable.
981   TimeZone(const TimeZone&) = default;
982   TimeZone& operator=(const TimeZone&) = default;
983 
time_zone()984   explicit operator time_internal::cctz::time_zone() const { return cz_; }
985 
name()986   std::string name() const { return cz_.name(); }
987 
988   // TimeZone::CivilInfo
989   //
990   // Information about the civil time corresponding to an absolute time.
991   // This struct is not intended to represent an instant in time. So, rather
992   // than passing a `TimeZone::CivilInfo` to a function, pass an `absl::Time`
993   // and an `absl::TimeZone`.
994   struct CivilInfo {
995     CivilSecond cs;
996     Duration subsecond;
997 
998     // Note: The following fields exist for backward compatibility
999     // with older APIs.  Accessing these fields directly is a sign of
1000     // imprudent logic in the calling code.  Modern time-related code
1001     // should only access this data indirectly by way of FormatTime().
1002     // These fields are undefined for InfiniteFuture() and InfinitePast().
1003     int offset;             // seconds east of UTC
1004     bool is_dst;            // is offset non-standard?
1005     const char* zone_abbr;  // time-zone abbreviation (e.g., "PST")
1006   };
1007 
1008   // TimeZone::At(Time)
1009   //
1010   // Returns the civil time for this TimeZone at a certain `absl::Time`.
1011   // If the input time is infinite, the output civil second will be set to
1012   // CivilSecond::max() or min(), and the subsecond will be infinite.
1013   //
1014   // Example:
1015   //
1016   //   const auto epoch = lax.At(absl::UnixEpoch());
1017   //   // epoch.cs == 1969-12-31 16:00:00
1018   //   // epoch.subsecond == absl::ZeroDuration()
1019   //   // epoch.offset == -28800
1020   //   // epoch.is_dst == false
1021   //   // epoch.abbr == "PST"
1022   CivilInfo At(Time t) const;
1023 
1024   // TimeZone::TimeInfo
1025   //
1026   // Information about the absolute times corresponding to a civil time.
1027   // (Subseconds must be handled separately.)
1028   //
1029   // It is possible for a caller to pass a civil-time value that does
1030   // not represent an actual or unique instant in time (due to a shift
1031   // in UTC offset in the TimeZone, which results in a discontinuity in
1032   // the civil-time components). For example, a daylight-saving-time
1033   // transition skips or repeats civil times---in the United States,
1034   // March 13, 2011 02:15 never occurred, while November 6, 2011 01:15
1035   // occurred twice---so requests for such times are not well-defined.
1036   // To account for these possibilities, `absl::TimeZone::TimeInfo` is
1037   // richer than just a single `absl::Time`.
1038   struct TimeInfo {
1039     enum CivilKind {
1040       UNIQUE,    // the civil time was singular (pre == trans == post)
1041       SKIPPED,   // the civil time did not exist (pre >= trans > post)
1042       REPEATED,  // the civil time was ambiguous (pre < trans <= post)
1043     } kind;
1044     Time pre;    // time calculated using the pre-transition offset
1045     Time trans;  // when the civil-time discontinuity occurred
1046     Time post;   // time calculated using the post-transition offset
1047   };
1048 
1049   // TimeZone::At(CivilSecond)
1050   //
1051   // Returns an `absl::TimeInfo` containing the absolute time(s) for this
1052   // TimeZone at an `absl::CivilSecond`. When the civil time is skipped or
1053   // repeated, returns times calculated using the pre-transition and post-
1054   // transition UTC offsets, plus the transition time itself.
1055   //
1056   // Examples:
1057   //
1058   //   // A unique civil time
1059   //   const auto jan01 = lax.At(absl::CivilSecond(2011, 1, 1, 0, 0, 0));
1060   //   // jan01.kind == TimeZone::TimeInfo::UNIQUE
1061   //   // jan01.pre    is 2011-01-01 00:00:00 -0800
1062   //   // jan01.trans  is 2011-01-01 00:00:00 -0800
1063   //   // jan01.post   is 2011-01-01 00:00:00 -0800
1064   //
1065   //   // A Spring DST transition, when there is a gap in civil time
1066   //   const auto mar13 = lax.At(absl::CivilSecond(2011, 3, 13, 2, 15, 0));
1067   //   // mar13.kind == TimeZone::TimeInfo::SKIPPED
1068   //   // mar13.pre   is 2011-03-13 03:15:00 -0700
1069   //   // mar13.trans is 2011-03-13 03:00:00 -0700
1070   //   // mar13.post  is 2011-03-13 01:15:00 -0800
1071   //
1072   //   // A Fall DST transition, when civil times are repeated
1073   //   const auto nov06 = lax.At(absl::CivilSecond(2011, 11, 6, 1, 15, 0));
1074   //   // nov06.kind == TimeZone::TimeInfo::REPEATED
1075   //   // nov06.pre   is 2011-11-06 01:15:00 -0700
1076   //   // nov06.trans is 2011-11-06 01:00:00 -0800
1077   //   // nov06.post  is 2011-11-06 01:15:00 -0800
1078   TimeInfo At(CivilSecond ct) const;
1079 
1080   // TimeZone::NextTransition()
1081   // TimeZone::PrevTransition()
1082   //
1083   // Finds the time of the next/previous offset change in this time zone.
1084   //
1085   // By definition, `NextTransition(t, &trans)` returns false when `t` is
1086   // `InfiniteFuture()`, and `PrevTransition(t, &trans)` returns false
1087   // when `t` is `InfinitePast()`. If the zone has no transitions, the
1088   // result will also be false no matter what the argument.
1089   //
1090   // Otherwise, when `t` is `InfinitePast()`, `NextTransition(t, &trans)`
1091   // returns true and sets `trans` to the first recorded transition. Chains
1092   // of calls to `NextTransition()/PrevTransition()` will eventually return
1093   // false, but it is unspecified exactly when `NextTransition(t, &trans)`
1094   // jumps to false, or what time is set by `PrevTransition(t, &trans)` for
1095   // a very distant `t`.
1096   //
1097   // Note: Enumeration of time-zone transitions is for informational purposes
1098   // only. Modern time-related code should not care about when offset changes
1099   // occur.
1100   //
1101   // Example:
1102   //   absl::TimeZone nyc;
1103   //   if (!absl::LoadTimeZone("America/New_York", &nyc)) { ... }
1104   //   const auto now = absl::Now();
1105   //   auto t = absl::InfinitePast();
1106   //   absl::TimeZone::CivilTransition trans;
1107   //   while (t <= now && nyc.NextTransition(t, &trans)) {
1108   //     // transition: trans.from -> trans.to
1109   //     t = nyc.At(trans.to).trans;
1110   //   }
1111   struct CivilTransition {
1112     CivilSecond from;  // the civil time we jump from
1113     CivilSecond to;    // the civil time we jump to
1114   };
1115   bool NextTransition(Time t, CivilTransition* trans) const;
1116   bool PrevTransition(Time t, CivilTransition* trans) const;
1117 
1118   template <typename H>
AbslHashValue(H h,TimeZone tz)1119   friend H AbslHashValue(H h, TimeZone tz) {
1120     return H::combine(std::move(h), tz.cz_);
1121   }
1122 
1123  private:
1124   friend bool operator==(TimeZone a, TimeZone b) { return a.cz_ == b.cz_; }
1125   friend bool operator!=(TimeZone a, TimeZone b) { return a.cz_ != b.cz_; }
1126   friend std::ostream& operator<<(std::ostream& os, TimeZone tz) {
1127     return os << tz.name();
1128   }
1129 
1130   time_internal::cctz::time_zone cz_;
1131 };
1132 
1133 // LoadTimeZone()
1134 //
1135 // Loads the named zone. May perform I/O on the initial load of the named
1136 // zone. If the name is invalid, or some other kind of error occurs, returns
1137 // `false` and `*tz` is set to the UTC time zone.
LoadTimeZone(absl::string_view name,TimeZone * tz)1138 inline bool LoadTimeZone(absl::string_view name, TimeZone* tz) {
1139   if (name == "localtime") {
1140     *tz = TimeZone(time_internal::cctz::local_time_zone());
1141     return true;
1142   }
1143   time_internal::cctz::time_zone cz;
1144   const bool b = time_internal::cctz::load_time_zone(std::string(name), &cz);
1145   *tz = TimeZone(cz);
1146   return b;
1147 }
1148 
1149 // FixedTimeZone()
1150 //
1151 // Returns a TimeZone that is a fixed offset (seconds east) from UTC.
1152 // Note: If the absolute value of the offset is greater than 24 hours
1153 // you'll get UTC (i.e., no offset) instead.
FixedTimeZone(int seconds)1154 inline TimeZone FixedTimeZone(int seconds) {
1155   return TimeZone(
1156       time_internal::cctz::fixed_time_zone(std::chrono::seconds(seconds)));
1157 }
1158 
1159 // UTCTimeZone()
1160 //
1161 // Convenience method returning the UTC time zone.
UTCTimeZone()1162 inline TimeZone UTCTimeZone() {
1163   return TimeZone(time_internal::cctz::utc_time_zone());
1164 }
1165 
1166 // LocalTimeZone()
1167 //
1168 // Convenience method returning the local time zone, or UTC if there is
1169 // no configured local zone.  Warning: Be wary of using LocalTimeZone(),
1170 // and particularly so in a server process, as the zone configured for the
1171 // local machine should be irrelevant.  Prefer an explicit zone name.
LocalTimeZone()1172 inline TimeZone LocalTimeZone() {
1173   return TimeZone(time_internal::cctz::local_time_zone());
1174 }
1175 
1176 // ToCivilSecond()
1177 // ToCivilMinute()
1178 // ToCivilHour()
1179 // ToCivilDay()
1180 // ToCivilMonth()
1181 // ToCivilYear()
1182 //
1183 // Helpers for TimeZone::At(Time) to return particularly aligned civil times.
1184 //
1185 // Example:
1186 //
1187 //   absl::Time t = ...;
1188 //   absl::TimeZone tz = ...;
1189 //   const auto cd = absl::ToCivilDay(t, tz);
ToCivilSecond(Time t,TimeZone tz)1190 ABSL_ATTRIBUTE_PURE_FUNCTION inline CivilSecond ToCivilSecond(Time t,
1191                                                               TimeZone tz) {
1192   return tz.At(t).cs;  // already a CivilSecond
1193 }
ToCivilMinute(Time t,TimeZone tz)1194 ABSL_ATTRIBUTE_PURE_FUNCTION inline CivilMinute ToCivilMinute(Time t,
1195                                                               TimeZone tz) {
1196   return CivilMinute(tz.At(t).cs);
1197 }
ToCivilHour(Time t,TimeZone tz)1198 ABSL_ATTRIBUTE_PURE_FUNCTION inline CivilHour ToCivilHour(Time t, TimeZone tz) {
1199   return CivilHour(tz.At(t).cs);
1200 }
ToCivilDay(Time t,TimeZone tz)1201 ABSL_ATTRIBUTE_PURE_FUNCTION inline CivilDay ToCivilDay(Time t, TimeZone tz) {
1202   return CivilDay(tz.At(t).cs);
1203 }
ToCivilMonth(Time t,TimeZone tz)1204 ABSL_ATTRIBUTE_PURE_FUNCTION inline CivilMonth ToCivilMonth(Time t,
1205                                                             TimeZone tz) {
1206   return CivilMonth(tz.At(t).cs);
1207 }
ToCivilYear(Time t,TimeZone tz)1208 ABSL_ATTRIBUTE_PURE_FUNCTION inline CivilYear ToCivilYear(Time t, TimeZone tz) {
1209   return CivilYear(tz.At(t).cs);
1210 }
1211 
1212 // FromCivil()
1213 //
1214 // Helper for TimeZone::At(CivilSecond) that provides "order-preserving
1215 // semantics." If the civil time maps to a unique time, that time is
1216 // returned. If the civil time is repeated in the given time zone, the
1217 // time using the pre-transition offset is returned. Otherwise, the
1218 // civil time is skipped in the given time zone, and the transition time
1219 // is returned. This means that for any two civil times, ct1 and ct2,
1220 // (ct1 < ct2) => (FromCivil(ct1) <= FromCivil(ct2)), the equal case
1221 // being when two non-existent civil times map to the same transition time.
1222 //
1223 // Note: Accepts civil times of any alignment.
FromCivil(CivilSecond ct,TimeZone tz)1224 ABSL_ATTRIBUTE_PURE_FUNCTION inline Time FromCivil(CivilSecond ct,
1225                                                    TimeZone tz) {
1226   const auto ti = tz.At(ct);
1227   if (ti.kind == TimeZone::TimeInfo::SKIPPED) return ti.trans;
1228   return ti.pre;
1229 }
1230 
1231 // TimeConversion
1232 //
1233 // An `absl::TimeConversion` represents the conversion of year, month, day,
1234 // hour, minute, and second values (i.e., a civil time), in a particular
1235 // `absl::TimeZone`, to a time instant (an absolute time), as returned by
1236 // `absl::ConvertDateTime()`. Legacy version of `absl::TimeZone::TimeInfo`.
1237 //
1238 // Deprecated. Use `absl::TimeZone::TimeInfo`.
1239 struct
1240     TimeConversion {
1241   Time pre;    // time calculated using the pre-transition offset
1242   Time trans;  // when the civil-time discontinuity occurred
1243   Time post;   // time calculated using the post-transition offset
1244 
1245   enum Kind {
1246     UNIQUE,    // the civil time was singular (pre == trans == post)
1247     SKIPPED,   // the civil time did not exist
1248     REPEATED,  // the civil time was ambiguous
1249   };
1250   Kind kind;
1251 
1252   bool normalized;  // input values were outside their valid ranges
1253 };
1254 
1255 // ConvertDateTime()
1256 //
1257 // Legacy version of `absl::TimeZone::At(absl::CivilSecond)` that takes
1258 // the civil time as six, separate values (YMDHMS).
1259 //
1260 // The input month, day, hour, minute, and second values can be outside
1261 // of their valid ranges, in which case they will be "normalized" during
1262 // the conversion.
1263 //
1264 // Example:
1265 //
1266 //   // "October 32" normalizes to "November 1".
1267 //   absl::TimeConversion tc =
1268 //       absl::ConvertDateTime(2013, 10, 32, 8, 30, 0, lax);
1269 //   // tc.kind == TimeConversion::UNIQUE && tc.normalized == true
1270 //   // absl::ToCivilDay(tc.pre, tz).month() == 11
1271 //   // absl::ToCivilDay(tc.pre, tz).day() == 1
1272 //
1273 // Deprecated. Use `absl::TimeZone::At(CivilSecond)`.
1274 TimeConversion ConvertDateTime(int64_t year, int mon, int day, int hour,
1275                                int min, int sec, TimeZone tz);
1276 
1277 // FromDateTime()
1278 //
1279 // A convenience wrapper for `absl::ConvertDateTime()` that simply returns
1280 // the "pre" `absl::Time`.  That is, the unique result, or the instant that
1281 // is correct using the pre-transition offset (as if the transition never
1282 // happened).
1283 //
1284 // Example:
1285 //
1286 //   absl::Time t = absl::FromDateTime(2017, 9, 26, 9, 30, 0, lax);
1287 //   // t = 2017-09-26 09:30:00 -0700
1288 //
1289 // Deprecated. Use `absl::FromCivil(CivilSecond, TimeZone)`. Note that the
1290 // behavior of `FromCivil()` differs from `FromDateTime()` for skipped civil
1291 // times. If you care about that see `absl::TimeZone::At(absl::CivilSecond)`.
FromDateTime(int64_t year,int mon,int day,int hour,int min,int sec,TimeZone tz)1292 inline Time FromDateTime(int64_t year, int mon, int day, int hour,
1293                          int min, int sec, TimeZone tz) {
1294   return ConvertDateTime(year, mon, day, hour, min, sec, tz).pre;
1295 }
1296 
1297 // FromTM()
1298 //
1299 // Converts the `tm_year`, `tm_mon`, `tm_mday`, `tm_hour`, `tm_min`, and
1300 // `tm_sec` fields to an `absl::Time` using the given time zone. See ctime(3)
1301 // for a description of the expected values of the tm fields. If the civil time
1302 // is unique (see `absl::TimeZone::At(absl::CivilSecond)` above), the matching
1303 // time instant is returned.  Otherwise, the `tm_isdst` field is consulted to
1304 // choose between the possible results.  For a repeated civil time, `tm_isdst !=
1305 // 0` returns the matching DST instant, while `tm_isdst == 0` returns the
1306 // matching non-DST instant.  For a skipped civil time there is no matching
1307 // instant, so `tm_isdst != 0` returns the DST instant, and `tm_isdst == 0`
1308 // returns the non-DST instant, that would have matched if the transition never
1309 // happened.
1310 ABSL_ATTRIBUTE_PURE_FUNCTION Time FromTM(const struct tm& tm, TimeZone tz);
1311 
1312 // ToTM()
1313 //
1314 // Converts the given `absl::Time` to a struct tm using the given time zone.
1315 // See ctime(3) for a description of the values of the tm fields.
1316 ABSL_ATTRIBUTE_PURE_FUNCTION struct tm ToTM(Time t, TimeZone tz);
1317 
1318 // RFC3339_full
1319 // RFC3339_sec
1320 //
1321 // FormatTime()/ParseTime() format specifiers for RFC3339 date/time strings,
1322 // with trailing zeros trimmed or with fractional seconds omitted altogether.
1323 //
1324 // Note that RFC3339_sec[] matches an ISO 8601 extended format for date and
1325 // time with UTC offset.  Also note the use of "%Y": RFC3339 mandates that
1326 // years have exactly four digits, but we allow them to take their natural
1327 // width.
1328 ABSL_DLL extern const char RFC3339_full[];  // %Y-%m-%d%ET%H:%M:%E*S%Ez
1329 ABSL_DLL extern const char RFC3339_sec[];   // %Y-%m-%d%ET%H:%M:%S%Ez
1330 
1331 // RFC1123_full
1332 // RFC1123_no_wday
1333 //
1334 // FormatTime()/ParseTime() format specifiers for RFC1123 date/time strings.
1335 ABSL_DLL extern const char RFC1123_full[];     // %a, %d %b %E4Y %H:%M:%S %z
1336 ABSL_DLL extern const char RFC1123_no_wday[];  // %d %b %E4Y %H:%M:%S %z
1337 
1338 // FormatTime()
1339 //
1340 // Formats the given `absl::Time` in the `absl::TimeZone` according to the
1341 // provided format string. Uses strftime()-like formatting options, with
1342 // the following extensions:
1343 //
1344 //   - %Ez  - RFC3339-compatible numeric UTC offset (+hh:mm or -hh:mm)
1345 //   - %E*z - Full-resolution numeric UTC offset (+hh:mm:ss or -hh:mm:ss)
1346 //   - %E#S - Seconds with # digits of fractional precision
1347 //   - %E*S - Seconds with full fractional precision (a literal '*')
1348 //   - %E#f - Fractional seconds with # digits of precision
1349 //   - %E*f - Fractional seconds with full precision (a literal '*')
1350 //   - %E4Y - Four-character years (-999 ... -001, 0000, 0001 ... 9999)
1351 //   - %ET  - The RFC3339 "date-time" separator "T"
1352 //
1353 // Note that %E0S behaves like %S, and %E0f produces no characters.  In
1354 // contrast %E*f always produces at least one digit, which may be '0'.
1355 //
1356 // Note that %Y produces as many characters as it takes to fully render the
1357 // year.  A year outside of [-999:9999] when formatted with %E4Y will produce
1358 // more than four characters, just like %Y.
1359 //
1360 // We recommend that format strings include the UTC offset (%z, %Ez, or %E*z)
1361 // so that the result uniquely identifies a time instant.
1362 //
1363 // Example:
1364 //
1365 //   absl::CivilSecond cs(2013, 1, 2, 3, 4, 5);
1366 //   absl::Time t = absl::FromCivil(cs, lax);
1367 //   std::string f = absl::FormatTime("%H:%M:%S", t, lax);  // "03:04:05"
1368 //   f = absl::FormatTime("%H:%M:%E3S", t, lax);  // "03:04:05.000"
1369 //
1370 // Note: If the given `absl::Time` is `absl::InfiniteFuture()`, the returned
1371 // string will be exactly "infinite-future". If the given `absl::Time` is
1372 // `absl::InfinitePast()`, the returned string will be exactly "infinite-past".
1373 // In both cases the given format string and `absl::TimeZone` are ignored.
1374 //
1375 ABSL_ATTRIBUTE_PURE_FUNCTION std::string FormatTime(absl::string_view format,
1376                                                     Time t, TimeZone tz);
1377 
1378 // Convenience functions that format the given time using the RFC3339_full
1379 // format.  The first overload uses the provided TimeZone, while the second
1380 // uses LocalTimeZone().
1381 ABSL_ATTRIBUTE_PURE_FUNCTION std::string FormatTime(Time t, TimeZone tz);
1382 ABSL_ATTRIBUTE_PURE_FUNCTION std::string FormatTime(Time t);
1383 
1384 // Output stream operator.
1385 inline std::ostream& operator<<(std::ostream& os, Time t) {
1386   return os << FormatTime(t);
1387 }
1388 
1389 // ParseTime()
1390 //
1391 // Parses an input string according to the provided format string and
1392 // returns the corresponding `absl::Time`. Uses strftime()-like formatting
1393 // options, with the same extensions as FormatTime(), but with the
1394 // exceptions that %E#S is interpreted as %E*S, and %E#f as %E*f.  %Ez
1395 // and %E*z also accept the same inputs, which (along with %z) includes
1396 // 'z' and 'Z' as synonyms for +00:00.  %ET accepts either 'T' or 't'.
1397 //
1398 // %Y consumes as many numeric characters as it can, so the matching data
1399 // should always be terminated with a non-numeric.  %E4Y always consumes
1400 // exactly four characters, including any sign.
1401 //
1402 // Unspecified fields are taken from the default date and time of ...
1403 //
1404 //   "1970-01-01 00:00:00.0 +0000"
1405 //
1406 // For example, parsing a string of "15:45" (%H:%M) will return an absl::Time
1407 // that represents "1970-01-01 15:45:00.0 +0000".
1408 //
1409 // Note that since ParseTime() returns time instants, it makes the most sense
1410 // to parse fully-specified date/time strings that include a UTC offset (%z,
1411 // %Ez, or %E*z).
1412 //
1413 // Note also that `absl::ParseTime()` only heeds the fields year, month, day,
1414 // hour, minute, (fractional) second, and UTC offset.  Other fields, like
1415 // weekday (%a or %A), while parsed for syntactic validity, are ignored
1416 // in the conversion.
1417 //
1418 // Date and time fields that are out-of-range will be treated as errors
1419 // rather than normalizing them like `absl::CivilSecond` does.  For example,
1420 // it is an error to parse the date "Oct 32, 2013" because 32 is out of range.
1421 //
1422 // A leap second of ":60" is normalized to ":00" of the following minute
1423 // with fractional seconds discarded.  The following table shows how the
1424 // given seconds and subseconds will be parsed:
1425 //
1426 //   "59.x" -> 59.x  // exact
1427 //   "60.x" -> 00.0  // normalized
1428 //   "00.x" -> 00.x  // exact
1429 //
1430 // Errors are indicated by returning false and assigning an error message
1431 // to the "err" out param if it is non-null.
1432 //
1433 // Note: If the input string is exactly "infinite-future", the returned
1434 // `absl::Time` will be `absl::InfiniteFuture()` and `true` will be returned.
1435 // If the input string is "infinite-past", the returned `absl::Time` will be
1436 // `absl::InfinitePast()` and `true` will be returned.
1437 //
1438 bool ParseTime(absl::string_view format, absl::string_view input, Time* time,
1439                std::string* err);
1440 
1441 // Like ParseTime() above, but if the format string does not contain a UTC
1442 // offset specification (%z/%Ez/%E*z) then the input is interpreted in the
1443 // given TimeZone.  This means that the input, by itself, does not identify a
1444 // unique instant.  Being time-zone dependent, it also admits the possibility
1445 // of ambiguity or non-existence, in which case the "pre" time (as defined
1446 // by TimeZone::TimeInfo) is returned.  For these reasons we recommend that
1447 // all date/time strings include a UTC offset so they're context independent.
1448 bool ParseTime(absl::string_view format, absl::string_view input, TimeZone tz,
1449                Time* time, std::string* err);
1450 
1451 // ============================================================================
1452 // Implementation Details Follow
1453 // ============================================================================
1454 
1455 namespace time_internal {
1456 
1457 // Creates a Duration with a given representation.
1458 // REQUIRES: hi,lo is a valid representation of a Duration as specified
1459 // in time/duration.cc.
1460 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration MakeDuration(int64_t hi,
1461                                                               uint32_t lo = 0) {
1462   return Duration(hi, lo);
1463 }
1464 
MakeDuration(int64_t hi,int64_t lo)1465 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration MakeDuration(int64_t hi,
1466                                                               int64_t lo) {
1467   return MakeDuration(hi, static_cast<uint32_t>(lo));
1468 }
1469 
1470 // Make a Duration value from a floating-point number, as long as that number
1471 // is in the range [ 0 .. numeric_limits<int64_t>::max ), that is, as long as
1472 // it's positive and can be converted to int64_t without risk of UB.
MakePosDoubleDuration(double n)1473 ABSL_ATTRIBUTE_CONST_FUNCTION inline Duration MakePosDoubleDuration(double n) {
1474   const int64_t int_secs = static_cast<int64_t>(n);
1475   const uint32_t ticks = static_cast<uint32_t>(
1476       std::round((n - static_cast<double>(int_secs)) * kTicksPerSecond));
1477   return ticks < kTicksPerSecond
1478              ? MakeDuration(int_secs, ticks)
1479              : MakeDuration(int_secs + 1, ticks - kTicksPerSecond);
1480 }
1481 
1482 // Creates a normalized Duration from an almost-normalized (sec,ticks)
1483 // pair. sec may be positive or negative.  ticks must be in the range
1484 // -kTicksPerSecond < *ticks < kTicksPerSecond.  If ticks is negative it
1485 // will be normalized to a positive value in the resulting Duration.
MakeNormalizedDuration(int64_t sec,int64_t ticks)1486 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration MakeNormalizedDuration(
1487     int64_t sec, int64_t ticks) {
1488   return (ticks < 0) ? MakeDuration(sec - 1, ticks + kTicksPerSecond)
1489                      : MakeDuration(sec, ticks);
1490 }
1491 
1492 // Provide access to the Duration representation.
GetRepHi(Duration d)1493 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr int64_t GetRepHi(Duration d) {
1494   return d.rep_hi_;
1495 }
GetRepLo(Duration d)1496 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr uint32_t GetRepLo(Duration d) {
1497   return d.rep_lo_;
1498 }
1499 
1500 // Returns true iff d is positive or negative infinity.
IsInfiniteDuration(Duration d)1501 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool IsInfiniteDuration(Duration d) {
1502   return GetRepLo(d) == ~uint32_t{0};
1503 }
1504 
1505 // Returns an infinite Duration with the opposite sign.
1506 // REQUIRES: IsInfiniteDuration(d)
OppositeInfinity(Duration d)1507 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration OppositeInfinity(Duration d) {
1508   return GetRepHi(d) < 0
1509              ? MakeDuration((std::numeric_limits<int64_t>::max)(), ~uint32_t{0})
1510              : MakeDuration((std::numeric_limits<int64_t>::min)(),
1511                             ~uint32_t{0});
1512 }
1513 
1514 // Returns (-n)-1 (equivalently -(n+1)) without avoidable overflow.
NegateAndSubtractOne(int64_t n)1515 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr int64_t NegateAndSubtractOne(
1516     int64_t n) {
1517   // Note: Good compilers will optimize this expression to ~n when using
1518   // a two's-complement representation (which is required for int64_t).
1519   return (n < 0) ? -(n + 1) : (-n) - 1;
1520 }
1521 
1522 // Map between a Time and a Duration since the Unix epoch.  Note that these
1523 // functions depend on the above mentioned choice of the Unix epoch for the
1524 // Time representation (and both need to be Time friends).  Without this
1525 // knowledge, we would need to add-in/subtract-out UnixEpoch() respectively.
FromUnixDuration(Duration d)1526 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixDuration(Duration d) {
1527   return Time(d);
1528 }
ToUnixDuration(Time t)1529 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration ToUnixDuration(Time t) {
1530   return t.rep_;
1531 }
1532 
1533 template <std::intmax_t N>
FromInt64(int64_t v,std::ratio<1,N>)1534 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration FromInt64(int64_t v,
1535                                                            std::ratio<1, N>) {
1536   static_assert(0 < N && N <= 1000 * 1000 * 1000, "Unsupported ratio");
1537   // Subsecond ratios cannot overflow.
1538   return MakeNormalizedDuration(
1539       v / N, v % N * kTicksPerNanosecond * 1000 * 1000 * 1000 / N);
1540 }
FromInt64(int64_t v,std::ratio<60>)1541 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration FromInt64(int64_t v,
1542                                                            std::ratio<60>) {
1543   return (v <= (std::numeric_limits<int64_t>::max)() / 60 &&
1544           v >= (std::numeric_limits<int64_t>::min)() / 60)
1545              ? MakeDuration(v * 60)
1546              : v > 0 ? InfiniteDuration() : -InfiniteDuration();
1547 }
FromInt64(int64_t v,std::ratio<3600>)1548 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration FromInt64(int64_t v,
1549                                                            std::ratio<3600>) {
1550   return (v <= (std::numeric_limits<int64_t>::max)() / 3600 &&
1551           v >= (std::numeric_limits<int64_t>::min)() / 3600)
1552              ? MakeDuration(v * 3600)
1553              : v > 0 ? InfiniteDuration() : -InfiniteDuration();
1554 }
1555 
1556 // IsValidRep64<T>(0) is true if the expression `int64_t{std::declval<T>()}` is
1557 // valid. That is, if a T can be assigned to an int64_t without narrowing.
1558 template <typename T>
1559 constexpr auto IsValidRep64(int) -> decltype(int64_t{std::declval<T>()} == 0) {
1560   return true;
1561 }
1562 template <typename T>
1563 constexpr auto IsValidRep64(char) -> bool {
1564   return false;
1565 }
1566 
1567 // Converts a std::chrono::duration to an absl::Duration.
1568 template <typename Rep, typename Period>
FromChrono(const std::chrono::duration<Rep,Period> & d)1569 ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(
1570     const std::chrono::duration<Rep, Period>& d) {
1571   static_assert(IsValidRep64<Rep>(0), "duration::rep is invalid");
1572   return FromInt64(int64_t{d.count()}, Period{});
1573 }
1574 
1575 template <typename Ratio>
ToInt64(Duration d,Ratio)1576 ABSL_ATTRIBUTE_CONST_FUNCTION int64_t ToInt64(Duration d, Ratio) {
1577   // Note: This may be used on MSVC, which may have a system_clock period of
1578   // std::ratio<1, 10 * 1000 * 1000>
1579   return ToInt64Seconds(d * Ratio::den / Ratio::num);
1580 }
1581 // Fastpath implementations for the 6 common duration units.
ToInt64(Duration d,std::nano)1582 ABSL_ATTRIBUTE_CONST_FUNCTION inline int64_t ToInt64(Duration d, std::nano) {
1583   return ToInt64Nanoseconds(d);
1584 }
ToInt64(Duration d,std::micro)1585 ABSL_ATTRIBUTE_CONST_FUNCTION inline int64_t ToInt64(Duration d, std::micro) {
1586   return ToInt64Microseconds(d);
1587 }
ToInt64(Duration d,std::milli)1588 ABSL_ATTRIBUTE_CONST_FUNCTION inline int64_t ToInt64(Duration d, std::milli) {
1589   return ToInt64Milliseconds(d);
1590 }
ToInt64(Duration d,std::ratio<1>)1591 ABSL_ATTRIBUTE_CONST_FUNCTION inline int64_t ToInt64(Duration d,
1592                                                      std::ratio<1>) {
1593   return ToInt64Seconds(d);
1594 }
ToInt64(Duration d,std::ratio<60>)1595 ABSL_ATTRIBUTE_CONST_FUNCTION inline int64_t ToInt64(Duration d,
1596                                                      std::ratio<60>) {
1597   return ToInt64Minutes(d);
1598 }
ToInt64(Duration d,std::ratio<3600>)1599 ABSL_ATTRIBUTE_CONST_FUNCTION inline int64_t ToInt64(Duration d,
1600                                                      std::ratio<3600>) {
1601   return ToInt64Hours(d);
1602 }
1603 
1604 // Converts an absl::Duration to a chrono duration of type T.
1605 template <typename T>
ToChronoDuration(Duration d)1606 ABSL_ATTRIBUTE_CONST_FUNCTION T ToChronoDuration(Duration d) {
1607   using Rep = typename T::rep;
1608   using Period = typename T::period;
1609   static_assert(IsValidRep64<Rep>(0), "duration::rep is invalid");
1610   if (time_internal::IsInfiniteDuration(d))
1611     return d < ZeroDuration() ? (T::min)() : (T::max)();
1612   const auto v = ToInt64(d, Period{});
1613   if (v > (std::numeric_limits<Rep>::max)()) return (T::max)();
1614   if (v < (std::numeric_limits<Rep>::min)()) return (T::min)();
1615   return T{v};
1616 }
1617 
1618 }  // namespace time_internal
1619 
1620 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator<(Duration lhs,
1621                                                        Duration rhs) {
1622   return time_internal::GetRepHi(lhs) != time_internal::GetRepHi(rhs)
1623              ? time_internal::GetRepHi(lhs) < time_internal::GetRepHi(rhs)
1624          : time_internal::GetRepHi(lhs) == (std::numeric_limits<int64_t>::min)()
1625              ? time_internal::GetRepLo(lhs) + 1 <
1626                    time_internal::GetRepLo(rhs) + 1
1627              : time_internal::GetRepLo(lhs) < time_internal::GetRepLo(rhs);
1628 }
1629 
1630 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr bool operator==(Duration lhs,
1631                                                         Duration rhs) {
1632   return time_internal::GetRepHi(lhs) == time_internal::GetRepHi(rhs) &&
1633          time_internal::GetRepLo(lhs) == time_internal::GetRepLo(rhs);
1634 }
1635 
1636 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration operator-(Duration d) {
1637   // This is a little interesting because of the special cases.
1638   //
1639   // If rep_lo_ is zero, we have it easy; it's safe to negate rep_hi_, we're
1640   // dealing with an integral number of seconds, and the only special case is
1641   // the maximum negative finite duration, which can't be negated.
1642   //
1643   // Infinities stay infinite, and just change direction.
1644   //
1645   // Finally we're in the case where rep_lo_ is non-zero, and we can borrow
1646   // a second's worth of ticks and avoid overflow (as negating int64_t-min + 1
1647   // is safe).
1648   return time_internal::GetRepLo(d) == 0
1649              ? time_internal::GetRepHi(d) ==
1650                        (std::numeric_limits<int64_t>::min)()
1651                    ? InfiniteDuration()
1652                    : time_internal::MakeDuration(-time_internal::GetRepHi(d))
1653              : time_internal::IsInfiniteDuration(d)
1654                    ? time_internal::OppositeInfinity(d)
1655                    : time_internal::MakeDuration(
1656                          time_internal::NegateAndSubtractOne(
1657                              time_internal::GetRepHi(d)),
1658                          time_internal::kTicksPerSecond -
1659                              time_internal::GetRepLo(d));
1660 }
1661 
InfiniteDuration()1662 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Duration InfiniteDuration() {
1663   return time_internal::MakeDuration((std::numeric_limits<int64_t>::max)(),
1664                                      ~uint32_t{0});
1665 }
1666 
FromChrono(const std::chrono::nanoseconds & d)1667 ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(
1668     const std::chrono::nanoseconds& d) {
1669   return time_internal::FromChrono(d);
1670 }
FromChrono(const std::chrono::microseconds & d)1671 ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(
1672     const std::chrono::microseconds& d) {
1673   return time_internal::FromChrono(d);
1674 }
FromChrono(const std::chrono::milliseconds & d)1675 ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(
1676     const std::chrono::milliseconds& d) {
1677   return time_internal::FromChrono(d);
1678 }
FromChrono(const std::chrono::seconds & d)1679 ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(
1680     const std::chrono::seconds& d) {
1681   return time_internal::FromChrono(d);
1682 }
FromChrono(const std::chrono::minutes & d)1683 ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(
1684     const std::chrono::minutes& d) {
1685   return time_internal::FromChrono(d);
1686 }
FromChrono(const std::chrono::hours & d)1687 ABSL_ATTRIBUTE_PURE_FUNCTION constexpr Duration FromChrono(
1688     const std::chrono::hours& d) {
1689   return time_internal::FromChrono(d);
1690 }
1691 
FromUnixNanos(int64_t ns)1692 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixNanos(int64_t ns) {
1693   return time_internal::FromUnixDuration(Nanoseconds(ns));
1694 }
1695 
FromUnixMicros(int64_t us)1696 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixMicros(int64_t us) {
1697   return time_internal::FromUnixDuration(Microseconds(us));
1698 }
1699 
FromUnixMillis(int64_t ms)1700 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixMillis(int64_t ms) {
1701   return time_internal::FromUnixDuration(Milliseconds(ms));
1702 }
1703 
FromUnixSeconds(int64_t s)1704 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromUnixSeconds(int64_t s) {
1705   return time_internal::FromUnixDuration(Seconds(s));
1706 }
1707 
FromTimeT(time_t t)1708 ABSL_ATTRIBUTE_CONST_FUNCTION constexpr Time FromTimeT(time_t t) {
1709   return time_internal::FromUnixDuration(Seconds(t));
1710 }
1711 
1712 ABSL_NAMESPACE_END
1713 }  // namespace absl
1714 
1715 #endif  // ABSL_TIME_TIME_H_
1716