1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // mutex.h
17 // -----------------------------------------------------------------------------
18 //
19 // This header file defines a `Mutex` -- a mutually exclusive lock -- and the
20 // most common type of synchronization primitive for facilitating locks on
21 // shared resources. A mutex is used to prevent multiple threads from accessing
22 // and/or writing to a shared resource concurrently.
23 //
24 // Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional
25 // features:
26 //   * Conditional predicates intrinsic to the `Mutex` object
27 //   * Shared/reader locks, in addition to standard exclusive/writer locks
28 //   * Deadlock detection and debug support.
29 //
30 // The following helper classes are also defined within this file:
31 //
32 //  MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/
33 //              write access within the current scope.
34 //
35 //  ReaderMutexLock
36 //            - An RAII wrapper to acquire and release a `Mutex` for shared/read
37 //              access within the current scope.
38 //
39 //  WriterMutexLock
40 //            - Effectively an alias for `MutexLock` above, designed for use in
41 //              distinguishing reader and writer locks within code.
42 //
43 // In addition to simple mutex locks, this file also defines ways to perform
44 // locking under certain conditions.
45 //
46 //  Condition - (Preferred) Used to wait for a particular predicate that
47 //              depends on state protected by the `Mutex` to become true.
48 //  CondVar   - A lower-level variant of `Condition` that relies on
49 //              application code to explicitly signal the `CondVar` when
50 //              a condition has been met.
51 //
52 // See below for more information on using `Condition` or `CondVar`.
53 //
54 // Mutexes and mutex behavior can be quite complicated. The information within
55 // this header file is limited, as a result. Please consult the Mutex guide for
56 // more complete information and examples.
57 
58 #ifndef ABSL_SYNCHRONIZATION_MUTEX_H_
59 #define ABSL_SYNCHRONIZATION_MUTEX_H_
60 
61 #include <atomic>
62 #include <cstdint>
63 #include <cstring>
64 #include <iterator>
65 #include <string>
66 
67 #include "absl/base/const_init.h"
68 #include "absl/base/internal/identity.h"
69 #include "absl/base/internal/low_level_alloc.h"
70 #include "absl/base/internal/thread_identity.h"
71 #include "absl/base/internal/tsan_mutex_interface.h"
72 #include "absl/base/port.h"
73 #include "absl/base/thread_annotations.h"
74 #include "absl/synchronization/internal/kernel_timeout.h"
75 #include "absl/synchronization/internal/per_thread_sem.h"
76 #include "absl/time/time.h"
77 
78 namespace absl {
79 ABSL_NAMESPACE_BEGIN
80 
81 class Condition;
82 struct SynchWaitParams;
83 
84 // -----------------------------------------------------------------------------
85 // Mutex
86 // -----------------------------------------------------------------------------
87 //
88 // A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock
89 // on some resource, typically a variable or data structure with associated
90 // invariants. Proper usage of mutexes prevents concurrent access by different
91 // threads to the same resource.
92 //
93 // A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`.
94 // The `Lock()` operation *acquires* a `Mutex` (in a state known as an
95 // *exclusive* -- or write -- lock), while the `Unlock()` operation *releases* a
96 // Mutex. During the span of time between the Lock() and Unlock() operations,
97 // a mutex is said to be *held*. By design all mutexes support exclusive/write
98 // locks, as this is the most common way to use a mutex.
99 //
100 // The `Mutex` state machine for basic lock/unlock operations is quite simple:
101 //
102 // |                | Lock()     | Unlock() |
103 // |----------------+------------+----------|
104 // | Free           | Exclusive  | invalid  |
105 // | Exclusive      | blocks     | Free     |
106 //
107 // Attempts to `Unlock()` must originate from the thread that performed the
108 // corresponding `Lock()` operation.
109 //
110 // An "invalid" operation is disallowed by the API. The `Mutex` implementation
111 // is allowed to do anything on an invalid call, including but not limited to
112 // crashing with a useful error message, silently succeeding, or corrupting
113 // data structures. In debug mode, the implementation attempts to crash with a
114 // useful error message.
115 //
116 // `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it
117 // is, however, approximately fair over long periods, and starvation-free for
118 // threads at the same priority.
119 //
120 // The lock/unlock primitives are now annotated with lock annotations
121 // defined in (base/thread_annotations.h). When writing multi-threaded code,
122 // you should use lock annotations whenever possible to document your lock
123 // synchronization policy. Besides acting as documentation, these annotations
124 // also help compilers or static analysis tools to identify and warn about
125 // issues that could potentially result in race conditions and deadlocks.
126 //
127 // For more information about the lock annotations, please see
128 // [Thread Safety Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html)
129 // in the Clang documentation.
130 //
131 // See also `MutexLock`, below, for scoped `Mutex` acquisition.
132 
133 class ABSL_LOCKABLE Mutex {
134  public:
135   // Creates a `Mutex` that is not held by anyone. This constructor is
136   // typically used for Mutexes allocated on the heap or the stack.
137   //
138   // To create `Mutex` instances with static storage duration
139   // (e.g. a namespace-scoped or global variable), see
140   // `Mutex::Mutex(absl::kConstInit)` below instead.
141   Mutex();
142 
143   // Creates a mutex with static storage duration.  A global variable
144   // constructed this way avoids the lifetime issues that can occur on program
145   // startup and shutdown.  (See absl/base/const_init.h.)
146   //
147   // For Mutexes allocated on the heap and stack, instead use the default
148   // constructor, which can interact more fully with the thread sanitizer.
149   //
150   // Example usage:
151   //   namespace foo {
152   //   ABSL_CONST_INIT absl::Mutex mu(absl::kConstInit);
153   //   }
154   explicit constexpr Mutex(absl::ConstInitType);
155 
156   ~Mutex();
157 
158   // Mutex::Lock()
159   //
160   // Blocks the calling thread, if necessary, until this `Mutex` is free, and
161   // then acquires it exclusively. (This lock is also known as a "write lock.")
162   void Lock() ABSL_EXCLUSIVE_LOCK_FUNCTION();
163 
164   // Mutex::Unlock()
165   //
166   // Releases this `Mutex` and returns it from the exclusive/write state to the
167   // free state. Calling thread must hold the `Mutex` exclusively.
168   void Unlock() ABSL_UNLOCK_FUNCTION();
169 
170   // Mutex::TryLock()
171   //
172   // If the mutex can be acquired without blocking, does so exclusively and
173   // returns `true`. Otherwise, returns `false`. Returns `true` with high
174   // probability if the `Mutex` was free.
175   bool TryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true);
176 
177   // Mutex::AssertHeld()
178   //
179   // Require that the mutex be held exclusively (write mode) by this thread.
180   //
181   // If the mutex is not currently held by this thread, this function may report
182   // an error (typically by crashing with a diagnostic) or it may do nothing.
183   // This function is intended only as a tool to assist debugging; it doesn't
184   // guarantee correctness.
185   void AssertHeld() const ABSL_ASSERT_EXCLUSIVE_LOCK();
186 
187   // ---------------------------------------------------------------------------
188   // Reader-Writer Locking
189   // ---------------------------------------------------------------------------
190 
191   // A Mutex can also be used as a starvation-free reader-writer lock.
192   // Neither read-locks nor write-locks are reentrant/recursive to avoid
193   // potential client programming errors.
194   //
195   // The Mutex API provides `Writer*()` aliases for the existing `Lock()`,
196   // `Unlock()` and `TryLock()` methods for use within applications mixing
197   // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this
198   // manner can make locking behavior clearer when mixing read and write modes.
199   //
200   // Introducing reader locks necessarily complicates the `Mutex` state
201   // machine somewhat. The table below illustrates the allowed state transitions
202   // of a mutex in such cases. Note that ReaderLock() may block even if the lock
203   // is held in shared mode; this occurs when another thread is blocked on a
204   // call to WriterLock().
205   //
206   // ---------------------------------------------------------------------------
207   //     Operation: WriterLock() Unlock()  ReaderLock()           ReaderUnlock()
208   // ---------------------------------------------------------------------------
209   // State
210   // ---------------------------------------------------------------------------
211   // Free           Exclusive    invalid   Shared(1)              invalid
212   // Shared(1)      blocks       invalid   Shared(2) or blocks    Free
213   // Shared(n) n>1  blocks       invalid   Shared(n+1) or blocks  Shared(n-1)
214   // Exclusive      blocks       Free      blocks                 invalid
215   // ---------------------------------------------------------------------------
216   //
217   // In comments below, "shared" refers to a state of Shared(n) for any n > 0.
218 
219   // Mutex::ReaderLock()
220   //
221   // Blocks the calling thread, if necessary, until this `Mutex` is either free,
222   // or in shared mode, and then acquires a share of it. Note that
223   // `ReaderLock()` will block if some other thread has an exclusive/writer lock
224   // on the mutex.
225 
226   void ReaderLock() ABSL_SHARED_LOCK_FUNCTION();
227 
228   // Mutex::ReaderUnlock()
229   //
230   // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to
231   // the free state if this thread holds the last reader lock on the mutex. Note
232   // that you cannot call `ReaderUnlock()` on a mutex held in write mode.
233   void ReaderUnlock() ABSL_UNLOCK_FUNCTION();
234 
235   // Mutex::ReaderTryLock()
236   //
237   // If the mutex can be acquired without blocking, acquires this mutex for
238   // shared access and returns `true`. Otherwise, returns `false`. Returns
239   // `true` with high probability if the `Mutex` was free or shared.
240   bool ReaderTryLock() ABSL_SHARED_TRYLOCK_FUNCTION(true);
241 
242   // Mutex::AssertReaderHeld()
243   //
244   // Require that the mutex be held at least in shared mode (read mode) by this
245   // thread.
246   //
247   // If the mutex is not currently held by this thread, this function may report
248   // an error (typically by crashing with a diagnostic) or it may do nothing.
249   // This function is intended only as a tool to assist debugging; it doesn't
250   // guarantee correctness.
251   void AssertReaderHeld() const ABSL_ASSERT_SHARED_LOCK();
252 
253   // Mutex::WriterLock()
254   // Mutex::WriterUnlock()
255   // Mutex::WriterTryLock()
256   //
257   // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`.
258   //
259   // These methods may be used (along with the complementary `Reader*()`
260   // methods) to distingish simple exclusive `Mutex` usage (`Lock()`,
261   // etc.) from reader/writer lock usage.
WriterLock()262   void WriterLock() ABSL_EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); }
263 
WriterUnlock()264   void WriterUnlock() ABSL_UNLOCK_FUNCTION() { this->Unlock(); }
265 
WriterTryLock()266   bool WriterTryLock() ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true) {
267     return this->TryLock();
268   }
269 
270   // ---------------------------------------------------------------------------
271   // Conditional Critical Regions
272   // ---------------------------------------------------------------------------
273 
274   // Conditional usage of a `Mutex` can occur using two distinct paradigms:
275   //
276   //   * Use of `Mutex` member functions with `Condition` objects.
277   //   * Use of the separate `CondVar` abstraction.
278   //
279   // In general, prefer use of `Condition` and the `Mutex` member functions
280   // listed below over `CondVar`. When there are multiple threads waiting on
281   // distinctly different conditions, however, a battery of `CondVar`s may be
282   // more efficient. This section discusses use of `Condition` objects.
283   //
284   // `Mutex` contains member functions for performing lock operations only under
285   // certain conditions, of class `Condition`. For correctness, the `Condition`
286   // must return a boolean that is a pure function, only of state protected by
287   // the `Mutex`. The condition must be invariant w.r.t. environmental state
288   // such as thread, cpu id, or time, and must be `noexcept`. The condition will
289   // always be invoked with the mutex held in at least read mode, so you should
290   // not block it for long periods or sleep it on a timer.
291   //
292   // Since a condition must not depend directly on the current time, use
293   // `*WithTimeout()` member function variants to make your condition
294   // effectively true after a given duration, or `*WithDeadline()` variants to
295   // make your condition effectively true after a given time.
296   //
297   // The condition function should have no side-effects aside from debug
298   // logging; as a special exception, the function may acquire other mutexes
299   // provided it releases all those that it acquires.  (This exception was
300   // required to allow logging.)
301 
302   // Mutex::Await()
303   //
304   // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true`
305   // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the
306   // same mode in which it was previously held. If the condition is initially
307   // `true`, `Await()` *may* skip the release/re-acquire step.
308   //
309   // `Await()` requires that this thread holds this `Mutex` in some mode.
310   void Await(const Condition &cond);
311 
312   // Mutex::LockWhen()
313   // Mutex::ReaderLockWhen()
314   // Mutex::WriterLockWhen()
315   //
316   // Blocks until simultaneously both `cond` is `true` and this `Mutex` can
317   // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is
318   // logically equivalent to `*Lock(); Await();` though they may have different
319   // performance characteristics.
320   void LockWhen(const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION();
321 
322   void ReaderLockWhen(const Condition &cond) ABSL_SHARED_LOCK_FUNCTION();
323 
WriterLockWhen(const Condition & cond)324   void WriterLockWhen(const Condition &cond) ABSL_EXCLUSIVE_LOCK_FUNCTION() {
325     this->LockWhen(cond);
326   }
327 
328   // ---------------------------------------------------------------------------
329   // Mutex Variants with Timeouts/Deadlines
330   // ---------------------------------------------------------------------------
331 
332   // Mutex::AwaitWithTimeout()
333   // Mutex::AwaitWithDeadline()
334   //
335   // Unlocks this `Mutex` and blocks until simultaneously:
336   //   - either `cond` is true or the {timeout has expired, deadline has passed}
337   //     and
338   //   - this `Mutex` can be reacquired,
339   // then reacquire this `Mutex` in the same mode in which it was previously
340   // held, returning `true` iff `cond` is `true` on return.
341   //
342   // If the condition is initially `true`, the implementation *may* skip the
343   // release/re-acquire step and return immediately.
344   //
345   // Deadlines in the past are equivalent to an immediate deadline.
346   // Negative timeouts are equivalent to a zero timeout.
347   //
348   // This method requires that this thread holds this `Mutex` in some mode.
349   bool AwaitWithTimeout(const Condition &cond, absl::Duration timeout);
350 
351   bool AwaitWithDeadline(const Condition &cond, absl::Time deadline);
352 
353   // Mutex::LockWhenWithTimeout()
354   // Mutex::ReaderLockWhenWithTimeout()
355   // Mutex::WriterLockWhenWithTimeout()
356   //
357   // Blocks until simultaneously both:
358   //   - either `cond` is `true` or the timeout has expired, and
359   //   - this `Mutex` can be acquired,
360   // then atomically acquires this `Mutex`, returning `true` iff `cond` is
361   // `true` on return.
362   //
363   // Negative timeouts are equivalent to a zero timeout.
364   bool LockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
365       ABSL_EXCLUSIVE_LOCK_FUNCTION();
366   bool ReaderLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
367       ABSL_SHARED_LOCK_FUNCTION();
WriterLockWhenWithTimeout(const Condition & cond,absl::Duration timeout)368   bool WriterLockWhenWithTimeout(const Condition &cond, absl::Duration timeout)
369       ABSL_EXCLUSIVE_LOCK_FUNCTION() {
370     return this->LockWhenWithTimeout(cond, timeout);
371   }
372 
373   // Mutex::LockWhenWithDeadline()
374   // Mutex::ReaderLockWhenWithDeadline()
375   // Mutex::WriterLockWhenWithDeadline()
376   //
377   // Blocks until simultaneously both:
378   //   - either `cond` is `true` or the deadline has been passed, and
379   //   - this `Mutex` can be acquired,
380   // then atomically acquires this Mutex, returning `true` iff `cond` is `true`
381   // on return.
382   //
383   // Deadlines in the past are equivalent to an immediate deadline.
384   bool LockWhenWithDeadline(const Condition &cond, absl::Time deadline)
385       ABSL_EXCLUSIVE_LOCK_FUNCTION();
386   bool ReaderLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
387       ABSL_SHARED_LOCK_FUNCTION();
WriterLockWhenWithDeadline(const Condition & cond,absl::Time deadline)388   bool WriterLockWhenWithDeadline(const Condition &cond, absl::Time deadline)
389       ABSL_EXCLUSIVE_LOCK_FUNCTION() {
390     return this->LockWhenWithDeadline(cond, deadline);
391   }
392 
393   // ---------------------------------------------------------------------------
394   // Debug Support: Invariant Checking, Deadlock Detection, Logging.
395   // ---------------------------------------------------------------------------
396 
397   // Mutex::EnableInvariantDebugging()
398   //
399   // If `invariant`!=null and if invariant debugging has been enabled globally,
400   // cause `(*invariant)(arg)` to be called at moments when the invariant for
401   // this `Mutex` should hold (for example: just after acquire, just before
402   // release).
403   //
404   // The routine `invariant` should have no side-effects since it is not
405   // guaranteed how many times it will be called; it should check the invariant
406   // and crash if it does not hold. Enabling global invariant debugging may
407   // substantially reduce `Mutex` performance; it should be set only for
408   // non-production runs.  Optimization options may also disable invariant
409   // checks.
410   void EnableInvariantDebugging(void (*invariant)(void *), void *arg);
411 
412   // Mutex::EnableDebugLog()
413   //
414   // Cause all subsequent uses of this `Mutex` to be logged via
415   // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous
416   // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made.
417   //
418   // Note: This method substantially reduces `Mutex` performance.
419   void EnableDebugLog(const char *name);
420 
421   // Deadlock detection
422 
423   // Mutex::ForgetDeadlockInfo()
424   //
425   // Forget any deadlock-detection information previously gathered
426   // about this `Mutex`. Call this method in debug mode when the lock ordering
427   // of a `Mutex` changes.
428   void ForgetDeadlockInfo();
429 
430   // Mutex::AssertNotHeld()
431   //
432   // Return immediately if this thread does not hold this `Mutex` in any
433   // mode; otherwise, may report an error (typically by crashing with a
434   // diagnostic), or may return immediately.
435   //
436   // Currently this check is performed only if all of:
437   //    - in debug mode
438   //    - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort
439   //    - number of locks concurrently held by this thread is not large.
440   // are true.
441   void AssertNotHeld() const;
442 
443   // Special cases.
444 
445   // A `MuHow` is a constant that indicates how a lock should be acquired.
446   // Internal implementation detail.  Clients should ignore.
447   typedef const struct MuHowS *MuHow;
448 
449   // Mutex::InternalAttemptToUseMutexInFatalSignalHandler()
450   //
451   // Causes the `Mutex` implementation to prepare itself for re-entry caused by
452   // future use of `Mutex` within a fatal signal handler. This method is
453   // intended for use only for last-ditch attempts to log crash information.
454   // It does not guarantee that attempts to use Mutexes within the handler will
455   // not deadlock; it merely makes other faults less likely.
456   //
457   // WARNING:  This routine must be invoked from a signal handler, and the
458   // signal handler must either loop forever or terminate the process.
459   // Attempts to return from (or `longjmp` out of) the signal handler once this
460   // call has been made may cause arbitrary program behaviour including
461   // crashes and deadlocks.
462   static void InternalAttemptToUseMutexInFatalSignalHandler();
463 
464  private:
465   std::atomic<intptr_t> mu_;  // The Mutex state.
466 
467   // Post()/Wait() versus associated PerThreadSem; in class for required
468   // friendship with PerThreadSem.
469   static void IncrementSynchSem(Mutex *mu, base_internal::PerThreadSynch *w);
470   static bool DecrementSynchSem(Mutex *mu, base_internal::PerThreadSynch *w,
471                                 synchronization_internal::KernelTimeout t);
472 
473   // slow path acquire
474   void LockSlowLoop(SynchWaitParams *waitp, int flags);
475   // wrappers around LockSlowLoop()
476   bool LockSlowWithDeadline(MuHow how, const Condition *cond,
477                             synchronization_internal::KernelTimeout t,
478                             int flags);
479   void LockSlow(MuHow how, const Condition *cond,
480                 int flags) ABSL_ATTRIBUTE_COLD;
481   // slow path release
482   void UnlockSlow(SynchWaitParams *waitp) ABSL_ATTRIBUTE_COLD;
483   // Common code between Await() and AwaitWithTimeout/Deadline()
484   bool AwaitCommon(const Condition &cond,
485                    synchronization_internal::KernelTimeout t);
486   // Attempt to remove thread s from queue.
487   void TryRemove(base_internal::PerThreadSynch *s);
488   // Block a thread on mutex.
489   void Block(base_internal::PerThreadSynch *s);
490   // Wake a thread; return successor.
491   base_internal::PerThreadSynch *Wakeup(base_internal::PerThreadSynch *w);
492 
493   friend class CondVar;   // for access to Trans()/Fer().
494   void Trans(MuHow how);  // used for CondVar->Mutex transfer
495   void Fer(
496       base_internal::PerThreadSynch *w);  // used for CondVar->Mutex transfer
497 
498   // Catch the error of writing Mutex when intending MutexLock.
Mutex(const volatile Mutex *)499   Mutex(const volatile Mutex * /*ignored*/) {}  // NOLINT(runtime/explicit)
500 
501   Mutex(const Mutex&) = delete;
502   Mutex& operator=(const Mutex&) = delete;
503 };
504 
505 // -----------------------------------------------------------------------------
506 // Mutex RAII Wrappers
507 // -----------------------------------------------------------------------------
508 
509 // MutexLock
510 //
511 // `MutexLock` is a helper class, which acquires and releases a `Mutex` via
512 // RAII.
513 //
514 // Example:
515 //
516 // Class Foo {
517 //  public:
518 //   Foo::Bar* Baz() {
519 //     MutexLock lock(&mu_);
520 //     ...
521 //     return bar;
522 //   }
523 //
524 // private:
525 //   Mutex mu_;
526 // };
527 class ABSL_SCOPED_LOCKABLE MutexLock {
528  public:
529   // Constructors
530 
531   // Calls `mu->Lock()` and returns when that call returns. That is, `*mu` is
532   // guaranteed to be locked when this object is constructed. Requires that
533   // `mu` be dereferenceable.
MutexLock(Mutex * mu)534   explicit MutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) {
535     this->mu_->Lock();
536   }
537 
538   // Like above, but calls `mu->LockWhen(cond)` instead. That is, in addition to
539   // the above, the condition given by `cond` is also guaranteed to hold when
540   // this object is constructed.
MutexLock(Mutex * mu,const Condition & cond)541   explicit MutexLock(Mutex *mu, const Condition &cond)
542       ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
543       : mu_(mu) {
544     this->mu_->LockWhen(cond);
545   }
546 
547   MutexLock(const MutexLock &) = delete;  // NOLINT(runtime/mutex)
548   MutexLock(MutexLock&&) = delete;  // NOLINT(runtime/mutex)
549   MutexLock& operator=(const MutexLock&) = delete;
550   MutexLock& operator=(MutexLock&&) = delete;
551 
ABSL_UNLOCK_FUNCTION()552   ~MutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->Unlock(); }
553 
554  private:
555   Mutex *const mu_;
556 };
557 
558 // ReaderMutexLock
559 //
560 // The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and
561 // releases a shared lock on a `Mutex` via RAII.
562 class ABSL_SCOPED_LOCKABLE ReaderMutexLock {
563  public:
ReaderMutexLock(Mutex * mu)564   explicit ReaderMutexLock(Mutex *mu) ABSL_SHARED_LOCK_FUNCTION(mu) : mu_(mu) {
565     mu->ReaderLock();
566   }
567 
ReaderMutexLock(Mutex * mu,const Condition & cond)568   explicit ReaderMutexLock(Mutex *mu, const Condition &cond)
569       ABSL_SHARED_LOCK_FUNCTION(mu)
570       : mu_(mu) {
571     mu->ReaderLockWhen(cond);
572   }
573 
574   ReaderMutexLock(const ReaderMutexLock&) = delete;
575   ReaderMutexLock(ReaderMutexLock&&) = delete;
576   ReaderMutexLock& operator=(const ReaderMutexLock&) = delete;
577   ReaderMutexLock& operator=(ReaderMutexLock&&) = delete;
578 
ABSL_UNLOCK_FUNCTION()579   ~ReaderMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->ReaderUnlock(); }
580 
581  private:
582   Mutex *const mu_;
583 };
584 
585 // WriterMutexLock
586 //
587 // The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and
588 // releases a write (exclusive) lock on a `Mutex` via RAII.
589 class ABSL_SCOPED_LOCKABLE WriterMutexLock {
590  public:
WriterMutexLock(Mutex * mu)591   explicit WriterMutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
592       : mu_(mu) {
593     mu->WriterLock();
594   }
595 
WriterMutexLock(Mutex * mu,const Condition & cond)596   explicit WriterMutexLock(Mutex *mu, const Condition &cond)
597       ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
598       : mu_(mu) {
599     mu->WriterLockWhen(cond);
600   }
601 
602   WriterMutexLock(const WriterMutexLock&) = delete;
603   WriterMutexLock(WriterMutexLock&&) = delete;
604   WriterMutexLock& operator=(const WriterMutexLock&) = delete;
605   WriterMutexLock& operator=(WriterMutexLock&&) = delete;
606 
ABSL_UNLOCK_FUNCTION()607   ~WriterMutexLock() ABSL_UNLOCK_FUNCTION() { this->mu_->WriterUnlock(); }
608 
609  private:
610   Mutex *const mu_;
611 };
612 
613 // -----------------------------------------------------------------------------
614 // Condition
615 // -----------------------------------------------------------------------------
616 //
617 // `Mutex` contains a number of member functions which take a `Condition` as an
618 // argument; clients can wait for conditions to become `true` before attempting
619 // to acquire the mutex. These sections are known as "condition critical"
620 // sections. To use a `Condition`, you simply need to construct it, and use
621 // within an appropriate `Mutex` member function; everything else in the
622 // `Condition` class is an implementation detail.
623 //
624 // A `Condition` is specified as a function pointer which returns a boolean.
625 // `Condition` functions should be pure functions -- their results should depend
626 // only on passed arguments, should not consult any external state (such as
627 // clocks), and should have no side-effects, aside from debug logging. Any
628 // objects that the function may access should be limited to those which are
629 // constant while the mutex is blocked on the condition (e.g. a stack variable),
630 // or objects of state protected explicitly by the mutex.
631 //
632 // No matter which construction is used for `Condition`, the underlying
633 // function pointer / functor / callable must not throw any
634 // exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in
635 // the face of a throwing `Condition`. (When Abseil is allowed to depend
636 // on C++17, these function pointers will be explicitly marked
637 // `noexcept`; until then this requirement cannot be enforced in the
638 // type system.)
639 //
640 // Note: to use a `Condition`, you need only construct it and pass it to a
641 // suitable `Mutex' member function, such as `Mutex::Await()`, or to the
642 // constructor of one of the scope guard classes.
643 //
644 // Example using LockWhen/Unlock:
645 //
646 //   // assume count_ is not internal reference count
647 //   int count_ ABSL_GUARDED_BY(mu_);
648 //   Condition count_is_zero(+[](int *count) { return *count == 0; }, &count_);
649 //
650 //   mu_.LockWhen(count_is_zero);
651 //   // ...
652 //   mu_.Unlock();
653 //
654 // Example using a scope guard:
655 //
656 //   {
657 //     MutexLock lock(&mu_, count_is_zero);
658 //     // ...
659 //   }
660 //
661 // When multiple threads are waiting on exactly the same condition, make sure
662 // that they are constructed with the same parameters (same pointer to function
663 // + arg, or same pointer to object + method), so that the mutex implementation
664 // can avoid redundantly evaluating the same condition for each thread.
665 class Condition {
666  public:
667   // A Condition that returns the result of "(*func)(arg)"
668   Condition(bool (*func)(void *), void *arg);
669 
670   // Templated version for people who are averse to casts.
671   //
672   // To use a lambda, prepend it with unary plus, which converts the lambda
673   // into a function pointer:
674   //     Condition(+[](T* t) { return ...; }, arg).
675   //
676   // Note: lambdas in this case must contain no bound variables.
677   //
678   // See class comment for performance advice.
679   template<typename T>
680   Condition(bool (*func)(T *), T *arg);
681 
682   // Templated version for invoking a method that returns a `bool`.
683   //
684   // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates
685   // `object->Method()`.
686   //
687   // Implementation Note: `absl::internal::identity` is used to allow methods to
688   // come from base classes. A simpler signature like
689   // `Condition(T*, bool (T::*)())` does not suffice.
690   template<typename T>
691   Condition(T *object, bool (absl::internal::identity<T>::type::* method)());
692 
693   // Same as above, for const members
694   template<typename T>
695   Condition(const T *object,
696             bool (absl::internal::identity<T>::type::* method)() const);
697 
698   // A Condition that returns the value of `*cond`
699   explicit Condition(const bool *cond);
700 
701   // Templated version for invoking a functor that returns a `bool`.
702   // This approach accepts pointers to non-mutable lambdas, `std::function`,
703   // the result of` std::bind` and user-defined functors that define
704   // `bool F::operator()() const`.
705   //
706   // Example:
707   //
708   //   auto reached = [this, current]() {
709   //     mu_.AssertReaderHeld();                // For annotalysis.
710   //     return processed_ >= current;
711   //   };
712   //   mu_.Await(Condition(&reached));
713   //
714   // NOTE: never use "mu_.AssertHeld()" instead of "mu_.AssertReaderHeld()" in
715   // the lambda as it may be called when the mutex is being unlocked from a
716   // scope holding only a reader lock, which will make the assertion not
717   // fulfilled and crash the binary.
718 
719   // See class comment for performance advice. In particular, if there
720   // might be more than one waiter for the same condition, make sure
721   // that all waiters construct the condition with the same pointers.
722 
723   // Implementation note: The second template parameter ensures that this
724   // constructor doesn't participate in overload resolution if T doesn't have
725   // `bool operator() const`.
726   template <typename T, typename E = decltype(
727       static_cast<bool (T::*)() const>(&T::operator()))>
Condition(const T * obj)728   explicit Condition(const T *obj)
729       : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {}
730 
731   // A Condition that always returns `true`.
732   ABSL_CONST_INIT static const Condition kTrue;
733 
734   // Evaluates the condition.
735   bool Eval() const;
736 
737   // Returns `true` if the two conditions are guaranteed to return the same
738   // value if evaluated at the same time, `false` if the evaluation *may* return
739   // different results.
740   //
741   // Two `Condition` values are guaranteed equal if both their `func` and `arg`
742   // components are the same. A null pointer is equivalent to a `true`
743   // condition.
744   static bool GuaranteedEqual(const Condition *a, const Condition *b);
745 
746  private:
747   // Sizing an allocation for a method pointer can be subtle. In the Itanium
748   // specifications, a method pointer has a predictable, uniform size. On the
749   // other hand, MSVC ABI, method pointer sizes vary based on the
750   // inheritance of the class. Specifically, method pointers from classes with
751   // multiple inheritance are bigger than those of classes with single
752   // inheritance. Other variations also exist.
753 
754 #ifndef _MSC_VER
755   // Allocation for a function pointer or method pointer.
756   // The {0} initializer ensures that all unused bytes of this buffer are
757   // always zeroed out.  This is necessary, because GuaranteedEqual() compares
758   // all of the bytes, unaware of which bytes are relevant to a given `eval_`.
759   using MethodPtr = bool (Condition::*)();
760   char callback_[sizeof(MethodPtr)] = {0};
761 #else
762   // It is well known that the larget MSVC pointer-to-member is 24 bytes. This
763   // may be the largest known pointer-to-member of any platform. For this
764   // reason we will allocate 24 bytes for MSVC platform toolchains.
765   char callback_[24] = {0};
766 #endif
767 
768   // Function with which to evaluate callbacks and/or arguments.
769   bool (*eval_)(const Condition*) = nullptr;
770 
771   // Either an argument for a function call or an object for a method call.
772   void *arg_ = nullptr;
773 
774   // Various functions eval_ can point to:
775   static bool CallVoidPtrFunction(const Condition*);
776   template <typename T> static bool CastAndCallFunction(const Condition* c);
777   template <typename T> static bool CastAndCallMethod(const Condition* c);
778 
779   // Helper methods for storing, validating, and reading callback arguments.
780   template <typename T>
StoreCallback(T callback)781   inline void StoreCallback(T callback) {
782     static_assert(
783         sizeof(callback) <= sizeof(callback_),
784         "An overlarge pointer was passed as a callback to Condition.");
785     std::memcpy(callback_, &callback, sizeof(callback));
786   }
787 
788   template <typename T>
ReadCallback(T * callback)789   inline void ReadCallback(T *callback) const {
790     std::memcpy(callback, callback_, sizeof(*callback));
791   }
792 
793   // Used only to create kTrue.
794   constexpr Condition() = default;
795 };
796 
797 // -----------------------------------------------------------------------------
798 // CondVar
799 // -----------------------------------------------------------------------------
800 //
801 // A condition variable, reflecting state evaluated separately outside of the
802 // `Mutex` object, which can be signaled to wake callers.
803 // This class is not normally needed; use `Mutex` member functions such as
804 // `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases
805 // with many threads and many conditions, `CondVar` may be faster.
806 //
807 // The implementation may deliver signals to any condition variable at
808 // any time, even when no call to `Signal()` or `SignalAll()` is made; as a
809 // result, upon being awoken, you must check the logical condition you have
810 // been waiting upon.
811 //
812 // Examples:
813 //
814 // Usage for a thread waiting for some condition C protected by mutex mu:
815 //       mu.Lock();
816 //       while (!C) { cv->Wait(&mu); }        // releases and reacquires mu
817 //       //  C holds; process data
818 //       mu.Unlock();
819 //
820 // Usage to wake T is:
821 //       mu.Lock();
822 //       // process data, possibly establishing C
823 //       if (C) { cv->Signal(); }
824 //       mu.Unlock();
825 //
826 // If C may be useful to more than one waiter, use `SignalAll()` instead of
827 // `Signal()`.
828 //
829 // With this implementation it is efficient to use `Signal()/SignalAll()` inside
830 // the locked region; this usage can make reasoning about your program easier.
831 //
832 class CondVar {
833  public:
834   // A `CondVar` allocated on the heap or on the stack can use the this
835   // constructor.
836   CondVar();
837   ~CondVar();
838 
839   // CondVar::Wait()
840   //
841   // Atomically releases a `Mutex` and blocks on this condition variable.
842   // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
843   // spurious wakeup), then reacquires the `Mutex` and returns.
844   //
845   // Requires and ensures that the current thread holds the `Mutex`.
846   void Wait(Mutex *mu);
847 
848   // CondVar::WaitWithTimeout()
849   //
850   // Atomically releases a `Mutex` and blocks on this condition variable.
851   // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
852   // spurious wakeup), or until the timeout has expired, then reacquires
853   // the `Mutex` and returns.
854   //
855   // Returns true if the timeout has expired without this `CondVar`
856   // being signalled in any manner. If both the timeout has expired
857   // and this `CondVar` has been signalled, the implementation is free
858   // to return `true` or `false`.
859   //
860   // Requires and ensures that the current thread holds the `Mutex`.
861   bool WaitWithTimeout(Mutex *mu, absl::Duration timeout);
862 
863   // CondVar::WaitWithDeadline()
864   //
865   // Atomically releases a `Mutex` and blocks on this condition variable.
866   // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
867   // spurious wakeup), or until the deadline has passed, then reacquires
868   // the `Mutex` and returns.
869   //
870   // Deadlines in the past are equivalent to an immediate deadline.
871   //
872   // Returns true if the deadline has passed without this `CondVar`
873   // being signalled in any manner. If both the deadline has passed
874   // and this `CondVar` has been signalled, the implementation is free
875   // to return `true` or `false`.
876   //
877   // Requires and ensures that the current thread holds the `Mutex`.
878   bool WaitWithDeadline(Mutex *mu, absl::Time deadline);
879 
880   // CondVar::Signal()
881   //
882   // Signal this `CondVar`; wake at least one waiter if one exists.
883   void Signal();
884 
885   // CondVar::SignalAll()
886   //
887   // Signal this `CondVar`; wake all waiters.
888   void SignalAll();
889 
890   // CondVar::EnableDebugLog()
891   //
892   // Causes all subsequent uses of this `CondVar` to be logged via
893   // `ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`.
894   // Note: this method substantially reduces `CondVar` performance.
895   void EnableDebugLog(const char *name);
896 
897  private:
898   bool WaitCommon(Mutex *mutex, synchronization_internal::KernelTimeout t);
899   void Remove(base_internal::PerThreadSynch *s);
900   void Wakeup(base_internal::PerThreadSynch *w);
901   std::atomic<intptr_t> cv_;  // Condition variable state.
902   CondVar(const CondVar&) = delete;
903   CondVar& operator=(const CondVar&) = delete;
904 };
905 
906 
907 // Variants of MutexLock.
908 //
909 // If you find yourself using one of these, consider instead using
910 // Mutex::Unlock() and/or if-statements for clarity.
911 
912 // MutexLockMaybe
913 //
914 // MutexLockMaybe is like MutexLock, but is a no-op when mu is null.
915 class ABSL_SCOPED_LOCKABLE MutexLockMaybe {
916  public:
MutexLockMaybe(Mutex * mu)917   explicit MutexLockMaybe(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
918       : mu_(mu) {
919     if (this->mu_ != nullptr) {
920       this->mu_->Lock();
921     }
922   }
923 
MutexLockMaybe(Mutex * mu,const Condition & cond)924   explicit MutexLockMaybe(Mutex *mu, const Condition &cond)
925       ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
926       : mu_(mu) {
927     if (this->mu_ != nullptr) {
928       this->mu_->LockWhen(cond);
929     }
930   }
931 
ABSL_UNLOCK_FUNCTION()932   ~MutexLockMaybe() ABSL_UNLOCK_FUNCTION() {
933     if (this->mu_ != nullptr) { this->mu_->Unlock(); }
934   }
935 
936  private:
937   Mutex *const mu_;
938   MutexLockMaybe(const MutexLockMaybe&) = delete;
939   MutexLockMaybe(MutexLockMaybe&&) = delete;
940   MutexLockMaybe& operator=(const MutexLockMaybe&) = delete;
941   MutexLockMaybe& operator=(MutexLockMaybe&&) = delete;
942 };
943 
944 // ReleasableMutexLock
945 //
946 // ReleasableMutexLock is like MutexLock, but permits `Release()` of its
947 // mutex before destruction. `Release()` may be called at most once.
948 class ABSL_SCOPED_LOCKABLE ReleasableMutexLock {
949  public:
ReleasableMutexLock(Mutex * mu)950   explicit ReleasableMutexLock(Mutex *mu) ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
951       : mu_(mu) {
952     this->mu_->Lock();
953   }
954 
ReleasableMutexLock(Mutex * mu,const Condition & cond)955   explicit ReleasableMutexLock(Mutex *mu, const Condition &cond)
956       ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
957       : mu_(mu) {
958     this->mu_->LockWhen(cond);
959   }
960 
ABSL_UNLOCK_FUNCTION()961   ~ReleasableMutexLock() ABSL_UNLOCK_FUNCTION() {
962     if (this->mu_ != nullptr) { this->mu_->Unlock(); }
963   }
964 
965   void Release() ABSL_UNLOCK_FUNCTION();
966 
967  private:
968   Mutex *mu_;
969   ReleasableMutexLock(const ReleasableMutexLock&) = delete;
970   ReleasableMutexLock(ReleasableMutexLock&&) = delete;
971   ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete;
972   ReleasableMutexLock& operator=(ReleasableMutexLock&&) = delete;
973 };
974 
Mutex()975 inline Mutex::Mutex() : mu_(0) {
976   ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static);
977 }
978 
Mutex(absl::ConstInitType)979 inline constexpr Mutex::Mutex(absl::ConstInitType) : mu_(0) {}
980 
CondVar()981 inline CondVar::CondVar() : cv_(0) {}
982 
983 // static
984 template <typename T>
CastAndCallMethod(const Condition * c)985 bool Condition::CastAndCallMethod(const Condition *c) {
986   T *object = static_cast<T *>(c->arg_);
987   bool (T::*method_pointer)();
988   c->ReadCallback(&method_pointer);
989   return (object->*method_pointer)();
990 }
991 
992 // static
993 template <typename T>
CastAndCallFunction(const Condition * c)994 bool Condition::CastAndCallFunction(const Condition *c) {
995   bool (*function)(T *);
996   c->ReadCallback(&function);
997   T *argument = static_cast<T *>(c->arg_);
998   return (*function)(argument);
999 }
1000 
1001 template <typename T>
Condition(bool (* func)(T *),T * arg)1002 inline Condition::Condition(bool (*func)(T *), T *arg)
1003     : eval_(&CastAndCallFunction<T>),
1004       arg_(const_cast<void *>(static_cast<const void *>(arg))) {
1005   static_assert(sizeof(&func) <= sizeof(callback_),
1006                 "An overlarge function pointer was passed to Condition.");
1007   StoreCallback(func);
1008 }
1009 
1010 template <typename T>
Condition(T * object,bool (absl::internal::identity<T>::type::* method)())1011 inline Condition::Condition(T *object,
1012                             bool (absl::internal::identity<T>::type::*method)())
1013     : eval_(&CastAndCallMethod<T>),
1014       arg_(object) {
1015   static_assert(sizeof(&method) <= sizeof(callback_),
1016                 "An overlarge method pointer was passed to Condition.");
1017   StoreCallback(method);
1018 }
1019 
1020 template <typename T>
Condition(const T * object,bool (absl::internal::identity<T>::type::* method)()const)1021 inline Condition::Condition(const T *object,
1022                             bool (absl::internal::identity<T>::type::*method)()
1023                                 const)
1024     : eval_(&CastAndCallMethod<T>),
1025       arg_(reinterpret_cast<void *>(const_cast<T *>(object))) {
1026   StoreCallback(method);
1027 }
1028 
1029 // Register hooks for profiling support.
1030 //
1031 // The function pointer registered here will be called whenever a mutex is
1032 // contended.  The callback is given the cycles for which waiting happened (as
1033 // measured by //absl/base/internal/cycleclock.h, and which may not
1034 // be real "cycle" counts.)
1035 //
1036 // There is no ordering guarantee between when the hook is registered and when
1037 // callbacks will begin.  Only a single profiler can be installed in a running
1038 // binary; if this function is called a second time with a different function
1039 // pointer, the value is ignored (and will cause an assertion failure in debug
1040 // mode.)
1041 void RegisterMutexProfiler(void (*fn)(int64_t wait_cycles));
1042 
1043 // Register a hook for Mutex tracing.
1044 //
1045 // The function pointer registered here will be called whenever a mutex is
1046 // contended.  The callback is given an opaque handle to the contended mutex,
1047 // an event name, and the number of wait cycles (as measured by
1048 // //absl/base/internal/cycleclock.h, and which may not be real
1049 // "cycle" counts.)
1050 //
1051 // The only event name currently sent is "slow release".
1052 //
1053 // This has the same ordering and single-use limitations as
1054 // RegisterMutexProfiler() above.
1055 void RegisterMutexTracer(void (*fn)(const char *msg, const void *obj,
1056                                     int64_t wait_cycles));
1057 
1058 // Register a hook for CondVar tracing.
1059 //
1060 // The function pointer registered here will be called here on various CondVar
1061 // events.  The callback is given an opaque handle to the CondVar object and
1062 // a string identifying the event.  This is thread-safe, but only a single
1063 // tracer can be registered.
1064 //
1065 // Events that can be sent are "Wait", "Unwait", "Signal wakeup", and
1066 // "SignalAll wakeup".
1067 //
1068 // This has the same ordering and single-use limitations as
1069 // RegisterMutexProfiler() above.
1070 void RegisterCondVarTracer(void (*fn)(const char *msg, const void *cv));
1071 
1072 // Register a hook for symbolizing stack traces in deadlock detector reports.
1073 //
1074 // 'pc' is the program counter being symbolized, 'out' is the buffer to write
1075 // into, and 'out_size' is the size of the buffer.  This function can return
1076 // false if symbolizing failed, or true if a NUL-terminated symbol was written
1077 // to 'out.'
1078 //
1079 // This has the same ordering and single-use limitations as
1080 // RegisterMutexProfiler() above.
1081 //
1082 // DEPRECATED: The default symbolizer function is absl::Symbolize() and the
1083 // ability to register a different hook for symbolizing stack traces will be
1084 // removed on or after 2023-05-01.
1085 ABSL_DEPRECATED("absl::RegisterSymbolizer() is deprecated and will be removed "
1086                 "on or after 2023-05-01")
1087 void RegisterSymbolizer(bool (*fn)(const void *pc, char *out, int out_size));
1088 
1089 // EnableMutexInvariantDebugging()
1090 //
1091 // Enable or disable global support for Mutex invariant debugging.  If enabled,
1092 // then invariant predicates can be registered per-Mutex for debug checking.
1093 // See Mutex::EnableInvariantDebugging().
1094 void EnableMutexInvariantDebugging(bool enabled);
1095 
1096 // When in debug mode, and when the feature has been enabled globally, the
1097 // implementation will keep track of lock ordering and complain (or optionally
1098 // crash) if a cycle is detected in the acquired-before graph.
1099 
1100 // Possible modes of operation for the deadlock detector in debug mode.
1101 enum class OnDeadlockCycle {
1102   kIgnore,  // Neither report on nor attempt to track cycles in lock ordering
1103   kReport,  // Report lock cycles to stderr when detected
1104   kAbort,  // Report lock cycles to stderr when detected, then abort
1105 };
1106 
1107 // SetMutexDeadlockDetectionMode()
1108 //
1109 // Enable or disable global support for detection of potential deadlocks
1110 // due to Mutex lock ordering inversions.  When set to 'kIgnore', tracking of
1111 // lock ordering is disabled.  Otherwise, in debug builds, a lock ordering graph
1112 // will be maintained internally, and detected cycles will be reported in
1113 // the manner chosen here.
1114 void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode);
1115 
1116 ABSL_NAMESPACE_END
1117 }  // namespace absl
1118 
1119 // In some build configurations we pass --detect-odr-violations to the
1120 // gold linker.  This causes it to flag weak symbol overrides as ODR
1121 // violations.  Because ODR only applies to C++ and not C,
1122 // --detect-odr-violations ignores symbols not mangled with C++ names.
1123 // By changing our extension points to be extern "C", we dodge this
1124 // check.
1125 extern "C" {
1126 void ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)();
1127 }  // extern "C"
1128 
1129 #endif  // ABSL_SYNCHRONIZATION_MUTEX_H_
1130