1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: hash.h
17 // -----------------------------------------------------------------------------
18 //
19 #ifndef ABSL_HASH_INTERNAL_HASH_H_
20 #define ABSL_HASH_INTERNAL_HASH_H_
21
22 #include <algorithm>
23 #include <array>
24 #include <bitset>
25 #include <cmath>
26 #include <cstddef>
27 #include <cstring>
28 #include <deque>
29 #include <forward_list>
30 #include <functional>
31 #include <iterator>
32 #include <limits>
33 #include <list>
34 #include <map>
35 #include <memory>
36 #include <set>
37 #include <string>
38 #include <tuple>
39 #include <type_traits>
40 #include <unordered_map>
41 #include <unordered_set>
42 #include <utility>
43 #include <vector>
44
45 #include "absl/base/config.h"
46 #include "absl/base/internal/unaligned_access.h"
47 #include "absl/base/port.h"
48 #include "absl/container/fixed_array.h"
49 #include "absl/hash/internal/city.h"
50 #include "absl/hash/internal/low_level_hash.h"
51 #include "absl/meta/type_traits.h"
52 #include "absl/numeric/bits.h"
53 #include "absl/numeric/int128.h"
54 #include "absl/strings/string_view.h"
55 #include "absl/types/optional.h"
56 #include "absl/types/variant.h"
57 #include "absl/utility/utility.h"
58
59 namespace absl {
60 ABSL_NAMESPACE_BEGIN
61
62 class HashState;
63
64 namespace hash_internal {
65
66 // Internal detail: Large buffers are hashed in smaller chunks. This function
67 // returns the size of these chunks.
PiecewiseChunkSize()68 constexpr size_t PiecewiseChunkSize() { return 1024; }
69
70 // PiecewiseCombiner
71 //
72 // PiecewiseCombiner is an internal-only helper class for hashing a piecewise
73 // buffer of `char` or `unsigned char` as though it were contiguous. This class
74 // provides two methods:
75 //
76 // H add_buffer(state, data, size)
77 // H finalize(state)
78 //
79 // `add_buffer` can be called zero or more times, followed by a single call to
80 // `finalize`. This will produce the same hash expansion as concatenating each
81 // buffer piece into a single contiguous buffer, and passing this to
82 // `H::combine_contiguous`.
83 //
84 // Example usage:
85 // PiecewiseCombiner combiner;
86 // for (const auto& piece : pieces) {
87 // state = combiner.add_buffer(std::move(state), piece.data, piece.size);
88 // }
89 // return combiner.finalize(std::move(state));
90 class PiecewiseCombiner {
91 public:
PiecewiseCombiner()92 PiecewiseCombiner() : position_(0) {}
93 PiecewiseCombiner(const PiecewiseCombiner&) = delete;
94 PiecewiseCombiner& operator=(const PiecewiseCombiner&) = delete;
95
96 // PiecewiseCombiner::add_buffer()
97 //
98 // Appends the given range of bytes to the sequence to be hashed, which may
99 // modify the provided hash state.
100 template <typename H>
101 H add_buffer(H state, const unsigned char* data, size_t size);
102 template <typename H>
add_buffer(H state,const char * data,size_t size)103 H add_buffer(H state, const char* data, size_t size) {
104 return add_buffer(std::move(state),
105 reinterpret_cast<const unsigned char*>(data), size);
106 }
107
108 // PiecewiseCombiner::finalize()
109 //
110 // Finishes combining the hash sequence, which may may modify the provided
111 // hash state.
112 //
113 // Once finalize() is called, add_buffer() may no longer be called. The
114 // resulting hash state will be the same as if the pieces passed to
115 // add_buffer() were concatenated into a single flat buffer, and then provided
116 // to H::combine_contiguous().
117 template <typename H>
118 H finalize(H state);
119
120 private:
121 unsigned char buf_[PiecewiseChunkSize()];
122 size_t position_;
123 };
124
125 // is_hashable()
126 //
127 // Trait class which returns true if T is hashable by the absl::Hash framework.
128 // Used for the AbslHashValue implementations for composite types below.
129 template <typename T>
130 struct is_hashable;
131
132 // HashStateBase
133 //
134 // An internal implementation detail that contains common implementation details
135 // for all of the "hash state objects" objects generated by Abseil. This is not
136 // a public API; users should not create classes that inherit from this.
137 //
138 // A hash state object is the template argument `H` passed to `AbslHashValue`.
139 // It represents an intermediate state in the computation of an unspecified hash
140 // algorithm. `HashStateBase` provides a CRTP style base class for hash state
141 // implementations. Developers adding type support for `absl::Hash` should not
142 // rely on any parts of the state object other than the following member
143 // functions:
144 //
145 // * HashStateBase::combine()
146 // * HashStateBase::combine_contiguous()
147 // * HashStateBase::combine_unordered()
148 //
149 // A derived hash state class of type `H` must provide a public member function
150 // with a signature similar to the following:
151 //
152 // `static H combine_contiguous(H state, const unsigned char*, size_t)`.
153 //
154 // It must also provide a private template method named RunCombineUnordered.
155 //
156 // A "consumer" is a 1-arg functor returning void. Its argument is a reference
157 // to an inner hash state object, and it may be called multiple times. When
158 // called, the functor consumes the entropy from the provided state object,
159 // and resets that object to its empty state.
160 //
161 // A "combiner" is a stateless 2-arg functor returning void. Its arguments are
162 // an inner hash state object and an ElementStateConsumer functor. A combiner
163 // uses the provided inner hash state object to hash each element of the
164 // container, passing the inner hash state object to the consumer after hashing
165 // each element.
166 //
167 // Given these definitions, a derived hash state class of type H
168 // must provide a private template method with a signature similar to the
169 // following:
170 //
171 // `template <typename CombinerT>`
172 // `static H RunCombineUnordered(H outer_state, CombinerT combiner)`
173 //
174 // This function is responsible for constructing the inner state object and
175 // providing a consumer to the combiner. It uses side effects of the consumer
176 // and combiner to mix the state of each element in an order-independent manner,
177 // and uses this to return an updated value of `outer_state`.
178 //
179 // This inside-out approach generates efficient object code in the normal case,
180 // but allows us to use stack storage to implement the absl::HashState type
181 // erasure mechanism (avoiding heap allocations while hashing).
182 //
183 // `HashStateBase` will provide a complete implementation for a hash state
184 // object in terms of these two methods.
185 //
186 // Example:
187 //
188 // // Use CRTP to define your derived class.
189 // struct MyHashState : HashStateBase<MyHashState> {
190 // static H combine_contiguous(H state, const unsigned char*, size_t);
191 // using MyHashState::HashStateBase::combine;
192 // using MyHashState::HashStateBase::combine_contiguous;
193 // using MyHashState::HashStateBase::combine_unordered;
194 // private:
195 // template <typename CombinerT>
196 // static H RunCombineUnordered(H state, CombinerT combiner);
197 // };
198 template <typename H>
199 class HashStateBase {
200 public:
201 // HashStateBase::combine()
202 //
203 // Combines an arbitrary number of values into a hash state, returning the
204 // updated state.
205 //
206 // Each of the value types `T` must be separately hashable by the Abseil
207 // hashing framework.
208 //
209 // NOTE:
210 //
211 // state = H::combine(std::move(state), value1, value2, value3);
212 //
213 // is guaranteed to produce the same hash expansion as:
214 //
215 // state = H::combine(std::move(state), value1);
216 // state = H::combine(std::move(state), value2);
217 // state = H::combine(std::move(state), value3);
218 template <typename T, typename... Ts>
219 static H combine(H state, const T& value, const Ts&... values);
combine(H state)220 static H combine(H state) { return state; }
221
222 // HashStateBase::combine_contiguous()
223 //
224 // Combines a contiguous array of `size` elements into a hash state, returning
225 // the updated state.
226 //
227 // NOTE:
228 //
229 // state = H::combine_contiguous(std::move(state), data, size);
230 //
231 // is NOT guaranteed to produce the same hash expansion as a for-loop (it may
232 // perform internal optimizations). If you need this guarantee, use the
233 // for-loop instead.
234 template <typename T>
235 static H combine_contiguous(H state, const T* data, size_t size);
236
237 template <typename I>
238 static H combine_unordered(H state, I begin, I end);
239
240 using AbslInternalPiecewiseCombiner = PiecewiseCombiner;
241
242 template <typename T>
243 using is_hashable = absl::hash_internal::is_hashable<T>;
244
245 private:
246 // Common implementation of the iteration step of a "combiner", as described
247 // above.
248 template <typename I>
249 struct CombineUnorderedCallback {
250 I begin;
251 I end;
252
253 template <typename InnerH, typename ElementStateConsumer>
operatorCombineUnorderedCallback254 void operator()(InnerH inner_state, ElementStateConsumer cb) {
255 for (; begin != end; ++begin) {
256 inner_state = H::combine(std::move(inner_state), *begin);
257 cb(inner_state);
258 }
259 }
260 };
261 };
262
263 // is_uniquely_represented
264 //
265 // `is_uniquely_represented<T>` is a trait class that indicates whether `T`
266 // is uniquely represented.
267 //
268 // A type is "uniquely represented" if two equal values of that type are
269 // guaranteed to have the same bytes in their underlying storage. In other
270 // words, if `a == b`, then `memcmp(&a, &b, sizeof(T))` is guaranteed to be
271 // zero. This property cannot be detected automatically, so this trait is false
272 // by default, but can be specialized by types that wish to assert that they are
273 // uniquely represented. This makes them eligible for certain optimizations.
274 //
275 // If you have any doubt whatsoever, do not specialize this template.
276 // The default is completely safe, and merely disables some optimizations
277 // that will not matter for most types. Specializing this template,
278 // on the other hand, can be very hazardous.
279 //
280 // To be uniquely represented, a type must not have multiple ways of
281 // representing the same value; for example, float and double are not
282 // uniquely represented, because they have distinct representations for
283 // +0 and -0. Furthermore, the type's byte representation must consist
284 // solely of user-controlled data, with no padding bits and no compiler-
285 // controlled data such as vptrs or sanitizer metadata. This is usually
286 // very difficult to guarantee, because in most cases the compiler can
287 // insert data and padding bits at its own discretion.
288 //
289 // If you specialize this template for a type `T`, you must do so in the file
290 // that defines that type (or in this file). If you define that specialization
291 // anywhere else, `is_uniquely_represented<T>` could have different meanings
292 // in different places.
293 //
294 // The Enable parameter is meaningless; it is provided as a convenience,
295 // to support certain SFINAE techniques when defining specializations.
296 template <typename T, typename Enable = void>
297 struct is_uniquely_represented : std::false_type {};
298
299 // is_uniquely_represented<unsigned char>
300 //
301 // unsigned char is a synonym for "byte", so it is guaranteed to be
302 // uniquely represented.
303 template <>
304 struct is_uniquely_represented<unsigned char> : std::true_type {};
305
306 // is_uniquely_represented for non-standard integral types
307 //
308 // Integral types other than bool should be uniquely represented on any
309 // platform that this will plausibly be ported to.
310 template <typename Integral>
311 struct is_uniquely_represented<
312 Integral, typename std::enable_if<std::is_integral<Integral>::value>::type>
313 : std::true_type {};
314
315 // is_uniquely_represented<bool>
316 //
317 //
318 template <>
319 struct is_uniquely_represented<bool> : std::false_type {};
320
321 // hash_bytes()
322 //
323 // Convenience function that combines `hash_state` with the byte representation
324 // of `value`.
325 template <typename H, typename T>
326 H hash_bytes(H hash_state, const T& value) {
327 const unsigned char* start = reinterpret_cast<const unsigned char*>(&value);
328 return H::combine_contiguous(std::move(hash_state), start, sizeof(value));
329 }
330
331 // -----------------------------------------------------------------------------
332 // AbslHashValue for Basic Types
333 // -----------------------------------------------------------------------------
334
335 // Note: Default `AbslHashValue` implementations live in `hash_internal`. This
336 // allows us to block lexical scope lookup when doing an unqualified call to
337 // `AbslHashValue` below. User-defined implementations of `AbslHashValue` can
338 // only be found via ADL.
339
340 // AbslHashValue() for hashing bool values
341 //
342 // We use SFINAE to ensure that this overload only accepts bool, not types that
343 // are convertible to bool.
344 template <typename H, typename B>
345 typename std::enable_if<std::is_same<B, bool>::value, H>::type AbslHashValue(
346 H hash_state, B value) {
347 return H::combine(std::move(hash_state),
348 static_cast<unsigned char>(value ? 1 : 0));
349 }
350
351 // AbslHashValue() for hashing enum values
352 template <typename H, typename Enum>
353 typename std::enable_if<std::is_enum<Enum>::value, H>::type AbslHashValue(
354 H hash_state, Enum e) {
355 // In practice, we could almost certainly just invoke hash_bytes directly,
356 // but it's possible that a sanitizer might one day want to
357 // store data in the unused bits of an enum. To avoid that risk, we
358 // convert to the underlying type before hashing. Hopefully this will get
359 // optimized away; if not, we can reopen discussion with c-toolchain-team.
360 return H::combine(std::move(hash_state),
361 static_cast<typename std::underlying_type<Enum>::type>(e));
362 }
363 // AbslHashValue() for hashing floating-point values
364 template <typename H, typename Float>
365 typename std::enable_if<std::is_same<Float, float>::value ||
366 std::is_same<Float, double>::value,
367 H>::type
368 AbslHashValue(H hash_state, Float value) {
369 return hash_internal::hash_bytes(std::move(hash_state),
370 value == 0 ? 0 : value);
371 }
372
373 // Long double has the property that it might have extra unused bytes in it.
374 // For example, in x86 sizeof(long double)==16 but it only really uses 80-bits
375 // of it. This means we can't use hash_bytes on a long double and have to
376 // convert it to something else first.
377 template <typename H, typename LongDouble>
378 typename std::enable_if<std::is_same<LongDouble, long double>::value, H>::type
379 AbslHashValue(H hash_state, LongDouble value) {
380 const int category = std::fpclassify(value);
381 switch (category) {
382 case FP_INFINITE:
383 // Add the sign bit to differentiate between +Inf and -Inf
384 hash_state = H::combine(std::move(hash_state), std::signbit(value));
385 break;
386
387 case FP_NAN:
388 case FP_ZERO:
389 default:
390 // Category is enough for these.
391 break;
392
393 case FP_NORMAL:
394 case FP_SUBNORMAL:
395 // We can't convert `value` directly to double because this would have
396 // undefined behavior if the value is out of range.
397 // std::frexp gives us a value in the range (-1, -.5] or [.5, 1) that is
398 // guaranteed to be in range for `double`. The truncation is
399 // implementation defined, but that works as long as it is deterministic.
400 int exp;
401 auto mantissa = static_cast<double>(std::frexp(value, &exp));
402 hash_state = H::combine(std::move(hash_state), mantissa, exp);
403 }
404
405 return H::combine(std::move(hash_state), category);
406 }
407
408 // AbslHashValue() for hashing pointers
409 template <typename H, typename T>
410 H AbslHashValue(H hash_state, T* ptr) {
411 auto v = reinterpret_cast<uintptr_t>(ptr);
412 // Due to alignment, pointers tend to have low bits as zero, and the next few
413 // bits follow a pattern since they are also multiples of some base value.
414 // Mixing the pointer twice helps prevent stuck low bits for certain alignment
415 // values.
416 return H::combine(std::move(hash_state), v, v);
417 }
418
419 // AbslHashValue() for hashing nullptr_t
420 template <typename H>
421 H AbslHashValue(H hash_state, std::nullptr_t) {
422 return H::combine(std::move(hash_state), static_cast<void*>(nullptr));
423 }
424
425 // AbslHashValue() for hashing pointers-to-member
426 template <typename H, typename T, typename C>
427 H AbslHashValue(H hash_state, T C::* ptr) {
428 auto salient_ptm_size = [](std::size_t n) -> std::size_t {
429 #if defined(_MSC_VER)
430 // Pointers-to-member-function on MSVC consist of one pointer plus 0, 1, 2,
431 // or 3 ints. In 64-bit mode, they are 8-byte aligned and thus can contain
432 // padding (namely when they have 1 or 3 ints). The value below is a lower
433 // bound on the number of salient, non-padding bytes that we use for
434 // hashing.
435 if (alignof(T C::*) == alignof(int)) {
436 // No padding when all subobjects have the same size as the total
437 // alignment. This happens in 32-bit mode.
438 return n;
439 } else {
440 // Padding for 1 int (size 16) or 3 ints (size 24).
441 // With 2 ints, the size is 16 with no padding, which we pessimize.
442 return n == 24 ? 20 : n == 16 ? 12 : n;
443 }
444 #else
445 // On other platforms, we assume that pointers-to-members do not have
446 // padding.
447 #ifdef __cpp_lib_has_unique_object_representations
448 static_assert(std::has_unique_object_representations<T C::*>::value);
449 #endif // __cpp_lib_has_unique_object_representations
450 return n;
451 #endif
452 };
453 return H::combine_contiguous(std::move(hash_state),
454 reinterpret_cast<unsigned char*>(&ptr),
455 salient_ptm_size(sizeof ptr));
456 }
457
458 // -----------------------------------------------------------------------------
459 // AbslHashValue for Composite Types
460 // -----------------------------------------------------------------------------
461
462 // AbslHashValue() for hashing pairs
463 template <typename H, typename T1, typename T2>
464 typename std::enable_if<is_hashable<T1>::value && is_hashable<T2>::value,
465 H>::type
466 AbslHashValue(H hash_state, const std::pair<T1, T2>& p) {
467 return H::combine(std::move(hash_state), p.first, p.second);
468 }
469
470 // hash_tuple()
471 //
472 // Helper function for hashing a tuple. The third argument should
473 // be an index_sequence running from 0 to tuple_size<Tuple> - 1.
474 template <typename H, typename Tuple, size_t... Is>
475 H hash_tuple(H hash_state, const Tuple& t, absl::index_sequence<Is...>) {
476 return H::combine(std::move(hash_state), std::get<Is>(t)...);
477 }
478
479 // AbslHashValue for hashing tuples
480 template <typename H, typename... Ts>
481 #if defined(_MSC_VER)
482 // This SFINAE gets MSVC confused under some conditions. Let's just disable it
483 // for now.
484 H
485 #else // _MSC_VER
486 typename std::enable_if<absl::conjunction<is_hashable<Ts>...>::value, H>::type
487 #endif // _MSC_VER
488 AbslHashValue(H hash_state, const std::tuple<Ts...>& t) {
489 return hash_internal::hash_tuple(std::move(hash_state), t,
490 absl::make_index_sequence<sizeof...(Ts)>());
491 }
492
493 // -----------------------------------------------------------------------------
494 // AbslHashValue for Pointers
495 // -----------------------------------------------------------------------------
496
497 // AbslHashValue for hashing unique_ptr
498 template <typename H, typename T, typename D>
499 H AbslHashValue(H hash_state, const std::unique_ptr<T, D>& ptr) {
500 return H::combine(std::move(hash_state), ptr.get());
501 }
502
503 // AbslHashValue for hashing shared_ptr
504 template <typename H, typename T>
505 H AbslHashValue(H hash_state, const std::shared_ptr<T>& ptr) {
506 return H::combine(std::move(hash_state), ptr.get());
507 }
508
509 // -----------------------------------------------------------------------------
510 // AbslHashValue for String-Like Types
511 // -----------------------------------------------------------------------------
512
513 // AbslHashValue for hashing strings
514 //
515 // All the string-like types supported here provide the same hash expansion for
516 // the same character sequence. These types are:
517 //
518 // - `absl::Cord`
519 // - `std::string` (and std::basic_string<char, std::char_traits<char>, A> for
520 // any allocator A)
521 // - `absl::string_view` and `std::string_view`
522 //
523 // For simplicity, we currently support only `char` strings. This support may
524 // be broadened, if necessary, but with some caution - this overload would
525 // misbehave in cases where the traits' `eq()` member isn't equivalent to `==`
526 // on the underlying character type.
527 template <typename H>
528 H AbslHashValue(H hash_state, absl::string_view str) {
529 return H::combine(
530 H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
531 str.size());
532 }
533
534 // Support std::wstring, std::u16string and std::u32string.
535 template <typename Char, typename Alloc, typename H,
536 typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value ||
537 std::is_same<Char, char16_t>::value ||
538 std::is_same<Char, char32_t>::value>>
539 H AbslHashValue(
540 H hash_state,
541 const std::basic_string<Char, std::char_traits<Char>, Alloc>& str) {
542 return H::combine(
543 H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
544 str.size());
545 }
546
547 // -----------------------------------------------------------------------------
548 // AbslHashValue for Sequence Containers
549 // -----------------------------------------------------------------------------
550
551 // AbslHashValue for hashing std::array
552 template <typename H, typename T, size_t N>
553 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
554 H hash_state, const std::array<T, N>& array) {
555 return H::combine_contiguous(std::move(hash_state), array.data(),
556 array.size());
557 }
558
559 // AbslHashValue for hashing std::deque
560 template <typename H, typename T, typename Allocator>
561 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
562 H hash_state, const std::deque<T, Allocator>& deque) {
563 // TODO(gromer): investigate a more efficient implementation taking
564 // advantage of the chunk structure.
565 for (const auto& t : deque) {
566 hash_state = H::combine(std::move(hash_state), t);
567 }
568 return H::combine(std::move(hash_state), deque.size());
569 }
570
571 // AbslHashValue for hashing std::forward_list
572 template <typename H, typename T, typename Allocator>
573 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
574 H hash_state, const std::forward_list<T, Allocator>& list) {
575 size_t size = 0;
576 for (const T& t : list) {
577 hash_state = H::combine(std::move(hash_state), t);
578 ++size;
579 }
580 return H::combine(std::move(hash_state), size);
581 }
582
583 // AbslHashValue for hashing std::list
584 template <typename H, typename T, typename Allocator>
585 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
586 H hash_state, const std::list<T, Allocator>& list) {
587 for (const auto& t : list) {
588 hash_state = H::combine(std::move(hash_state), t);
589 }
590 return H::combine(std::move(hash_state), list.size());
591 }
592
593 // AbslHashValue for hashing std::vector
594 //
595 // Do not use this for vector<bool> on platforms that have a working
596 // implementation of std::hash. It does not have a .data(), and a fallback for
597 // std::hash<> is most likely faster.
598 template <typename H, typename T, typename Allocator>
599 typename std::enable_if<is_hashable<T>::value && !std::is_same<T, bool>::value,
600 H>::type
601 AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
602 return H::combine(H::combine_contiguous(std::move(hash_state), vector.data(),
603 vector.size()),
604 vector.size());
605 }
606
607 // AbslHashValue special cases for hashing std::vector<bool>
608
609 #if defined(ABSL_IS_BIG_ENDIAN) && \
610 (defined(__GLIBCXX__) || defined(__GLIBCPP__))
611
612 // std::hash in libstdc++ does not work correctly with vector<bool> on Big
613 // Endian platforms therefore we need to implement a custom AbslHashValue for
614 // it. More details on the bug:
615 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102531
616 template <typename H, typename T, typename Allocator>
617 typename std::enable_if<is_hashable<T>::value && std::is_same<T, bool>::value,
618 H>::type
619 AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
620 typename H::AbslInternalPiecewiseCombiner combiner;
621 for (const auto& i : vector) {
622 unsigned char c = static_cast<unsigned char>(i);
623 hash_state = combiner.add_buffer(std::move(hash_state), &c, sizeof(c));
624 }
625 return H::combine(combiner.finalize(std::move(hash_state)), vector.size());
626 }
627 #else
628 // When not working around the libstdc++ bug above, we still have to contend
629 // with the fact that std::hash<vector<bool>> is often poor quality, hashing
630 // directly on the internal words and on no other state. On these platforms,
631 // vector<bool>{1, 1} and vector<bool>{1, 1, 0} hash to the same value.
632 //
633 // Mixing in the size (as we do in our other vector<> implementations) on top
634 // of the library-provided hash implementation avoids this QOI issue.
635 template <typename H, typename T, typename Allocator>
636 typename std::enable_if<is_hashable<T>::value && std::is_same<T, bool>::value,
637 H>::type
638 AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
639 return H::combine(std::move(hash_state),
640 std::hash<std::vector<T, Allocator>>{}(vector),
641 vector.size());
642 }
643 #endif
644
645 // -----------------------------------------------------------------------------
646 // AbslHashValue for Ordered Associative Containers
647 // -----------------------------------------------------------------------------
648
649 // AbslHashValue for hashing std::map
650 template <typename H, typename Key, typename T, typename Compare,
651 typename Allocator>
652 typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
653 H>::type
654 AbslHashValue(H hash_state, const std::map<Key, T, Compare, Allocator>& map) {
655 for (const auto& t : map) {
656 hash_state = H::combine(std::move(hash_state), t);
657 }
658 return H::combine(std::move(hash_state), map.size());
659 }
660
661 // AbslHashValue for hashing std::multimap
662 template <typename H, typename Key, typename T, typename Compare,
663 typename Allocator>
664 typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
665 H>::type
666 AbslHashValue(H hash_state,
667 const std::multimap<Key, T, Compare, Allocator>& map) {
668 for (const auto& t : map) {
669 hash_state = H::combine(std::move(hash_state), t);
670 }
671 return H::combine(std::move(hash_state), map.size());
672 }
673
674 // AbslHashValue for hashing std::set
675 template <typename H, typename Key, typename Compare, typename Allocator>
676 typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
677 H hash_state, const std::set<Key, Compare, Allocator>& set) {
678 for (const auto& t : set) {
679 hash_state = H::combine(std::move(hash_state), t);
680 }
681 return H::combine(std::move(hash_state), set.size());
682 }
683
684 // AbslHashValue for hashing std::multiset
685 template <typename H, typename Key, typename Compare, typename Allocator>
686 typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
687 H hash_state, const std::multiset<Key, Compare, Allocator>& set) {
688 for (const auto& t : set) {
689 hash_state = H::combine(std::move(hash_state), t);
690 }
691 return H::combine(std::move(hash_state), set.size());
692 }
693
694 // -----------------------------------------------------------------------------
695 // AbslHashValue for Unordered Associative Containers
696 // -----------------------------------------------------------------------------
697
698 // AbslHashValue for hashing std::unordered_set
699 template <typename H, typename Key, typename Hash, typename KeyEqual,
700 typename Alloc>
701 typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
702 H hash_state, const std::unordered_set<Key, Hash, KeyEqual, Alloc>& s) {
703 return H::combine(
704 H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
705 s.size());
706 }
707
708 // AbslHashValue for hashing std::unordered_multiset
709 template <typename H, typename Key, typename Hash, typename KeyEqual,
710 typename Alloc>
711 typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
712 H hash_state,
713 const std::unordered_multiset<Key, Hash, KeyEqual, Alloc>& s) {
714 return H::combine(
715 H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
716 s.size());
717 }
718
719 // AbslHashValue for hashing std::unordered_set
720 template <typename H, typename Key, typename T, typename Hash,
721 typename KeyEqual, typename Alloc>
722 typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
723 H>::type
724 AbslHashValue(H hash_state,
725 const std::unordered_map<Key, T, Hash, KeyEqual, Alloc>& s) {
726 return H::combine(
727 H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
728 s.size());
729 }
730
731 // AbslHashValue for hashing std::unordered_multiset
732 template <typename H, typename Key, typename T, typename Hash,
733 typename KeyEqual, typename Alloc>
734 typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
735 H>::type
736 AbslHashValue(H hash_state,
737 const std::unordered_multimap<Key, T, Hash, KeyEqual, Alloc>& s) {
738 return H::combine(
739 H::combine_unordered(std::move(hash_state), s.begin(), s.end()),
740 s.size());
741 }
742
743 // -----------------------------------------------------------------------------
744 // AbslHashValue for Wrapper Types
745 // -----------------------------------------------------------------------------
746
747 // AbslHashValue for hashing std::reference_wrapper
748 template <typename H, typename T>
749 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
750 H hash_state, std::reference_wrapper<T> opt) {
751 return H::combine(std::move(hash_state), opt.get());
752 }
753
754 // AbslHashValue for hashing absl::optional
755 template <typename H, typename T>
756 typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
757 H hash_state, const absl::optional<T>& opt) {
758 if (opt) hash_state = H::combine(std::move(hash_state), *opt);
759 return H::combine(std::move(hash_state), opt.has_value());
760 }
761
762 // VariantVisitor
763 template <typename H>
764 struct VariantVisitor {
765 H&& hash_state;
766 template <typename T>
767 H operator()(const T& t) const {
768 return H::combine(std::move(hash_state), t);
769 }
770 };
771
772 // AbslHashValue for hashing absl::variant
773 template <typename H, typename... T>
774 typename std::enable_if<conjunction<is_hashable<T>...>::value, H>::type
775 AbslHashValue(H hash_state, const absl::variant<T...>& v) {
776 if (!v.valueless_by_exception()) {
777 hash_state = absl::visit(VariantVisitor<H>{std::move(hash_state)}, v);
778 }
779 return H::combine(std::move(hash_state), v.index());
780 }
781
782 // -----------------------------------------------------------------------------
783 // AbslHashValue for Other Types
784 // -----------------------------------------------------------------------------
785
786 // AbslHashValue for hashing std::bitset is not defined on Little Endian
787 // platforms, for the same reason as for vector<bool> (see std::vector above):
788 // It does not expose the raw bytes, and a fallback to std::hash<> is most
789 // likely faster.
790
791 #if defined(ABSL_IS_BIG_ENDIAN) && \
792 (defined(__GLIBCXX__) || defined(__GLIBCPP__))
793 // AbslHashValue for hashing std::bitset
794 //
795 // std::hash in libstdc++ does not work correctly with std::bitset on Big Endian
796 // platforms therefore we need to implement a custom AbslHashValue for it. More
797 // details on the bug: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=102531
798 template <typename H, size_t N>
799 H AbslHashValue(H hash_state, const std::bitset<N>& set) {
800 typename H::AbslInternalPiecewiseCombiner combiner;
801 for (int i = 0; i < N; i++) {
802 unsigned char c = static_cast<unsigned char>(set[i]);
803 hash_state = combiner.add_buffer(std::move(hash_state), &c, sizeof(c));
804 }
805 return H::combine(combiner.finalize(std::move(hash_state)), N);
806 }
807 #endif
808
809 // -----------------------------------------------------------------------------
810
811 // hash_range_or_bytes()
812 //
813 // Mixes all values in the range [data, data+size) into the hash state.
814 // This overload accepts only uniquely-represented types, and hashes them by
815 // hashing the entire range of bytes.
816 template <typename H, typename T>
817 typename std::enable_if<is_uniquely_represented<T>::value, H>::type
818 hash_range_or_bytes(H hash_state, const T* data, size_t size) {
819 const auto* bytes = reinterpret_cast<const unsigned char*>(data);
820 return H::combine_contiguous(std::move(hash_state), bytes, sizeof(T) * size);
821 }
822
823 // hash_range_or_bytes()
824 template <typename H, typename T>
825 typename std::enable_if<!is_uniquely_represented<T>::value, H>::type
826 hash_range_or_bytes(H hash_state, const T* data, size_t size) {
827 for (const auto end = data + size; data < end; ++data) {
828 hash_state = H::combine(std::move(hash_state), *data);
829 }
830 return hash_state;
831 }
832
833 #if defined(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE) && \
834 ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
835 #define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 1
836 #else
837 #define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 0
838 #endif
839
840 // HashSelect
841 //
842 // Type trait to select the appropriate hash implementation to use.
843 // HashSelect::type<T> will give the proper hash implementation, to be invoked
844 // as:
845 // HashSelect::type<T>::Invoke(state, value)
846 // Also, HashSelect::type<T>::value is a boolean equal to `true` if there is a
847 // valid `Invoke` function. Types that are not hashable will have a ::value of
848 // `false`.
849 struct HashSelect {
850 private:
851 struct State : HashStateBase<State> {
852 static State combine_contiguous(State hash_state, const unsigned char*,
853 size_t);
854 using State::HashStateBase::combine_contiguous;
855 };
856
857 struct UniquelyRepresentedProbe {
858 template <typename H, typename T>
859 static auto Invoke(H state, const T& value)
860 -> absl::enable_if_t<is_uniquely_represented<T>::value, H> {
861 return hash_internal::hash_bytes(std::move(state), value);
862 }
863 };
864
865 struct HashValueProbe {
866 template <typename H, typename T>
867 static auto Invoke(H state, const T& value) -> absl::enable_if_t<
868 std::is_same<H,
869 decltype(AbslHashValue(std::move(state), value))>::value,
870 H> {
871 return AbslHashValue(std::move(state), value);
872 }
873 };
874
875 struct LegacyHashProbe {
876 #if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
877 template <typename H, typename T>
878 static auto Invoke(H state, const T& value) -> absl::enable_if_t<
879 std::is_convertible<
880 decltype(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>()(value)),
881 size_t>::value,
882 H> {
883 return hash_internal::hash_bytes(
884 std::move(state),
885 ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>{}(value));
886 }
887 #endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
888 };
889
890 struct StdHashProbe {
891 template <typename H, typename T>
892 static auto Invoke(H state, const T& value)
893 -> absl::enable_if_t<type_traits_internal::IsHashable<T>::value, H> {
894 return hash_internal::hash_bytes(std::move(state), std::hash<T>{}(value));
895 }
896 };
897
898 template <typename Hash, typename T>
899 struct Probe : Hash {
900 private:
901 template <typename H, typename = decltype(H::Invoke(
902 std::declval<State>(), std::declval<const T&>()))>
903 static std::true_type Test(int);
904 template <typename U>
905 static std::false_type Test(char);
906
907 public:
908 static constexpr bool value = decltype(Test<Hash>(0))::value;
909 };
910
911 public:
912 // Probe each implementation in order.
913 // disjunction provides short circuiting wrt instantiation.
914 template <typename T>
915 using Apply = absl::disjunction< //
916 Probe<UniquelyRepresentedProbe, T>, //
917 Probe<HashValueProbe, T>, //
918 Probe<LegacyHashProbe, T>, //
919 Probe<StdHashProbe, T>, //
920 std::false_type>;
921 };
922
923 template <typename T>
924 struct is_hashable
925 : std::integral_constant<bool, HashSelect::template Apply<T>::value> {};
926
927 // MixingHashState
928 class ABSL_DLL MixingHashState : public HashStateBase<MixingHashState> {
929 // absl::uint128 is not an alias or a thin wrapper around the intrinsic.
930 // We use the intrinsic when available to improve performance.
931 #ifdef ABSL_HAVE_INTRINSIC_INT128
932 using uint128 = __uint128_t;
933 #else // ABSL_HAVE_INTRINSIC_INT128
934 using uint128 = absl::uint128;
935 #endif // ABSL_HAVE_INTRINSIC_INT128
936
937 static constexpr uint64_t kMul =
938 sizeof(size_t) == 4 ? uint64_t{0xcc9e2d51}
939 : uint64_t{0x9ddfea08eb382d69};
940
941 template <typename T>
942 using IntegralFastPath =
943 conjunction<std::is_integral<T>, is_uniquely_represented<T>>;
944
945 public:
946 // Move only
947 MixingHashState(MixingHashState&&) = default;
948 MixingHashState& operator=(MixingHashState&&) = default;
949
950 // MixingHashState::combine_contiguous()
951 //
952 // Fundamental base case for hash recursion: mixes the given range of bytes
953 // into the hash state.
954 static MixingHashState combine_contiguous(MixingHashState hash_state,
955 const unsigned char* first,
956 size_t size) {
957 return MixingHashState(
958 CombineContiguousImpl(hash_state.state_, first, size,
959 std::integral_constant<int, sizeof(size_t)>{}));
960 }
961 using MixingHashState::HashStateBase::combine_contiguous;
962
963 // MixingHashState::hash()
964 //
965 // For performance reasons in non-opt mode, we specialize this for
966 // integral types.
967 // Otherwise we would be instantiating and calling dozens of functions for
968 // something that is just one multiplication and a couple xor's.
969 // The result should be the same as running the whole algorithm, but faster.
970 template <typename T, absl::enable_if_t<IntegralFastPath<T>::value, int> = 0>
971 static size_t hash(T value) {
972 return static_cast<size_t>(Mix(Seed(), static_cast<uint64_t>(value)));
973 }
974
975 // Overload of MixingHashState::hash()
976 template <typename T, absl::enable_if_t<!IntegralFastPath<T>::value, int> = 0>
977 static size_t hash(const T& value) {
978 return static_cast<size_t>(combine(MixingHashState{}, value).state_);
979 }
980
981 private:
982 // Invoked only once for a given argument; that plus the fact that this is
983 // move-only ensures that there is only one non-moved-from object.
984 MixingHashState() : state_(Seed()) {}
985
986 friend class MixingHashState::HashStateBase;
987
988 template <typename CombinerT>
989 static MixingHashState RunCombineUnordered(MixingHashState state,
990 CombinerT combiner) {
991 uint64_t unordered_state = 0;
992 combiner(MixingHashState{}, [&](MixingHashState& inner_state) {
993 // Add the hash state of the element to the running total, but mix the
994 // carry bit back into the low bit. This in intended to avoid losing
995 // entropy to overflow, especially when unordered_multisets contain
996 // multiple copies of the same value.
997 auto element_state = inner_state.state_;
998 unordered_state += element_state;
999 if (unordered_state < element_state) {
1000 ++unordered_state;
1001 }
1002 inner_state = MixingHashState{};
1003 });
1004 return MixingHashState::combine(std::move(state), unordered_state);
1005 }
1006
1007 // Allow the HashState type-erasure implementation to invoke
1008 // RunCombinedUnordered() directly.
1009 friend class absl::HashState;
1010
1011 // Workaround for MSVC bug.
1012 // We make the type copyable to fix the calling convention, even though we
1013 // never actually copy it. Keep it private to not affect the public API of the
1014 // type.
1015 MixingHashState(const MixingHashState&) = default;
1016
1017 explicit MixingHashState(uint64_t state) : state_(state) {}
1018
1019 // Implementation of the base case for combine_contiguous where we actually
1020 // mix the bytes into the state.
1021 // Dispatch to different implementations of the combine_contiguous depending
1022 // on the value of `sizeof(size_t)`.
1023 static uint64_t CombineContiguousImpl(uint64_t state,
1024 const unsigned char* first, size_t len,
1025 std::integral_constant<int, 4>
1026 /* sizeof_size_t */);
1027 static uint64_t CombineContiguousImpl(uint64_t state,
1028 const unsigned char* first, size_t len,
1029 std::integral_constant<int, 8>
1030 /* sizeof_size_t */);
1031
1032 // Slow dispatch path for calls to CombineContiguousImpl with a size argument
1033 // larger than PiecewiseChunkSize(). Has the same effect as calling
1034 // CombineContiguousImpl() repeatedly with the chunk stride size.
1035 static uint64_t CombineLargeContiguousImpl32(uint64_t state,
1036 const unsigned char* first,
1037 size_t len);
1038 static uint64_t CombineLargeContiguousImpl64(uint64_t state,
1039 const unsigned char* first,
1040 size_t len);
1041
1042 // Reads 9 to 16 bytes from p.
1043 // The least significant 8 bytes are in .first, the rest (zero padded) bytes
1044 // are in .second.
1045 static std::pair<uint64_t, uint64_t> Read9To16(const unsigned char* p,
1046 size_t len) {
1047 uint64_t low_mem = absl::base_internal::UnalignedLoad64(p);
1048 uint64_t high_mem = absl::base_internal::UnalignedLoad64(p + len - 8);
1049 #ifdef ABSL_IS_LITTLE_ENDIAN
1050 uint64_t most_significant = high_mem;
1051 uint64_t least_significant = low_mem;
1052 #else
1053 uint64_t most_significant = low_mem;
1054 uint64_t least_significant = high_mem;
1055 #endif
1056 return {least_significant, most_significant};
1057 }
1058
1059 // Reads 4 to 8 bytes from p. Zero pads to fill uint64_t.
1060 static uint64_t Read4To8(const unsigned char* p, size_t len) {
1061 uint32_t low_mem = absl::base_internal::UnalignedLoad32(p);
1062 uint32_t high_mem = absl::base_internal::UnalignedLoad32(p + len - 4);
1063 #ifdef ABSL_IS_LITTLE_ENDIAN
1064 uint32_t most_significant = high_mem;
1065 uint32_t least_significant = low_mem;
1066 #else
1067 uint32_t most_significant = low_mem;
1068 uint32_t least_significant = high_mem;
1069 #endif
1070 return (static_cast<uint64_t>(most_significant) << (len - 4) * 8) |
1071 least_significant;
1072 }
1073
1074 // Reads 1 to 3 bytes from p. Zero pads to fill uint32_t.
1075 static uint32_t Read1To3(const unsigned char* p, size_t len) {
1076 unsigned char mem0 = p[0];
1077 unsigned char mem1 = p[len / 2];
1078 unsigned char mem2 = p[len - 1];
1079 #ifdef ABSL_IS_LITTLE_ENDIAN
1080 unsigned char significant2 = mem2;
1081 unsigned char significant1 = mem1;
1082 unsigned char significant0 = mem0;
1083 #else
1084 unsigned char significant2 = mem0;
1085 unsigned char significant1 = mem1;
1086 unsigned char significant0 = mem2;
1087 #endif
1088 return static_cast<uint32_t>(significant0 | //
1089 (significant1 << (len / 2 * 8)) | //
1090 (significant2 << ((len - 1) * 8)));
1091 }
1092
1093 ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Mix(uint64_t state, uint64_t v) {
1094 // Though the 128-bit product on AArch64 needs two instructions, it is
1095 // still a good balance between speed and hash quality.
1096 using MultType =
1097 absl::conditional_t<sizeof(size_t) == 4, uint64_t, uint128>;
1098 // We do the addition in 64-bit space to make sure the 128-bit
1099 // multiplication is fast. If we were to do it as MultType the compiler has
1100 // to assume that the high word is non-zero and needs to perform 2
1101 // multiplications instead of one.
1102 MultType m = state + v;
1103 m *= kMul;
1104 return static_cast<uint64_t>(m ^ (m >> (sizeof(m) * 8 / 2)));
1105 }
1106
1107 // An extern to avoid bloat on a direct call to LowLevelHash() with fixed
1108 // values for both the seed and salt parameters.
1109 static uint64_t LowLevelHashImpl(const unsigned char* data, size_t len);
1110
1111 ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Hash64(const unsigned char* data,
1112 size_t len) {
1113 #ifdef ABSL_HAVE_INTRINSIC_INT128
1114 return LowLevelHashImpl(data, len);
1115 #else
1116 return hash_internal::CityHash64(reinterpret_cast<const char*>(data), len);
1117 #endif
1118 }
1119
1120 // Seed()
1121 //
1122 // A non-deterministic seed.
1123 //
1124 // The current purpose of this seed is to generate non-deterministic results
1125 // and prevent having users depend on the particular hash values.
1126 // It is not meant as a security feature right now, but it leaves the door
1127 // open to upgrade it to a true per-process random seed. A true random seed
1128 // costs more and we don't need to pay for that right now.
1129 //
1130 // On platforms with ASLR, we take advantage of it to make a per-process
1131 // random value.
1132 // See https://en.wikipedia.org/wiki/Address_space_layout_randomization
1133 //
1134 // On other platforms this is still going to be non-deterministic but most
1135 // probably per-build and not per-process.
1136 ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Seed() {
1137 #if (!defined(__clang__) || __clang_major__ > 11) && \
1138 !defined(__apple_build_version__)
1139 return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(&kSeed));
1140 #else
1141 // Workaround the absence of
1142 // https://github.com/llvm/llvm-project/commit/bc15bf66dcca76cc06fe71fca35b74dc4d521021.
1143 return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(kSeed));
1144 #endif
1145 }
1146 static const void* const kSeed;
1147
1148 uint64_t state_;
1149 };
1150
1151 // MixingHashState::CombineContiguousImpl()
1152 inline uint64_t MixingHashState::CombineContiguousImpl(
1153 uint64_t state, const unsigned char* first, size_t len,
1154 std::integral_constant<int, 4> /* sizeof_size_t */) {
1155 // For large values we use CityHash, for small ones we just use a
1156 // multiplicative hash.
1157 uint64_t v;
1158 if (len > 8) {
1159 if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) {
1160 return CombineLargeContiguousImpl32(state, first, len);
1161 }
1162 v = hash_internal::CityHash32(reinterpret_cast<const char*>(first), len);
1163 } else if (len >= 4) {
1164 v = Read4To8(first, len);
1165 } else if (len > 0) {
1166 v = Read1To3(first, len);
1167 } else {
1168 // Empty ranges have no effect.
1169 return state;
1170 }
1171 return Mix(state, v);
1172 }
1173
1174 // Overload of MixingHashState::CombineContiguousImpl()
1175 inline uint64_t MixingHashState::CombineContiguousImpl(
1176 uint64_t state, const unsigned char* first, size_t len,
1177 std::integral_constant<int, 8> /* sizeof_size_t */) {
1178 // For large values we use LowLevelHash or CityHash depending on the platform,
1179 // for small ones we just use a multiplicative hash.
1180 uint64_t v;
1181 if (len > 16) {
1182 if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) {
1183 return CombineLargeContiguousImpl64(state, first, len);
1184 }
1185 v = Hash64(first, len);
1186 } else if (len > 8) {
1187 // This hash function was constructed by the ML-driven algorithm discovery
1188 // using reinforcement learning. We fed the agent lots of inputs from
1189 // microbenchmarks, SMHasher, low hamming distance from generated inputs and
1190 // picked up the one that was good on micro and macrobenchmarks.
1191 auto p = Read9To16(first, len);
1192 uint64_t lo = p.first;
1193 uint64_t hi = p.second;
1194 // Rotation by 53 was found to be most often useful when discovering these
1195 // hashing algorithms with ML techniques.
1196 lo = absl::rotr(lo, 53);
1197 state += kMul;
1198 lo += state;
1199 state ^= hi;
1200 uint128 m = state;
1201 m *= lo;
1202 return static_cast<uint64_t>(m ^ (m >> 64));
1203 } else if (len >= 4) {
1204 v = Read4To8(first, len);
1205 } else if (len > 0) {
1206 v = Read1To3(first, len);
1207 } else {
1208 // Empty ranges have no effect.
1209 return state;
1210 }
1211 return Mix(state, v);
1212 }
1213
1214 struct AggregateBarrier {};
1215
1216 // HashImpl
1217
1218 // Add a private base class to make sure this type is not an aggregate.
1219 // Aggregates can be aggregate initialized even if the default constructor is
1220 // deleted.
1221 struct PoisonedHash : private AggregateBarrier {
1222 PoisonedHash() = delete;
1223 PoisonedHash(const PoisonedHash&) = delete;
1224 PoisonedHash& operator=(const PoisonedHash&) = delete;
1225 };
1226
1227 template <typename T>
1228 struct HashImpl {
1229 size_t operator()(const T& value) const {
1230 return MixingHashState::hash(value);
1231 }
1232 };
1233
1234 template <typename T>
1235 struct Hash
1236 : absl::conditional_t<is_hashable<T>::value, HashImpl<T>, PoisonedHash> {};
1237
1238 template <typename H>
1239 template <typename T, typename... Ts>
1240 H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) {
1241 return H::combine(hash_internal::HashSelect::template Apply<T>::Invoke(
1242 std::move(state), value),
1243 values...);
1244 }
1245
1246 // HashStateBase::combine_contiguous()
1247 template <typename H>
1248 template <typename T>
1249 H HashStateBase<H>::combine_contiguous(H state, const T* data, size_t size) {
1250 return hash_internal::hash_range_or_bytes(std::move(state), data, size);
1251 }
1252
1253 // HashStateBase::combine_unordered()
1254 template <typename H>
1255 template <typename I>
1256 H HashStateBase<H>::combine_unordered(H state, I begin, I end) {
1257 return H::RunCombineUnordered(std::move(state),
1258 CombineUnorderedCallback<I>{begin, end});
1259 }
1260
1261 // HashStateBase::PiecewiseCombiner::add_buffer()
1262 template <typename H>
1263 H PiecewiseCombiner::add_buffer(H state, const unsigned char* data,
1264 size_t size) {
1265 if (position_ + size < PiecewiseChunkSize()) {
1266 // This partial chunk does not fill our existing buffer
1267 memcpy(buf_ + position_, data, size);
1268 position_ += size;
1269 return state;
1270 }
1271
1272 // If the buffer is partially filled we need to complete the buffer
1273 // and hash it.
1274 if (position_ != 0) {
1275 const size_t bytes_needed = PiecewiseChunkSize() - position_;
1276 memcpy(buf_ + position_, data, bytes_needed);
1277 state = H::combine_contiguous(std::move(state), buf_, PiecewiseChunkSize());
1278 data += bytes_needed;
1279 size -= bytes_needed;
1280 }
1281
1282 // Hash whatever chunks we can without copying
1283 while (size >= PiecewiseChunkSize()) {
1284 state = H::combine_contiguous(std::move(state), data, PiecewiseChunkSize());
1285 data += PiecewiseChunkSize();
1286 size -= PiecewiseChunkSize();
1287 }
1288 // Fill the buffer with the remainder
1289 memcpy(buf_, data, size);
1290 position_ = size;
1291 return state;
1292 }
1293
1294 // HashStateBase::PiecewiseCombiner::finalize()
1295 template <typename H>
1296 H PiecewiseCombiner::finalize(H state) {
1297 // Hash the remainder left in the buffer, which may be empty
1298 return H::combine_contiguous(std::move(state), buf_, position_);
1299 }
1300
1301 } // namespace hash_internal
1302 ABSL_NAMESPACE_END
1303 } // namespace absl
1304
1305 #endif // ABSL_HASH_INTERNAL_HASH_H_
1306