xref: /aosp_15_r20/external/private-join-and-compute/private_join_and_compute/crypto/elgamal.proto (revision a6aa18fbfbf9cb5cd47356a9d1b057768998488c)
1/*
2 * Copyright 2019 Google LLC.
3 * Licensed under the Apache License, Version 2.0 (the "License");
4 * you may not use this file except in compliance with the License.
5 * You may obtain a copy of the License at
6 *
7 *     https://www.apache.org/licenses/LICENSE-2.0
8 *
9 * Unless required by applicable law or agreed to in writing, software
10 * distributed under the License is distributed on an "AS IS" BASIS,
11 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 * See the License for the specific language governing permissions and
13 * limitations under the License.
14 */
15
16// This file specifies formats of the public key, secret key, and ciphertext of
17// the ElGamal encryption scheme, over an Elliptic Curve or over a
18// multiplicative integer group.
19
20syntax = "proto2";
21
22package private_join_and_compute;
23
24// Public key for ElGamal encryption scheme. For ElGamal over integers, all the
25// fields are serialized BigNums; for ElGamal over an Elliptic Curve, g and y
26// are serialized ECPoints, p is not set.
27//
28// g is the generator of a cyclic group.
29// y = g^x for a random x, where x is the secret key.
30//
31// To encrypt a message m:
32//     u = g^r for a random r;
33//     e = m * y^r;
34// Ciphertext = (u, e).
35//
36// To encrypt a small message m in exponential ElGamal encryption scheme:
37//     u = g^r for a random r;
38//     e = g^m * y^r;
39// Ciphertext = (u, e).
40//
41// Note: The exponential ElGamal encryption scheme is an additively homomorphic
42// encryption scheme, and it only works for small messages.
43message ElGamalPublicKey {
44  optional bytes p = 1;  // modulus of the integer group
45  optional bytes g = 2;
46  optional bytes y = 3;
47}
48
49// Secret key (or secret key share) for ElGamal encryption scheme. x is a
50// serialized BigNum.
51//
52// To decrypt a ciphertext (u, e):
53//     m = e * (u^x)^{-1}.
54//
55// To decrypt a ciphertext (u, e) in exponential ElGamal encryption scheme:
56//     m = log_g (e * (u^x)^{-1}).
57//
58// In a 2-out-of-2 threshold ElGamal encryption scheme, for secret key shares
59// x_1 and x_2, the ElGamal secret key is x = x_1 + x_2, satisfying y = g^x for
60// public key (g, y).
61//
62// To jointly decrypt a ciphertext (u, e):
63// Each party computes (u^{x_i})^{-1};
64//     m = e * (u^{x_1})^{-1} * (u^{x_2})^{-1}, or
65//     m = log_g (e * (u^{x_1})^{-1} * (u^{x_2})^{-1}) in exponential ElGamal.
66message ElGamalSecretKey {
67  optional bytes x = 1;
68}
69
70// Ciphertext of ElGamal encryption scheme. For ElGamal over integers, all the
71// fields are serialized BigNums; for ElGamal over an Elliptic Curve, all the
72// fields are serialized ECPoints.
73//
74// For public key (g, y), message m, and randomness r:
75//     u = g^r;
76//     e = m * y^r.
77//
78// In exponential ElGamal encryption scheme, for public key (g, y), small
79// message m, and randomness r:
80//     u = g^r;
81//     e = g^m * y^r.
82message ElGamalCiphertext {
83  optional bytes u = 1;
84  optional bytes e = 2;
85}
86