xref: /aosp_15_r20/external/oboe/samples/RhythmGame/third_party/glm/gtx/quaternion.inl (revision 05767d913155b055644481607e6fa1e35e2fe72c)
1/// @ref gtx_quaternion
2/// @file glm/gtx/quaternion.inl
3
4#include <limits>
5#include "../gtc/constants.hpp"
6
7namespace glm
8{
9	template <typename T, precision P>
10	GLM_FUNC_QUALIFIER tvec3<T, P> cross(tvec3<T, P> const& v, tquat<T, P> const& q)
11	{
12		return inverse(q) * v;
13	}
14
15	template <typename T, precision P>
16	GLM_FUNC_QUALIFIER tvec3<T, P> cross(tquat<T, P> const& q, tvec3<T, P> const& v)
17	{
18		return q * v;
19	}
20
21	template <typename T, precision P>
22	GLM_FUNC_QUALIFIER tquat<T, P> squad
23	(
24		tquat<T, P> const & q1,
25		tquat<T, P> const & q2,
26		tquat<T, P> const & s1,
27		tquat<T, P> const & s2,
28		T const & h)
29	{
30		return mix(mix(q1, q2, h), mix(s1, s2, h), static_cast<T>(2) * (static_cast<T>(1) - h) * h);
31	}
32
33	template <typename T, precision P>
34	GLM_FUNC_QUALIFIER tquat<T, P> intermediate
35	(
36		tquat<T, P> const & prev,
37		tquat<T, P> const & curr,
38		tquat<T, P> const & next
39	)
40	{
41		tquat<T, P> invQuat = inverse(curr);
42		return exp((log(next + invQuat) + log(prev + invQuat)) / static_cast<T>(-4)) * curr;
43	}
44
45	template <typename T, precision P>
46	GLM_FUNC_QUALIFIER tquat<T, P> exp(tquat<T, P> const& q)
47	{
48		tvec3<T, P> u(q.x, q.y, q.z);
49		T const Angle = glm::length(u);
50		if (Angle < epsilon<T>())
51			return tquat<T, P>();
52
53		tvec3<T, P> const v(u / Angle);
54		return tquat<T, P>(cos(Angle), sin(Angle) * v);
55	}
56
57	template <typename T, precision P>
58	GLM_FUNC_QUALIFIER tquat<T, P> log(tquat<T, P> const& q)
59	{
60		tvec3<T, P> u(q.x, q.y, q.z);
61		T Vec3Len = length(u);
62
63		if (Vec3Len < epsilon<T>())
64		{
65			if(q.w > static_cast<T>(0))
66				return tquat<T, P>(log(q.w), static_cast<T>(0), static_cast<T>(0), static_cast<T>(0));
67			else if(q.w < static_cast<T>(0))
68				return tquat<T, P>(log(-q.w), pi<T>(), static_cast<T>(0), static_cast<T>(0));
69			else
70				return tquat<T, P>(std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity(), std::numeric_limits<T>::infinity());
71		}
72		else
73		{
74			T t = atan(Vec3Len, T(q.w)) / Vec3Len;
75			T QuatLen2 = Vec3Len * Vec3Len + q.w * q.w;
76			return tquat<T, P>(static_cast<T>(0.5) * log(QuatLen2), t * q.x, t * q.y, t * q.z);
77		}
78	}
79
80	template <typename T, precision P>
81	GLM_FUNC_QUALIFIER tquat<T, P> pow(tquat<T, P> const & x, T const & y)
82	{
83		//Raising to the power of 0 should yield 1
84		//Needed to prevent a division by 0 error later on
85		if(y > -epsilon<T>() && y < epsilon<T>())
86			return tquat<T, P>(1,0,0,0);
87
88		//To deal with non-unit quaternions
89		T magnitude = sqrt(x.x * x.x + x.y * x.y + x.z * x.z + x.w *x.w);
90
91		//Equivalent to raising a real number to a power
92		//Needed to prevent a division by 0 error later on
93		if(abs(x.w / magnitude) > static_cast<T>(1) - epsilon<T>() && abs(x.w / magnitude) < static_cast<T>(1) + epsilon<T>())
94			return tquat<T, P>(pow(x.w, y),0,0,0);
95
96		T Angle = acos(x.w / magnitude);
97		T NewAngle = Angle * y;
98		T Div = sin(NewAngle) / sin(Angle);
99		T Mag = pow(magnitude, y - static_cast<T>(1));
100
101		return tquat<T, P>(cos(NewAngle) * magnitude * Mag, x.x * Div * Mag, x.y * Div * Mag, x.z * Div * Mag);
102	}
103
104	template <typename T, precision P>
105	GLM_FUNC_QUALIFIER tvec3<T, P> rotate(tquat<T, P> const& q, tvec3<T, P> const& v)
106	{
107		return q * v;
108	}
109
110	template <typename T, precision P>
111	GLM_FUNC_QUALIFIER tvec4<T, P> rotate(tquat<T, P> const& q, tvec4<T, P> const& v)
112	{
113		return q * v;
114	}
115
116	template <typename T, precision P>
117	GLM_FUNC_QUALIFIER T extractRealComponent(tquat<T, P> const& q)
118	{
119		T w = static_cast<T>(1) - q.x * q.x - q.y * q.y - q.z * q.z;
120		if(w < T(0))
121			return T(0);
122		else
123			return -sqrt(w);
124	}
125
126	template <typename T, precision P>
127	GLM_FUNC_QUALIFIER T length2(tquat<T, P> const& q)
128	{
129		return q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w;
130	}
131
132	template <typename T, precision P>
133	GLM_FUNC_QUALIFIER tquat<T, P> shortMix(tquat<T, P> const& x, tquat<T, P> const& y, T const& a)
134	{
135		if(a <= static_cast<T>(0)) return x;
136		if(a >= static_cast<T>(1)) return y;
137
138		T fCos = dot(x, y);
139		tquat<T, P> y2(y); //BUG!!! tquat<T> y2;
140		if(fCos < static_cast<T>(0))
141		{
142			y2 = -y;
143			fCos = -fCos;
144		}
145
146		//if(fCos > 1.0f) // problem
147		T k0, k1;
148		if(fCos > (static_cast<T>(1) - epsilon<T>()))
149		{
150			k0 = static_cast<T>(1) - a;
151			k1 = static_cast<T>(0) + a; //BUG!!! 1.0f + a;
152		}
153		else
154		{
155			T fSin = sqrt(T(1) - fCos * fCos);
156			T fAngle = atan(fSin, fCos);
157			T fOneOverSin = static_cast<T>(1) / fSin;
158			k0 = sin((static_cast<T>(1) - a) * fAngle) * fOneOverSin;
159			k1 = sin((static_cast<T>(0) + a) * fAngle) * fOneOverSin;
160		}
161
162		return tquat<T, P>(
163			k0 * x.w + k1 * y2.w,
164			k0 * x.x + k1 * y2.x,
165			k0 * x.y + k1 * y2.y,
166			k0 * x.z + k1 * y2.z);
167	}
168
169	template <typename T, precision P>
170	GLM_FUNC_QUALIFIER tquat<T, P> fastMix(tquat<T, P> const& x, tquat<T, P> const& y, T const & a)
171	{
172		return glm::normalize(x * (static_cast<T>(1) - a) + (y * a));
173	}
174
175	template <typename T, precision P>
176	GLM_FUNC_QUALIFIER tquat<T, P> rotation(tvec3<T, P> const& orig, tvec3<T, P> const& dest)
177	{
178		T cosTheta = dot(orig, dest);
179		tvec3<T, P> rotationAxis;
180
181		if(cosTheta >= static_cast<T>(1) - epsilon<T>())
182			return quat();
183
184		if(cosTheta < static_cast<T>(-1) + epsilon<T>())
185		{
186			// special case when vectors in opposite directions :
187			// there is no "ideal" rotation axis
188			// So guess one; any will do as long as it's perpendicular to start
189			// This implementation favors a rotation around the Up axis (Y),
190			// since it's often what you want to do.
191			rotationAxis = cross(tvec3<T, P>(0, 0, 1), orig);
192			if(length2(rotationAxis) < epsilon<T>()) // bad luck, they were parallel, try again!
193				rotationAxis = cross(tvec3<T, P>(1, 0, 0), orig);
194
195			rotationAxis = normalize(rotationAxis);
196			return angleAxis(pi<T>(), rotationAxis);
197		}
198
199		// Implementation from Stan Melax's Game Programming Gems 1 article
200		rotationAxis = cross(orig, dest);
201
202		T s = sqrt((T(1) + cosTheta) * static_cast<T>(2));
203		T invs = static_cast<T>(1) / s;
204
205		return tquat<T, P>(
206			s * static_cast<T>(0.5f),
207			rotationAxis.x * invs,
208			rotationAxis.y * invs,
209			rotationAxis.z * invs);
210	}
211
212}//namespace glm
213