xref: /aosp_15_r20/external/musl/src/math/powl.c (revision c9945492fdd68bbe62686c5b452b4dc1be3f8453)
1 /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_powl.c */
2 /*
3  * Copyright (c) 2008 Stephen L. Moshier <[email protected]>
4  *
5  * Permission to use, copy, modify, and distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 /*                                                      powl.c
18  *
19  *      Power function, long double precision
20  *
21  *
22  * SYNOPSIS:
23  *
24  * long double x, y, z, powl();
25  *
26  * z = powl( x, y );
27  *
28  *
29  * DESCRIPTION:
30  *
31  * Computes x raised to the yth power.  Analytically,
32  *
33  *      x**y  =  exp( y log(x) ).
34  *
35  * Following Cody and Waite, this program uses a lookup table
36  * of 2**-i/32 and pseudo extended precision arithmetic to
37  * obtain several extra bits of accuracy in both the logarithm
38  * and the exponential.
39  *
40  *
41  * ACCURACY:
42  *
43  * The relative error of pow(x,y) can be estimated
44  * by   y dl ln(2),   where dl is the absolute error of
45  * the internally computed base 2 logarithm.  At the ends
46  * of the approximation interval the logarithm equal 1/32
47  * and its relative error is about 1 lsb = 1.1e-19.  Hence
48  * the predicted relative error in the result is 2.3e-21 y .
49  *
50  *                      Relative error:
51  * arithmetic   domain     # trials      peak         rms
52  *
53  *    IEEE     +-1000       40000      2.8e-18      3.7e-19
54  * .001 < x < 1000, with log(x) uniformly distributed.
55  * -1000 < y < 1000, y uniformly distributed.
56  *
57  *    IEEE     0,8700       60000      6.5e-18      1.0e-18
58  * 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed.
59  *
60  *
61  * ERROR MESSAGES:
62  *
63  *   message         condition      value returned
64  * pow overflow     x**y > MAXNUM      INFINITY
65  * pow underflow   x**y < 1/MAXNUM       0.0
66  * pow domain      x<0 and y noninteger  0.0
67  *
68  */
69 
70 #include "libm.h"
71 
72 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
powl(long double x,long double y)73 long double powl(long double x, long double y)
74 {
75 	return pow(x, y);
76 }
77 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
78 
79 /* Table size */
80 #define NXT 32
81 
82 /* log(1+x) =  x - .5x^2 + x^3 *  P(z)/Q(z)
83  * on the domain  2^(-1/32) - 1  <=  x  <=  2^(1/32) - 1
84  */
85 static const long double P[] = {
86  8.3319510773868690346226E-4L,
87  4.9000050881978028599627E-1L,
88  1.7500123722550302671919E0L,
89  1.4000100839971580279335E0L,
90 };
91 static const long double Q[] = {
92 /* 1.0000000000000000000000E0L,*/
93  5.2500282295834889175431E0L,
94  8.4000598057587009834666E0L,
95  4.2000302519914740834728E0L,
96 };
97 /* A[i] = 2^(-i/32), rounded to IEEE long double precision.
98  * If i is even, A[i] + B[i/2] gives additional accuracy.
99  */
100 static const long double A[33] = {
101  1.0000000000000000000000E0L,
102  9.7857206208770013448287E-1L,
103  9.5760328069857364691013E-1L,
104  9.3708381705514995065011E-1L,
105  9.1700404320467123175367E-1L,
106  8.9735453750155359320742E-1L,
107  8.7812608018664974155474E-1L,
108  8.5930964906123895780165E-1L,
109  8.4089641525371454301892E-1L,
110  8.2287773907698242225554E-1L,
111  8.0524516597462715409607E-1L,
112  7.8799042255394324325455E-1L,
113  7.7110541270397041179298E-1L,
114  7.5458221379671136985669E-1L,
115  7.3841307296974965571198E-1L,
116  7.2259040348852331001267E-1L,
117  7.0710678118654752438189E-1L,
118  6.9195494098191597746178E-1L,
119  6.7712777346844636413344E-1L,
120  6.6261832157987064729696E-1L,
121  6.4841977732550483296079E-1L,
122  6.3452547859586661129850E-1L,
123  6.2092890603674202431705E-1L,
124  6.0762367999023443907803E-1L,
125  5.9460355750136053334378E-1L,
126  5.8186242938878875689693E-1L,
127  5.6939431737834582684856E-1L,
128  5.5719337129794626814472E-1L,
129  5.4525386633262882960438E-1L,
130  5.3357020033841180906486E-1L,
131  5.2213689121370692017331E-1L,
132  5.1094857432705833910408E-1L,
133  5.0000000000000000000000E-1L,
134 };
135 static const long double B[17] = {
136  0.0000000000000000000000E0L,
137  2.6176170809902549338711E-20L,
138 -1.0126791927256478897086E-20L,
139  1.3438228172316276937655E-21L,
140  1.2207982955417546912101E-20L,
141 -6.3084814358060867200133E-21L,
142  1.3164426894366316434230E-20L,
143 -1.8527916071632873716786E-20L,
144  1.8950325588932570796551E-20L,
145  1.5564775779538780478155E-20L,
146  6.0859793637556860974380E-21L,
147 -2.0208749253662532228949E-20L,
148  1.4966292219224761844552E-20L,
149  3.3540909728056476875639E-21L,
150 -8.6987564101742849540743E-22L,
151 -1.2327176863327626135542E-20L,
152  0.0000000000000000000000E0L,
153 };
154 
155 /* 2^x = 1 + x P(x),
156  * on the interval -1/32 <= x <= 0
157  */
158 static const long double R[] = {
159  1.5089970579127659901157E-5L,
160  1.5402715328927013076125E-4L,
161  1.3333556028915671091390E-3L,
162  9.6181291046036762031786E-3L,
163  5.5504108664798463044015E-2L,
164  2.4022650695910062854352E-1L,
165  6.9314718055994530931447E-1L,
166 };
167 
168 #define MEXP (NXT*16384.0L)
169 /* The following if denormal numbers are supported, else -MEXP: */
170 #define MNEXP (-NXT*(16384.0L+64.0L))
171 /* log2(e) - 1 */
172 #define LOG2EA 0.44269504088896340735992L
173 
174 #define F W
175 #define Fa Wa
176 #define Fb Wb
177 #define G W
178 #define Ga Wa
179 #define Gb u
180 #define H W
181 #define Ha Wb
182 #define Hb Wb
183 
184 static const long double MAXLOGL = 1.1356523406294143949492E4L;
185 static const long double MINLOGL = -1.13994985314888605586758E4L;
186 static const long double LOGE2L = 6.9314718055994530941723E-1L;
187 static const long double huge = 0x1p10000L;
188 /* XXX Prevent gcc from erroneously constant folding this. */
189 static const volatile long double twom10000 = 0x1p-10000L;
190 
191 static long double reducl(long double);
192 static long double powil(long double, int);
193 
powl(long double x,long double y)194 long double powl(long double x, long double y)
195 {
196 	/* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */
197 	int i, nflg, iyflg, yoddint;
198 	long e;
199 	volatile long double z=0;
200 	long double w=0, W=0, Wa=0, Wb=0, ya=0, yb=0, u=0;
201 
202 	/* make sure no invalid exception is raised by nan comparision */
203 	if (isnan(x)) {
204 		if (!isnan(y) && y == 0.0)
205 			return 1.0;
206 		return x;
207 	}
208 	if (isnan(y)) {
209 		if (x == 1.0)
210 			return 1.0;
211 		return y;
212 	}
213 	if (x == 1.0)
214 		return 1.0; /* 1**y = 1, even if y is nan */
215 	if (y == 0.0)
216 		return 1.0; /* x**0 = 1, even if x is nan */
217 	if (y == 1.0)
218 		return x;
219 	/* if y*log2(x) < log2(LDBL_TRUE_MIN)-1 then x^y uflows to 0
220 	   if y*log2(x) > -log2(LDBL_TRUE_MIN)+1 > LDBL_MAX_EXP then x^y oflows
221 	   if |x|!=1 then |log2(x)| > |log(x)| > LDBL_EPSILON/2 so
222 	   x^y oflows/uflows if |y|*LDBL_EPSILON/2 > -log2(LDBL_TRUE_MIN)+1 */
223 	if (fabsl(y) > 2*(-LDBL_MIN_EXP+LDBL_MANT_DIG+1)/LDBL_EPSILON) {
224 		/* y is not an odd int */
225 		if (x == -1.0)
226 			return 1.0;
227 		if (y == INFINITY) {
228 			if (x > 1.0 || x < -1.0)
229 				return INFINITY;
230 			return 0.0;
231 		}
232 		if (y == -INFINITY) {
233 			if (x > 1.0 || x < -1.0)
234 				return 0.0;
235 			return INFINITY;
236 		}
237 		if ((x > 1.0 || x < -1.0) == (y > 0))
238 			return huge * huge;
239 		return twom10000 * twom10000;
240 	}
241 	if (x == INFINITY) {
242 		if (y > 0.0)
243 			return INFINITY;
244 		return 0.0;
245 	}
246 
247 	w = floorl(y);
248 
249 	/* Set iyflg to 1 if y is an integer. */
250 	iyflg = 0;
251 	if (w == y)
252 		iyflg = 1;
253 
254 	/* Test for odd integer y. */
255 	yoddint = 0;
256 	if (iyflg) {
257 		ya = fabsl(y);
258 		ya = floorl(0.5 * ya);
259 		yb = 0.5 * fabsl(w);
260 		if( ya != yb )
261 			yoddint = 1;
262 	}
263 
264 	if (x == -INFINITY) {
265 		if (y > 0.0) {
266 			if (yoddint)
267 				return -INFINITY;
268 			return INFINITY;
269 		}
270 		if (y < 0.0) {
271 			if (yoddint)
272 				return -0.0;
273 			return 0.0;
274 		}
275 	}
276 	nflg = 0; /* (x<0)**(odd int) */
277 	if (x <= 0.0) {
278 		if (x == 0.0) {
279 			if (y < 0.0) {
280 				if (signbit(x) && yoddint)
281 					/* (-0.0)**(-odd int) = -inf, divbyzero */
282 					return -1.0/0.0;
283 				/* (+-0.0)**(negative) = inf, divbyzero */
284 				return 1.0/0.0;
285 			}
286 			if (signbit(x) && yoddint)
287 				return -0.0;
288 			return 0.0;
289 		}
290 		if (iyflg == 0)
291 			return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */
292 		/* (x<0)**(integer) */
293 		if (yoddint)
294 			nflg = 1; /* negate result */
295 		x = -x;
296 	}
297 	/* (+integer)**(integer)  */
298 	if (iyflg && floorl(x) == x && fabsl(y) < 32768.0) {
299 		w = powil(x, (int)y);
300 		return nflg ? -w : w;
301 	}
302 
303 	/* separate significand from exponent */
304 	x = frexpl(x, &i);
305 	e = i;
306 
307 	/* find significand in antilog table A[] */
308 	i = 1;
309 	if (x <= A[17])
310 		i = 17;
311 	if (x <= A[i+8])
312 		i += 8;
313 	if (x <= A[i+4])
314 		i += 4;
315 	if (x <= A[i+2])
316 		i += 2;
317 	if (x >= A[1])
318 		i = -1;
319 	i += 1;
320 
321 	/* Find (x - A[i])/A[i]
322 	 * in order to compute log(x/A[i]):
323 	 *
324 	 * log(x) = log( a x/a ) = log(a) + log(x/a)
325 	 *
326 	 * log(x/a) = log(1+v),  v = x/a - 1 = (x-a)/a
327 	 */
328 	x -= A[i];
329 	x -= B[i/2];
330 	x /= A[i];
331 
332 	/* rational approximation for log(1+v):
333 	 *
334 	 * log(1+v)  =  v  -  v**2/2  +  v**3 P(v) / Q(v)
335 	 */
336 	z = x*x;
337 	w = x * (z * __polevll(x, P, 3) / __p1evll(x, Q, 3));
338 	w = w - 0.5*z;
339 
340 	/* Convert to base 2 logarithm:
341 	 * multiply by log2(e) = 1 + LOG2EA
342 	 */
343 	z = LOG2EA * w;
344 	z += w;
345 	z += LOG2EA * x;
346 	z += x;
347 
348 	/* Compute exponent term of the base 2 logarithm. */
349 	w = -i;
350 	w /= NXT;
351 	w += e;
352 	/* Now base 2 log of x is w + z. */
353 
354 	/* Multiply base 2 log by y, in extended precision. */
355 
356 	/* separate y into large part ya
357 	 * and small part yb less than 1/NXT
358 	 */
359 	ya = reducl(y);
360 	yb = y - ya;
361 
362 	/* (w+z)(ya+yb)
363 	 * = w*ya + w*yb + z*y
364 	 */
365 	F = z * y  +  w * yb;
366 	Fa = reducl(F);
367 	Fb = F - Fa;
368 
369 	G = Fa + w * ya;
370 	Ga = reducl(G);
371 	Gb = G - Ga;
372 
373 	H = Fb + Gb;
374 	Ha = reducl(H);
375 	w = (Ga + Ha) * NXT;
376 
377 	/* Test the power of 2 for overflow */
378 	if (w > MEXP)
379 		return huge * huge;  /* overflow */
380 	if (w < MNEXP)
381 		return twom10000 * twom10000;  /* underflow */
382 
383 	e = w;
384 	Hb = H - Ha;
385 
386 	if (Hb > 0.0) {
387 		e += 1;
388 		Hb -= 1.0/NXT;  /*0.0625L;*/
389 	}
390 
391 	/* Now the product y * log2(x)  =  Hb + e/NXT.
392 	 *
393 	 * Compute base 2 exponential of Hb,
394 	 * where -0.0625 <= Hb <= 0.
395 	 */
396 	z = Hb * __polevll(Hb, R, 6);  /*  z = 2**Hb - 1  */
397 
398 	/* Express e/NXT as an integer plus a negative number of (1/NXT)ths.
399 	 * Find lookup table entry for the fractional power of 2.
400 	 */
401 	if (e < 0)
402 		i = 0;
403 	else
404 		i = 1;
405 	i = e/NXT + i;
406 	e = NXT*i - e;
407 	w = A[e];
408 	z = w * z;  /*  2**-e * ( 1 + (2**Hb-1) )  */
409 	z = z + w;
410 	z = scalbnl(z, i);  /* multiply by integer power of 2 */
411 
412 	if (nflg)
413 		z = -z;
414 	return z;
415 }
416 
417 
418 /* Find a multiple of 1/NXT that is within 1/NXT of x. */
reducl(long double x)419 static long double reducl(long double x)
420 {
421 	long double t;
422 
423 	t = x * NXT;
424 	t = floorl(t);
425 	t = t / NXT;
426 	return t;
427 }
428 
429 /*
430  *      Positive real raised to integer power, long double precision
431  *
432  *
433  * SYNOPSIS:
434  *
435  * long double x, y, powil();
436  * int n;
437  *
438  * y = powil( x, n );
439  *
440  *
441  * DESCRIPTION:
442  *
443  * Returns argument x>0 raised to the nth power.
444  * The routine efficiently decomposes n as a sum of powers of
445  * two. The desired power is a product of two-to-the-kth
446  * powers of x.  Thus to compute the 32767 power of x requires
447  * 28 multiplications instead of 32767 multiplications.
448  *
449  *
450  * ACCURACY:
451  *
452  *                      Relative error:
453  * arithmetic   x domain   n domain  # trials      peak         rms
454  *    IEEE     .001,1000  -1022,1023  50000       4.3e-17     7.8e-18
455  *    IEEE        1,2     -1022,1023  20000       3.9e-17     7.6e-18
456  *    IEEE     .99,1.01     0,8700    10000       3.6e-16     7.2e-17
457  *
458  * Returns MAXNUM on overflow, zero on underflow.
459  */
460 
powil(long double x,int nn)461 static long double powil(long double x, int nn)
462 {
463 	long double ww, y;
464 	long double s;
465 	int n, e, sign, lx;
466 
467 	if (nn == 0)
468 		return 1.0;
469 
470 	if (nn < 0) {
471 		sign = -1;
472 		n = -nn;
473 	} else {
474 		sign = 1;
475 		n = nn;
476 	}
477 
478 	/* Overflow detection */
479 
480 	/* Calculate approximate logarithm of answer */
481 	s = x;
482 	s = frexpl( s, &lx);
483 	e = (lx - 1)*n;
484 	if ((e == 0) || (e > 64) || (e < -64)) {
485 		s = (s - 7.0710678118654752e-1L) / (s +  7.0710678118654752e-1L);
486 		s = (2.9142135623730950L * s - 0.5 + lx) * nn * LOGE2L;
487 	} else {
488 		s = LOGE2L * e;
489 	}
490 
491 	if (s > MAXLOGL)
492 		return huge * huge;  /* overflow */
493 
494 	if (s < MINLOGL)
495 		return twom10000 * twom10000;  /* underflow */
496 	/* Handle tiny denormal answer, but with less accuracy
497 	 * since roundoff error in 1.0/x will be amplified.
498 	 * The precise demarcation should be the gradual underflow threshold.
499 	 */
500 	if (s < -MAXLOGL+2.0) {
501 		x = 1.0/x;
502 		sign = -sign;
503 	}
504 
505 	/* First bit of the power */
506 	if (n & 1)
507 		y = x;
508 	else
509 		y = 1.0;
510 
511 	ww = x;
512 	n >>= 1;
513 	while (n) {
514 		ww = ww * ww;   /* arg to the 2-to-the-kth power */
515 		if (n & 1)     /* if that bit is set, then include in product */
516 			y *= ww;
517 		n >>= 1;
518 	}
519 
520 	if (sign < 0)
521 		y = 1.0/y;
522 	return y;
523 }
524 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
525 // TODO: broken implementation to make things compile
powl(long double x,long double y)526 long double powl(long double x, long double y)
527 {
528 	return pow(x, y);
529 }
530 #endif
531