xref: /aosp_15_r20/external/mesa3d/src/util/u_math.h (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /**************************************************************************
2  *
3  * Copyright 2008 VMware, Inc.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 
29 /**
30  * Math utilities and approximations for common math functions.
31  * Reduced precision is usually acceptable in shaders...
32  *
33  * "fast" is used in the names of functions which are low-precision,
34  * or at least lower-precision than the normal C lib functions.
35  */
36 
37 
38 #ifndef U_MATH_H
39 #define U_MATH_H
40 
41 
42 #include "c99_compat.h"
43 #include <assert.h>
44 #include <float.h>
45 #include <stdarg.h>
46 #include <math.h>
47 
48 #include "bitscan.h"
49 #include "u_endian.h" /* for UTIL_ARCH_BIG_ENDIAN */
50 #include "util/detect_cc.h"
51 #include "util/detect_arch.h"
52 #include "util/macros.h"
53 
54 #ifdef __HAIKU__
55 #include <sys/param.h>
56 #undef ALIGN
57 #endif
58 
59 #ifdef __cplusplus
60 extern "C" {
61 #endif
62 
63 
64 #ifndef M_SQRT2
65 #define M_SQRT2 1.41421356237309504880
66 #endif
67 
68 
69 /**
70  * Initialize math module.  This should be called before using any
71  * other functions in this module.
72  */
73 extern void
74 util_init_math(void);
75 
76 
77 union fi {
78    float f;
79    int32_t i;
80    uint32_t ui;
81 };
82 
83 
84 union di {
85    double d;
86    int64_t i;
87    uint64_t ui;
88 };
89 
90 
91 /**
92  * Extract the IEEE float32 exponent.
93  */
94 static inline signed
util_get_float32_exponent(float x)95 util_get_float32_exponent(float x)
96 {
97    union fi f;
98 
99    f.f = x;
100 
101    return ((f.ui >> 23) & 0xff) - 127;
102 }
103 
104 
105 #define LOG2_TABLE_SIZE_LOG2 8
106 #define LOG2_TABLE_SCALE (1 << LOG2_TABLE_SIZE_LOG2)
107 #define LOG2_TABLE_SIZE (LOG2_TABLE_SCALE + 1)
108 extern float log2_table[LOG2_TABLE_SIZE];
109 
110 
111 /**
112  * Fast approximation to log2(x).
113  */
114 static inline float
util_fast_log2(float x)115 util_fast_log2(float x)
116 {
117    union fi num;
118    float epart, mpart;
119    num.f = x;
120    epart = (float)(((num.i & 0x7f800000) >> 23) - 127);
121    /* mpart = log2_table[mantissa*LOG2_TABLE_SCALE + 0.5] */
122    mpart = log2_table[((num.i & 0x007fffff) + (1 << (22 - LOG2_TABLE_SIZE_LOG2))) >> (23 - LOG2_TABLE_SIZE_LOG2)];
123    return epart + mpart;
124 }
125 
126 
127 /**
128  * Floor(x), returned as int.
129  */
130 static inline int
util_ifloor(float f)131 util_ifloor(float f)
132 {
133 #if defined(USE_X86_ASM) && defined(__GNUC__) && defined(__i386__)
134    /*
135     * IEEE floor for computers that round to nearest or even.
136     * 'f' must be between -4194304 and 4194303.
137     * This floor operation is done by "(iround(f + .5) + iround(f - .5)) >> 1",
138     * but uses some IEEE specific tricks for better speed.
139     * Contributed by Josh Vanderhoof
140     */
141    int ai, bi;
142    double af, bf;
143    af = (3 << 22) + 0.5 + (double)f;
144    bf = (3 << 22) + 0.5 - (double)f;
145    /* GCC generates an extra fstp/fld without this. */
146    __asm__ ("fstps %0" : "=m" (ai) : "t" (af) : "st");
147    __asm__ ("fstps %0" : "=m" (bi) : "t" (bf) : "st");
148    return (ai - bi) >> 1;
149 #else
150    int ai, bi;
151    double af, bf;
152    union fi u;
153    af = (3 << 22) + 0.5 + (double) f;
154    bf = (3 << 22) + 0.5 - (double) f;
155    u.f = (float) af;  ai = u.i;
156    u.f = (float) bf;  bi = u.i;
157    return (ai - bi) >> 1;
158 #endif
159 }
160 
161 
162 /**
163  * Round float to nearest int.
164  * the range of f should be [INT_MIN, INT_MAX]
165  */
166 static inline int
util_iround(float f)167 util_iround(float f)
168 {
169    return (int)lrintf(f);
170 }
171 
172 
173 /**
174  * Approximate floating point comparison
175  */
176 static inline bool
util_is_approx(float a,float b,float tol)177 util_is_approx(float a, float b, float tol)
178 {
179    return fabsf(b - a) <= tol;
180 }
181 
182 
183 /**
184  * util_is_X_inf_or_nan = test if x is NaN or +/- Inf
185  * util_is_X_nan        = test if x is NaN
186  * util_X_inf_sign      = return +1 for +Inf, -1 for -Inf, or 0 for not Inf
187  *
188  * NaN can be checked with x != x, however this fails with the fast math flag
189  **/
190 
191 
192 /**
193  * Single-float
194  */
195 static inline bool
util_is_inf_or_nan(float x)196 util_is_inf_or_nan(float x)
197 {
198    union fi tmp;
199    tmp.f = x;
200    return (tmp.ui & 0x7f800000) == 0x7f800000;
201 }
202 
203 
204 static inline bool
util_is_nan(float x)205 util_is_nan(float x)
206 {
207    union fi tmp;
208    tmp.f = x;
209    return (tmp.ui & 0x7fffffff) > 0x7f800000;
210 }
211 
212 
213 static inline int
util_inf_sign(float x)214 util_inf_sign(float x)
215 {
216    union fi tmp;
217    tmp.f = x;
218    if ((tmp.ui & 0x7fffffff) != 0x7f800000) {
219       return 0;
220    }
221 
222    return (x < 0) ? -1 : 1;
223 }
224 
225 
226 /**
227  * Double-float
228  */
229 static inline bool
util_is_double_inf_or_nan(double x)230 util_is_double_inf_or_nan(double x)
231 {
232    union di tmp;
233    tmp.d = x;
234    return (tmp.ui & 0x7ff0000000000000ULL) == 0x7ff0000000000000ULL;
235 }
236 
237 
238 static inline bool
util_is_double_nan(double x)239 util_is_double_nan(double x)
240 {
241    union di tmp;
242    tmp.d = x;
243    return (tmp.ui & 0x7fffffffffffffffULL) > 0x7ff0000000000000ULL;
244 }
245 
246 
247 static inline int
util_double_inf_sign(double x)248 util_double_inf_sign(double x)
249 {
250    union di tmp;
251    tmp.d = x;
252    if ((tmp.ui & 0x7fffffffffffffffULL) != 0x7ff0000000000000ULL) {
253       return 0;
254    }
255 
256    return (x < 0) ? -1 : 1;
257 }
258 
259 
260 /**
261  * Half-float
262  */
263 static inline bool
util_is_half_inf_or_nan(int16_t x)264 util_is_half_inf_or_nan(int16_t x)
265 {
266    return (x & 0x7c00) == 0x7c00;
267 }
268 
269 
270 static inline bool
util_is_half_nan(int16_t x)271 util_is_half_nan(int16_t x)
272 {
273    return (x & 0x7fff) > 0x7c00;
274 }
275 
276 
277 static inline int
util_half_inf_sign(int16_t x)278 util_half_inf_sign(int16_t x)
279 {
280    if ((x & 0x7fff) != 0x7c00) {
281       return 0;
282    }
283 
284    return (x < 0) ? -1 : 1;
285 }
286 
287 
288 /**
289  * Return float bits.
290  */
291 static inline unsigned
fui(float f)292 fui( float f )
293 {
294    union fi fi;
295    fi.f = f;
296    return fi.ui;
297 }
298 
299 static inline uint64_t
dui(double f)300 dui( double f )
301 {
302    union di di;
303    di.d = f;
304    return di.ui;
305 }
306 
307 static inline float
uif(uint32_t ui)308 uif(uint32_t ui)
309 {
310    union fi fi;
311    fi.ui = ui;
312    return fi.f;
313 }
314 
315 static inline double
uid(uint64_t ui)316 uid(uint64_t ui)
317 {
318    union di di;
319    di.ui = ui;
320    return di.d;
321 }
322 
323 /**
324  * Convert uint8_t to float in [0, 1].
325  */
326 static inline float
ubyte_to_float(uint8_t ub)327 ubyte_to_float(uint8_t ub)
328 {
329    return (float) ub * (1.0f / 255.0f);
330 }
331 
332 
333 /**
334  * Convert float in [0,1] to uint8_t in [0,255] with clamping.
335  */
336 static inline uint8_t
float_to_ubyte(float f)337 float_to_ubyte(float f)
338 {
339    /* return 0 for NaN too */
340    if (!(f > 0.0f)) {
341       return (uint8_t) 0;
342    }
343    else if (f >= 1.0f) {
344       return (uint8_t) 255;
345    }
346    else {
347       union fi tmp;
348       tmp.f = f;
349       tmp.f = tmp.f * (255.0f/256.0f) + 32768.0f;
350       return (uint8_t) tmp.i;
351    }
352 }
353 
354 /**
355  * Convert uint16_t to float in [0, 1].
356  */
357 static inline float
ushort_to_float(uint16_t us)358 ushort_to_float(uint16_t us)
359 {
360    return (float) us * (1.0f / 65535.0f);
361 }
362 
363 
364 /**
365  * Convert float in [0,1] to uint16_t in [0,65535] with clamping.
366  */
367 static inline uint16_t
float_to_ushort(float f)368 float_to_ushort(float f)
369 {
370    /* return 0 for NaN too */
371    if (!(f > 0.0f)) {
372       return (uint16_t) 0;
373    }
374    else if (f >= 1.0f) {
375       return (uint16_t) 65535;
376    }
377    else {
378       union fi tmp;
379       tmp.f = f;
380       tmp.f = tmp.f * (65535.0f/65536.0f) + 128.0f;
381       return (uint16_t) tmp.i;
382    }
383 }
384 
385 static inline float
byte_to_float_tex(int8_t b)386 byte_to_float_tex(int8_t b)
387 {
388    return (b == -128) ? -1.0F : b * 1.0F / 127.0F;
389 }
390 
391 static inline int8_t
float_to_byte_tex(float f)392 float_to_byte_tex(float f)
393 {
394    return (int8_t) (127.0F * f);
395 }
396 
397 /**
398  * Calc log base 2
399  */
400 static inline unsigned
util_logbase2(unsigned n)401 util_logbase2(unsigned n)
402 {
403 #if defined(HAVE___BUILTIN_CLZ)
404    return ((sizeof(unsigned) * 8 - 1) - __builtin_clz(n | 1));
405 #else
406    unsigned pos = 0;
407    if (n >= 1<<16) { n >>= 16; pos += 16; }
408    if (n >= 1<< 8) { n >>=  8; pos +=  8; }
409    if (n >= 1<< 4) { n >>=  4; pos +=  4; }
410    if (n >= 1<< 2) { n >>=  2; pos +=  2; }
411    if (n >= 1<< 1) {           pos +=  1; }
412    return pos;
413 #endif
414 }
415 
416 static inline uint64_t
util_logbase2_64(uint64_t n)417 util_logbase2_64(uint64_t n)
418 {
419 #if defined(HAVE___BUILTIN_CLZLL)
420    return ((sizeof(uint64_t) * 8 - 1) - __builtin_clzll(n | 1));
421 #else
422    uint64_t pos = 0ull;
423    if (n >= 1ull<<32) { n >>= 32; pos += 32; }
424    if (n >= 1ull<<16) { n >>= 16; pos += 16; }
425    if (n >= 1ull<< 8) { n >>=  8; pos +=  8; }
426    if (n >= 1ull<< 4) { n >>=  4; pos +=  4; }
427    if (n >= 1ull<< 2) { n >>=  2; pos +=  2; }
428    if (n >= 1ull<< 1) {           pos +=  1; }
429    return pos;
430 #endif
431 }
432 
433 /**
434  * Returns the ceiling of log n base 2, and 0 when n == 0. Equivalently,
435  * returns the smallest x such that n <= 2**x.
436  */
437 static inline unsigned
util_logbase2_ceil(unsigned n)438 util_logbase2_ceil(unsigned n)
439 {
440    if (n <= 1)
441       return 0;
442 
443    return 1 + util_logbase2(n - 1);
444 }
445 
446 static inline uint64_t
util_logbase2_ceil64(uint64_t n)447 util_logbase2_ceil64(uint64_t n)
448 {
449    if (n <= 1)
450       return 0;
451 
452    return 1ull + util_logbase2_64(n - 1);
453 }
454 
455 /**
456  * Returns the smallest power of two >= x
457  */
458 static inline unsigned
util_next_power_of_two(unsigned x)459 util_next_power_of_two(unsigned x)
460 {
461 #if defined(HAVE___BUILTIN_CLZ)
462    if (x <= 1)
463        return 1;
464 
465    return (1 << ((sizeof(unsigned) * 8) - __builtin_clz(x - 1)));
466 #else
467    unsigned val = x;
468 
469    if (x <= 1)
470       return 1;
471 
472    if (util_is_power_of_two_or_zero(x))
473       return x;
474 
475    val--;
476    val = (val >> 1) | val;
477    val = (val >> 2) | val;
478    val = (val >> 4) | val;
479    val = (val >> 8) | val;
480    val = (val >> 16) | val;
481    val++;
482    return val;
483 #endif
484 }
485 
486 static inline uint64_t
util_next_power_of_two64(uint64_t x)487 util_next_power_of_two64(uint64_t x)
488 {
489 #if defined(HAVE___BUILTIN_CLZLL)
490    if (x <= 1)
491        return 1;
492 
493    return (1ull << ((sizeof(uint64_t) * 8) - __builtin_clzll(x - 1)));
494 #else
495    uint64_t val = x;
496 
497    if (x <= 1)
498       return 1;
499 
500    if (util_is_power_of_two_or_zero64(x))
501       return x;
502 
503    val--;
504    val = (val >> 1)  | val;
505    val = (val >> 2)  | val;
506    val = (val >> 4)  | val;
507    val = (val >> 8)  | val;
508    val = (val >> 16) | val;
509    val = (val >> 32) | val;
510    val++;
511    return val;
512 #endif
513 }
514 
515 /**
516  * Reverse bits in n
517  * Algorithm taken from:
518  * http://stackoverflow.com/questions/9144800/c-reverse-bits-in-unsigned-integer
519  */
520 static inline unsigned
util_bitreverse(unsigned n)521 util_bitreverse(unsigned n)
522 {
523     n = ((n >> 1) & 0x55555555u) | ((n & 0x55555555u) << 1);
524     n = ((n >> 2) & 0x33333333u) | ((n & 0x33333333u) << 2);
525     n = ((n >> 4) & 0x0f0f0f0fu) | ((n & 0x0f0f0f0fu) << 4);
526     n = ((n >> 8) & 0x00ff00ffu) | ((n & 0x00ff00ffu) << 8);
527     n = ((n >> 16) & 0xffffu) | ((n & 0xffffu) << 16);
528     return n;
529 }
530 
531 /**
532  * Convert from little endian to CPU byte order.
533  */
534 
535 #if UTIL_ARCH_BIG_ENDIAN
536 #define util_le64_to_cpu(x) util_bswap64(x)
537 #define util_le32_to_cpu(x) util_bswap32(x)
538 #define util_le16_to_cpu(x) util_bswap16(x)
539 #else
540 #define util_le64_to_cpu(x) (x)
541 #define util_le32_to_cpu(x) (x)
542 #define util_le16_to_cpu(x) (x)
543 #endif
544 
545 #define util_cpu_to_le64(x) util_le64_to_cpu(x)
546 #define util_cpu_to_le32(x) util_le32_to_cpu(x)
547 #define util_cpu_to_le16(x) util_le16_to_cpu(x)
548 
549 /**
550  * Reverse byte order of a 32 bit word.
551  */
552 static inline uint32_t
util_bswap32(uint32_t n)553 util_bswap32(uint32_t n)
554 {
555 #if defined(HAVE___BUILTIN_BSWAP32)
556    return __builtin_bswap32(n);
557 #else
558    return (n >> 24) |
559           ((n >> 8) & 0x0000ff00) |
560           ((n << 8) & 0x00ff0000) |
561           (n << 24);
562 #endif
563 }
564 
565 /**
566  * Reverse byte order of a 64bit word.
567  */
568 static inline uint64_t
util_bswap64(uint64_t n)569 util_bswap64(uint64_t n)
570 {
571 #if defined(HAVE___BUILTIN_BSWAP64)
572    return __builtin_bswap64(n);
573 #else
574    return ((uint64_t)util_bswap32((uint32_t)n) << 32) |
575           util_bswap32((n >> 32));
576 #endif
577 }
578 
579 
580 /**
581  * Reverse byte order of a 16 bit word.
582  */
583 static inline uint16_t
util_bswap16(uint16_t n)584 util_bswap16(uint16_t n)
585 {
586    return (n >> 8) |
587           (n << 8);
588 }
589 
590 /**
591  * Mask and sign-extend a number
592  *
593  * The bit at position `width - 1` is replicated to all the higher bits.
594  * This makes no assumptions about the high bits of the value and will
595  * overwrite them with the sign bit.
596  */
597 static inline int64_t
util_mask_sign_extend(uint64_t val,unsigned width)598 util_mask_sign_extend(uint64_t val, unsigned width)
599 {
600    assert(width > 0 && width <= 64);
601    unsigned shift = 64 - width;
602    return (int64_t)(val << shift) >> shift;
603 }
604 
605 /**
606  * Sign-extend a number
607  *
608  * The bit at position `width - 1` is replicated to all the higher bits.
609  * This assumes and asserts that the value fits into `width` bits.
610  */
611 static inline int64_t
util_sign_extend(uint64_t val,unsigned width)612 util_sign_extend(uint64_t val, unsigned width)
613 {
614    assert(width == 64 || val < (UINT64_C(1) << width));
615    return util_mask_sign_extend(val, width);
616 }
617 
618 static inline void*
util_memcpy_cpu_to_le32(void * restrict dest,const void * restrict src,size_t n)619 util_memcpy_cpu_to_le32(void * restrict dest, const void * restrict src, size_t n)
620 {
621 #if UTIL_ARCH_BIG_ENDIAN
622    size_t i, e;
623    assert(n % 4 == 0);
624 
625    for (i = 0, e = n / 4; i < e; i++) {
626       uint32_t * restrict d = (uint32_t* restrict)dest;
627       const uint32_t * restrict s = (const uint32_t* restrict)src;
628       d[i] = util_bswap32(s[i]);
629    }
630    return dest;
631 #else
632    return memcpy(dest, src, n);
633 #endif
634 }
635 
636 /**
637  * Align a value up to an alignment value
638  *
639  * If \c value is not already aligned to the requested alignment value, it
640  * will be rounded up.
641  *
642  * \param value  Value to be rounded
643  * \param alignment  Alignment value to be used.  This must be a power of two.
644  *
645  * \sa ROUND_DOWN_TO()
646  */
647 
648 #if defined(ALIGN)
649 #undef ALIGN
650 #endif
651 static inline uint32_t
ALIGN(uint32_t value,uint32_t alignment)652 ALIGN(uint32_t value, uint32_t alignment)
653 {
654    assert(util_is_power_of_two_nonzero(alignment));
655    return ALIGN_POT(value, alignment);
656 }
657 
658 /**
659  * Like ALIGN(), but works with a non-power-of-two alignment.
660  */
661 static inline uintptr_t
ALIGN_NPOT(uintptr_t value,int32_t alignment)662 ALIGN_NPOT(uintptr_t value, int32_t alignment)
663 {
664    assert(alignment > 0);
665    return (value + alignment - 1) / alignment * alignment;
666 }
667 
668 /**
669  * Align a value down to an alignment value
670  *
671  * If \c value is not already aligned to the requested alignment value, it
672  * will be rounded down.
673  *
674  * \param value  Value to be rounded
675  * \param alignment  Alignment value to be used.  This must be a power of two.
676  *
677  * \sa ALIGN()
678  */
679 static inline uint64_t
ROUND_DOWN_TO(uint64_t value,uint32_t alignment)680 ROUND_DOWN_TO(uint64_t value, uint32_t alignment)
681 {
682    assert(util_is_power_of_two_nonzero(alignment));
683    return ((value) & ~(uint64_t)(alignment - 1));
684 }
685 
686 /**
687  * Align a value, only works pot alignemnts.
688  */
689 static inline uint32_t
align(uint32_t value,uint32_t alignment)690 align(uint32_t value, uint32_t alignment)
691 {
692    assert(util_is_power_of_two_nonzero(alignment));
693    return ALIGN_POT(value, alignment);
694 }
695 
696 static inline uint64_t
align64(uint64_t value,uint64_t alignment)697 align64(uint64_t value, uint64_t alignment)
698 {
699    assert(util_is_power_of_two_nonzero64(alignment));
700    return ALIGN_POT(value, alignment);
701 }
702 
703 /**
704  * Align a value(uintptr_t, intptr_t, ptrdiff_t), only works pot alignemnts.
705  */
706 static inline uintptr_t
align_uintptr(uintptr_t value,uintptr_t alignment)707 align_uintptr(uintptr_t value, uintptr_t alignment)
708 {
709    assert(util_is_power_of_two_nonzero_uintptr(alignment));
710    return ALIGN_POT(value, alignment);
711 }
712 
713 /**
714  * Works like align but on npot alignments.
715  */
716 static inline size_t
util_align_npot(size_t value,size_t alignment)717 util_align_npot(size_t value, size_t alignment)
718 {
719    if (value % alignment)
720       return value + (alignment - (value % alignment));
721    return value;
722 }
723 
724 static inline unsigned
u_minify(unsigned value,unsigned levels)725 u_minify(unsigned value, unsigned levels)
726 {
727     return MAX2(1, value >> levels);
728 }
729 
730 #ifndef COPY_4V
731 #define COPY_4V( DST, SRC )         \
732 do {                                \
733    (DST)[0] = (SRC)[0];             \
734    (DST)[1] = (SRC)[1];             \
735    (DST)[2] = (SRC)[2];             \
736    (DST)[3] = (SRC)[3];             \
737 } while (0)
738 #endif
739 
740 
741 #ifndef COPY_4FV
742 #define COPY_4FV( DST, SRC )  COPY_4V(DST, SRC)
743 #endif
744 
745 
746 #ifndef ASSIGN_4V
747 #define ASSIGN_4V( DST, V0, V1, V2, V3 ) \
748 do {                                     \
749    (DST)[0] = (V0);                      \
750    (DST)[1] = (V1);                      \
751    (DST)[2] = (V2);                      \
752    (DST)[3] = (V3);                      \
753 } while (0)
754 #endif
755 
756 
757 static inline uint32_t
util_unsigned_fixed(float value,unsigned frac_bits)758 util_unsigned_fixed(float value, unsigned frac_bits)
759 {
760    return value < 0 ? 0 : (uint32_t)(value * (1<<frac_bits));
761 }
762 
763 static inline int32_t
util_signed_fixed(float value,unsigned frac_bits)764 util_signed_fixed(float value, unsigned frac_bits)
765 {
766    return (int32_t)(value * (1<<frac_bits));
767 }
768 
769 unsigned
770 util_fpstate_get(void);
771 unsigned
772 util_fpstate_set_denorms_to_zero(unsigned current_fpstate);
773 void
774 util_fpstate_set(unsigned fpstate);
775 
776 /**
777  * For indexed draw calls, return true if the vertex count to be drawn is
778  * much lower than the vertex count that has to be uploaded, meaning
779  * that the driver should flatten indices instead of trying to upload
780  * a too big range.
781  *
782  * This is used by vertex upload code in u_vbuf and glthread.
783  */
784 static inline bool
util_is_vbo_upload_ratio_too_large(unsigned draw_vertex_count,unsigned upload_vertex_count)785 util_is_vbo_upload_ratio_too_large(unsigned draw_vertex_count,
786                                    unsigned upload_vertex_count)
787 {
788    if (upload_vertex_count > 256)
789       return upload_vertex_count > draw_vertex_count * 4;
790    else if (upload_vertex_count > 64)
791       return upload_vertex_count > draw_vertex_count * 8;
792    else
793       return upload_vertex_count > draw_vertex_count * 16;
794 }
795 
796 bool util_invert_mat4x4(float *out, const float *m);
797 
798 /* Quantize the lod bias value to reduce the number of sampler state
799  * variants in gallium because apps use it for smooth mipmap transitions,
800  * thrashing cso_cache and degrading performance.
801  *
802  * This quantization matches the AMD hw specification, so having more
803  * precision would have no effect anyway.
804  */
805 static inline float
util_quantize_lod_bias(float lod)806 util_quantize_lod_bias(float lod)
807 {
808    lod = CLAMP(lod, -32, 31);
809    return roundf(lod * 256) / 256;
810 }
811 
812 /**
813  * Adds two unsigned integers and if the addition
814  * overflows then clamp it to ~0U.
815  */
816 static inline unsigned
util_clamped_uadd(unsigned a,unsigned b)817 util_clamped_uadd(unsigned a, unsigned b)
818 {
819    unsigned res = a + b;
820    if (res < a) {
821       res = ~0U;
822    }
823    return res;
824 }
825 
826 /**
827  * Checks the value 'n' is aligned to 'a'.
828  * The alignment must be a power of two.
829  */
830 static inline bool
util_is_aligned(uintmax_t n,uintmax_t a)831 util_is_aligned(uintmax_t n, uintmax_t a)
832 {
833    assert(a == (a & -a));
834    return (n & (a - 1)) == 0;
835 }
836 
837 static inline bool
util_is_sint16(int x)838 util_is_sint16(int x)
839 {
840    return x >= INT16_MIN && x <= INT16_MAX;
841 }
842 
843 #ifdef __cplusplus
844 }
845 #endif
846 
847 #endif /* U_MATH_H */
848