xref: /aosp_15_r20/external/mesa3d/src/panfrost/compiler/compiler.h (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /*
2  * Copyright (C) 2020 Collabora Ltd.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors (Collabora):
24  *      Alyssa Rosenzweig <[email protected]>
25  */
26 
27 #ifndef __BIFROST_COMPILER_H
28 #define __BIFROST_COMPILER_H
29 
30 #include "compiler/nir/nir.h"
31 #include "panfrost/util/pan_ir.h"
32 #include "util/half_float.h"
33 #include "util/u_math.h"
34 #include "util/u_worklist.h"
35 #include "bi_opcodes.h"
36 #include "bifrost.h"
37 
38 #ifdef __cplusplus
39 extern "C" {
40 #endif
41 
42 /* Swizzles across bytes in a 32-bit word. Expresses swz in the XML directly.
43  * To express widen, use the correpsonding replicated form, i.e. H01 = identity
44  * for widen = none, H00 for widen = h0, B1111 for widen = b1. For lane, also
45  * use the replicated form (interpretation is governed by the opcode). For
46  * 8-bit lanes with two channels, use replicated forms for replicated forms
47  * (TODO: what about others?). For 8-bit lanes with four channels using
48  * matching form (TODO: what about others?).
49  */
50 
51 enum bi_swizzle {
52    /* 16-bit swizzle ordering deliberate for fast compute */
53    BI_SWIZZLE_H00 = 0, /* = B0101 */
54    BI_SWIZZLE_H01 = 1, /* = B0123 = W0 */
55    BI_SWIZZLE_H10 = 2, /* = B2301 */
56    BI_SWIZZLE_H11 = 3, /* = B2323 */
57 
58    /* replication order should be maintained for fast compute */
59    BI_SWIZZLE_B0000 = 4, /* single channel (replicate) */
60    BI_SWIZZLE_B1111 = 5,
61    BI_SWIZZLE_B2222 = 6,
62    BI_SWIZZLE_B3333 = 7,
63 
64    /* totally special for explicit pattern matching */
65    BI_SWIZZLE_B0011 = 8,  /* +SWZ.v4i8 */
66    BI_SWIZZLE_B2233 = 9,  /* +SWZ.v4i8 */
67    BI_SWIZZLE_B1032 = 10, /* +SWZ.v4i8 */
68    BI_SWIZZLE_B3210 = 11, /* +SWZ.v4i8 */
69 
70    BI_SWIZZLE_B0022 = 12, /* for b02 lanes */
71 };
72 
73 /* Given a packed i16vec2/i8vec4 constant, apply a swizzle. Useful for constant
74  * folding and Valhall constant optimization. */
75 
76 static inline uint32_t
bi_apply_swizzle(uint32_t value,enum bi_swizzle swz)77 bi_apply_swizzle(uint32_t value, enum bi_swizzle swz)
78 {
79    const uint16_t *h = (const uint16_t *)&value;
80    const uint8_t *b = (const uint8_t *)&value;
81 
82 #define H(h0, h1) (h[h0] | ((uint32_t)h[h1] << 16))
83 #define B(b0, b1, b2, b3)                                                      \
84    (b[b0] | ((uint32_t)b[b1] << 8) | ((uint32_t)b[b2] << 16) |                 \
85     ((uint32_t)b[b3] << 24))
86 
87    switch (swz) {
88    case BI_SWIZZLE_H00:
89       return H(0, 0);
90    case BI_SWIZZLE_H01:
91       return H(0, 1);
92    case BI_SWIZZLE_H10:
93       return H(1, 0);
94    case BI_SWIZZLE_H11:
95       return H(1, 1);
96    case BI_SWIZZLE_B0000:
97       return B(0, 0, 0, 0);
98    case BI_SWIZZLE_B1111:
99       return B(1, 1, 1, 1);
100    case BI_SWIZZLE_B2222:
101       return B(2, 2, 2, 2);
102    case BI_SWIZZLE_B3333:
103       return B(3, 3, 3, 3);
104    case BI_SWIZZLE_B0011:
105       return B(0, 0, 1, 1);
106    case BI_SWIZZLE_B2233:
107       return B(2, 2, 3, 3);
108    case BI_SWIZZLE_B1032:
109       return B(1, 0, 3, 2);
110    case BI_SWIZZLE_B3210:
111       return B(3, 2, 1, 0);
112    case BI_SWIZZLE_B0022:
113       return B(0, 0, 2, 2);
114    }
115 
116 #undef H
117 #undef B
118 
119    unreachable("Invalid swizzle");
120 }
121 
122 enum bi_index_type {
123    BI_INDEX_NULL = 0,
124    BI_INDEX_NORMAL = 1,
125    BI_INDEX_REGISTER = 2,
126    BI_INDEX_CONSTANT = 3,
127    BI_INDEX_PASS = 4,
128    BI_INDEX_FAU = 5
129 };
130 
131 typedef struct {
132    uint32_t value;
133 
134    /* modifiers, should only be set if applicable for a given instruction.
135     * For *IDP.v4i8, abs plays the role of sign. For bitwise ops where
136     * applicable, neg plays the role of not */
137    bool abs : 1;
138    bool neg : 1;
139 
140    /* The last use of a value, should be purged from the register cache.
141     * Set by liveness analysis. */
142    bool discard : 1;
143 
144    /* For a source, the swizzle. For a destination, acts a bit like a
145     * write mask. Identity for the full 32-bit, H00 for only caring about
146     * the lower half, other values unused. */
147    enum bi_swizzle swizzle : 4;
148    uint32_t offset         : 3;
149    enum bi_index_type type : 3;
150 
151    /* Must be zeroed so we can hash the whole 64-bits at a time */
152    unsigned padding : (32 - 13);
153 } bi_index;
154 
155 static inline bi_index
bi_get_index(unsigned value)156 bi_get_index(unsigned value)
157 {
158    return (bi_index){
159       .value = value,
160       .swizzle = BI_SWIZZLE_H01,
161       .type = BI_INDEX_NORMAL,
162    };
163 }
164 
165 static inline bi_index
bi_register(unsigned reg)166 bi_register(unsigned reg)
167 {
168    assert(reg < 64);
169 
170    return (bi_index){
171       .value = reg,
172       .swizzle = BI_SWIZZLE_H01,
173       .type = BI_INDEX_REGISTER,
174    };
175 }
176 
177 static inline bi_index
bi_imm_u32(uint32_t imm)178 bi_imm_u32(uint32_t imm)
179 {
180    return (bi_index){
181       .value = imm,
182       .swizzle = BI_SWIZZLE_H01,
183       .type = BI_INDEX_CONSTANT,
184    };
185 }
186 
187 static inline bi_index
bi_imm_f32(float imm)188 bi_imm_f32(float imm)
189 {
190    return bi_imm_u32(fui(imm));
191 }
192 
193 static inline bi_index
bi_null()194 bi_null()
195 {
196    return (bi_index){.type = BI_INDEX_NULL};
197 }
198 
199 static inline bi_index
bi_zero()200 bi_zero()
201 {
202    return bi_imm_u32(0);
203 }
204 
205 static inline bi_index
bi_passthrough(enum bifrost_packed_src value)206 bi_passthrough(enum bifrost_packed_src value)
207 {
208    return (bi_index){
209       .value = value,
210       .swizzle = BI_SWIZZLE_H01,
211       .type = BI_INDEX_PASS,
212    };
213 }
214 
215 /* Helps construct swizzles */
216 static inline bi_index
bi_swz_16(bi_index idx,bool x,bool y)217 bi_swz_16(bi_index idx, bool x, bool y)
218 {
219    assert(idx.swizzle == BI_SWIZZLE_H01);
220    idx.swizzle = (enum bi_swizzle)(BI_SWIZZLE_H00 | (x << 1) | y);
221    return idx;
222 }
223 
224 static inline bi_index
bi_half(bi_index idx,bool upper)225 bi_half(bi_index idx, bool upper)
226 {
227    return bi_swz_16(idx, upper, upper);
228 }
229 
230 static inline bi_index
bi_byte(bi_index idx,unsigned lane)231 bi_byte(bi_index idx, unsigned lane)
232 {
233    assert(idx.swizzle == BI_SWIZZLE_H01);
234    assert(lane < 4);
235    idx.swizzle = (enum bi_swizzle)(BI_SWIZZLE_B0000 + lane);
236    return idx;
237 }
238 
239 static inline bi_index
bi_abs(bi_index idx)240 bi_abs(bi_index idx)
241 {
242    idx.abs = true;
243    return idx;
244 }
245 
246 static inline bi_index
bi_neg(bi_index idx)247 bi_neg(bi_index idx)
248 {
249    idx.neg ^= true;
250    return idx;
251 }
252 
253 static inline bi_index
bi_discard(bi_index idx)254 bi_discard(bi_index idx)
255 {
256    idx.discard = true;
257    return idx;
258 }
259 
260 /* Additive identity in IEEE 754 arithmetic */
261 static inline bi_index
bi_negzero()262 bi_negzero()
263 {
264    return bi_neg(bi_zero());
265 }
266 
267 /* Replaces an index, preserving any modifiers */
268 
269 static inline bi_index
bi_replace_index(bi_index old,bi_index replacement)270 bi_replace_index(bi_index old, bi_index replacement)
271 {
272    replacement.abs = old.abs;
273    replacement.neg = old.neg;
274    replacement.swizzle = old.swizzle;
275    replacement.discard = false; /* needs liveness analysis to set */
276    return replacement;
277 }
278 
279 /* Remove any modifiers. This has the property:
280  *
281  *     replace_index(x, strip_index(x)) = x
282  *
283  * This ensures it is suitable to use when lowering sources to moves */
284 
285 static inline bi_index
bi_strip_index(bi_index index)286 bi_strip_index(bi_index index)
287 {
288    index.abs = index.neg = false;
289    index.swizzle = BI_SWIZZLE_H01;
290    return index;
291 }
292 
293 /* For bitwise instructions */
294 #define bi_not(x) bi_neg(x)
295 
296 static inline bi_index
bi_imm_u8(uint8_t imm)297 bi_imm_u8(uint8_t imm)
298 {
299    return bi_byte(bi_imm_u32(imm), 0);
300 }
301 
302 static inline bi_index
bi_imm_u16(uint16_t imm)303 bi_imm_u16(uint16_t imm)
304 {
305    return bi_half(bi_imm_u32(imm), false);
306 }
307 
308 static inline bi_index
bi_imm_uintN(uint32_t imm,unsigned sz)309 bi_imm_uintN(uint32_t imm, unsigned sz)
310 {
311    assert(sz == 8 || sz == 16 || sz == 32);
312    return (sz == 8)    ? bi_imm_u8(imm)
313           : (sz == 16) ? bi_imm_u16(imm)
314                        : bi_imm_u32(imm);
315 }
316 
317 static inline bi_index
bi_imm_f16(float imm)318 bi_imm_f16(float imm)
319 {
320    return bi_imm_u16(_mesa_float_to_half(imm));
321 }
322 
323 static inline bool
bi_is_null(bi_index idx)324 bi_is_null(bi_index idx)
325 {
326    return idx.type == BI_INDEX_NULL;
327 }
328 
329 static inline bool
bi_is_ssa(bi_index idx)330 bi_is_ssa(bi_index idx)
331 {
332    return idx.type == BI_INDEX_NORMAL;
333 }
334 
335 /* Compares equivalence as references. Does not compare offsets, swizzles, or
336  * modifiers. In other words, this forms bi_index equivalence classes by
337  * partitioning memory. E.g. -abs(foo[1].yx) == foo.xy but foo != bar */
338 
339 static inline bool
bi_is_equiv(bi_index left,bi_index right)340 bi_is_equiv(bi_index left, bi_index right)
341 {
342    return (left.type == right.type) && (left.value == right.value);
343 }
344 
345 /* A stronger equivalence relation that requires the indices access the
346  * same offset, useful for RA/scheduling to see what registers will
347  * correspond to */
348 
349 static inline bool
bi_is_word_equiv(bi_index left,bi_index right)350 bi_is_word_equiv(bi_index left, bi_index right)
351 {
352    return bi_is_equiv(left, right) && left.offset == right.offset;
353 }
354 
355 /* An even stronger equivalence that checks if indices correspond to the
356  * right value when evaluated
357  */
358 static inline bool
bi_is_value_equiv(bi_index left,bi_index right)359 bi_is_value_equiv(bi_index left, bi_index right)
360 {
361    if (left.type == BI_INDEX_CONSTANT && right.type == BI_INDEX_CONSTANT) {
362       return (bi_apply_swizzle(left.value, left.swizzle) ==
363               bi_apply_swizzle(right.value, right.swizzle)) &&
364              (left.abs == right.abs) && (left.neg == right.neg);
365    } else {
366       return (left.value == right.value) && (left.abs == right.abs) &&
367              (left.neg == right.neg) && (left.swizzle == right.swizzle) &&
368              (left.offset == right.offset) && (left.type == right.type);
369    }
370 }
371 
372 #define BI_MAX_VEC   8
373 #define BI_MAX_DESTS 4
374 #define BI_MAX_SRCS  6
375 
376 typedef struct {
377    /* Must be first */
378    struct list_head link;
379    bi_index *dest;
380    bi_index *src;
381 
382    enum bi_opcode op;
383    uint8_t nr_srcs;
384    uint8_t nr_dests;
385 
386    union {
387       /* For a branch */
388       struct bi_block *branch_target;
389 
390       /* For a phi node that hasn't been translated yet. This is only
391        * used during NIR->BIR
392        */
393       nir_phi_instr *phi;
394    };
395 
396    /* These don't fit neatly with anything else.. */
397    enum bi_register_format register_format;
398    enum bi_vecsize vecsize;
399 
400    /* Flow control associated with a Valhall instruction */
401    uint8_t flow;
402 
403    /* Slot associated with a message-passing instruction */
404    uint8_t slot;
405 
406    /* Can we spill the value written here? Used to prevent
407     * useless double fills */
408    bool no_spill;
409 
410    /* On Bifrost: A value of bi_table to override the table, inducing a
411     * DTSEL_IMM pair if nonzero.
412     *
413     * On Valhall: the table index to use for resource instructions.
414     *
415     * These two interpretations are equivalent if you squint a bit.
416     */
417    unsigned table;
418 
419    /* Everything after this MUST NOT be accessed directly, since
420     * interpretation depends on opcodes */
421 
422    /* Destination modifiers */
423    union {
424       enum bi_clamp clamp;
425       bool saturate;
426       bool not_result;
427       unsigned dest_mod;
428    };
429 
430    /* Immediates. All seen alone in an instruction, except for varying/texture
431     * which are specified jointly for VARTEX */
432    union {
433       uint32_t shift;
434       uint32_t fill;
435       uint32_t index;
436       uint32_t attribute_index;
437 
438       struct {
439          uint32_t varying_index;
440          uint32_t sampler_index;
441          uint32_t texture_index;
442       };
443 
444       /* TEXC, ATOM_CX: # of staging registers used */
445       struct {
446          uint32_t sr_count;
447          uint32_t sr_count_2;
448 
449          union {
450             /* Atomics effectively require all three */
451             int32_t byte_offset;
452 
453             /* BLEND requires all three */
454             int32_t branch_offset;
455          };
456       };
457    };
458 
459    /* Modifiers specific to particular instructions are thrown in a union */
460    union {
461       enum bi_adj adj;           /* FEXP_TABLE.u4 */
462       enum bi_atom_opc atom_opc; /* atomics */
463       enum bi_func func;         /* FPOW_SC_DET */
464       enum bi_function function; /* LD_VAR_FLAT */
465       enum bi_mux mux;           /* MUX */
466       enum bi_sem sem;           /* FMAX, FMIN */
467       enum bi_source source;     /* LD_GCLK */
468       bool scale;                /* VN_ASST2, FSINCOS_OFFSET */
469       bool offset;               /* FSIN_TABLE, FOCS_TABLE */
470       bool mask;                 /* CLZ */
471       bool threads;              /* IMULD, IMOV_FMA */
472       bool combine;              /* BRANCHC */
473       bool format;               /* LEA_TEX */
474 
475       struct {
476          enum bi_special special; /* FADD_RSCALE, FMA_RSCALE */
477          enum bi_round round;     /* FMA, converts, FADD, _RSCALE, etc */
478          bool ftz;                /* Flush-to-zero for F16_TO_F32 */
479       };
480 
481       struct {
482          enum bi_result_type result_type; /* FCMP, ICMP */
483          enum bi_cmpf cmpf;               /* CSEL, FCMP, ICMP, BRANCH */
484       };
485 
486       struct {
487          enum bi_stack_mode stack_mode; /* JUMP_EX */
488          bool test_mode;
489       };
490 
491       struct {
492          enum bi_seg seg;       /* LOAD, STORE, SEG_ADD, SEG_SUB */
493          bool preserve_null;    /* SEG_ADD, SEG_SUB */
494          enum bi_extend extend; /* LOAD, IMUL */
495       };
496 
497       struct {
498          enum bi_sample sample;             /* VAR_TEX, LD_VAR */
499          enum bi_update update;             /* VAR_TEX, LD_VAR */
500          enum bi_varying_name varying_name; /* LD_VAR_SPECIAL */
501          bool skip;                         /* VAR_TEX, TEXS, TEXC */
502          bool lod_mode; /* VAR_TEX, TEXS, implicitly for TEXC */
503          enum bi_source_format source_format; /* LD_VAR_BUF */
504 
505          /* Used for valhall texturing */
506          bool shadow;
507          bool wide_indices;
508          bool texel_offset;
509          bool array_enable;
510          bool integer_coordinates;
511          enum bi_fetch_component fetch_component;
512          enum bi_va_lod_mode va_lod_mode;
513          enum bi_dimension dimension;
514          enum bi_write_mask write_mask;
515       };
516 
517       /* Maximum size, for hashing */
518       unsigned flags[14];
519 
520       struct {
521          enum bi_subgroup subgroup;               /* WMASK, CLPER */
522          enum bi_inactive_result inactive_result; /* CLPER */
523          enum bi_lane_op lane_op;                 /* CLPER */
524       };
525 
526       struct {
527          bool z;       /* ZS_EMIT */
528          bool stencil; /* ZS_EMIT */
529       };
530 
531       struct {
532          bool h; /* VN_ASST1.f16 */
533          bool l; /* VN_ASST1.f16 */
534       };
535 
536       struct {
537          bool bytes2; /* RROT_DOUBLE, FRSHIFT_DOUBLE */
538          bool result_word;
539          bool arithmetic; /* ARSHIFT_OR */
540       };
541 
542       struct {
543          bool sqrt; /* FREXPM */
544          bool log;  /* FREXPM */
545       };
546 
547       struct {
548          enum bi_mode mode;           /* FLOG_TABLE */
549          enum bi_precision precision; /* FLOG_TABLE */
550          bool divzero;                /* FRSQ_APPROX, FRSQ */
551       };
552    };
553 } bi_instr;
554 
555 static inline bool
bi_is_staging_src(const bi_instr * I,unsigned s)556 bi_is_staging_src(const bi_instr *I, unsigned s)
557 {
558    return (s == 0 || s == 4) && bi_opcode_props[I->op].sr_read;
559 }
560 
561 /*
562  * Safe helpers to remove destinations/sources at the end of the
563  * destination/source array when changing opcodes. Unlike adding
564  * sources/destinations, this does not require reallocation.
565  */
566 static inline void
bi_drop_dests(bi_instr * I,unsigned new_count)567 bi_drop_dests(bi_instr *I, unsigned new_count)
568 {
569    assert(new_count < I->nr_dests);
570 
571    for (unsigned i = new_count; i < I->nr_dests; ++i)
572       I->dest[i] = bi_null();
573 
574    I->nr_dests = new_count;
575 }
576 
577 static inline void
bi_drop_srcs(bi_instr * I,unsigned new_count)578 bi_drop_srcs(bi_instr *I, unsigned new_count)
579 {
580    assert(new_count < I->nr_srcs);
581 
582    for (unsigned i = new_count; i < I->nr_srcs; ++i)
583       I->src[i] = bi_null();
584 
585    I->nr_srcs = new_count;
586 }
587 
588 static inline void
bi_replace_src(bi_instr * I,unsigned src_index,bi_index replacement)589 bi_replace_src(bi_instr *I, unsigned src_index, bi_index replacement)
590 {
591    I->src[src_index] = bi_replace_index(I->src[src_index], replacement);
592 }
593 
594 /* Represents the assignment of slots for a given bi_tuple */
595 
596 typedef struct {
597    /* Register to assign to each slot */
598    unsigned slot[4];
599 
600    /* Read slots can be disabled */
601    bool enabled[2];
602 
603    /* Configuration for slots 2/3 */
604    struct bifrost_reg_ctrl_23 slot23;
605 
606    /* Fast-Access-Uniform RAM index */
607    uint8_t fau_idx;
608 
609    /* Whether writes are actually for the last instruction */
610    bool first_instruction;
611 } bi_registers;
612 
613 /* A bi_tuple contains two paired instruction pointers. If a slot is unfilled,
614  * leave it NULL; the emitter will fill in a nop. Instructions reference
615  * registers via slots which are assigned per tuple.
616  */
617 
618 typedef struct {
619    uint8_t fau_idx;
620    bi_registers regs;
621    bi_instr *fma;
622    bi_instr *add;
623 } bi_tuple;
624 
625 struct bi_block;
626 
627 typedef struct {
628    struct list_head link;
629 
630    /* Link back up for branch calculations */
631    struct bi_block *block;
632 
633    /* Architectural limit of 8 tuples/clause */
634    unsigned tuple_count;
635    bi_tuple tuples[8];
636 
637    /* For scoreboarding -- the clause ID (this is not globally unique!)
638     * and its dependencies in terms of other clauses, computed during
639     * scheduling and used when emitting code. Dependencies expressed as a
640     * bitfield matching the hardware, except shifted by a clause (the
641     * shift back to the ISA's off-by-one encoding is worked out when
642     * emitting clauses) */
643    unsigned scoreboard_id;
644    uint8_t dependencies;
645 
646    /* See ISA header for description */
647    enum bifrost_flow flow_control;
648 
649    /* Can we prefetch the next clause? Usually it makes sense, except for
650     * clauses ending in unconditional branches */
651    bool next_clause_prefetch;
652 
653    /* Assigned data register */
654    unsigned staging_register;
655 
656    /* Corresponds to the usual bit but shifted by a clause */
657    bool staging_barrier;
658 
659    /* Constants read by this clause. ISA limit. Must satisfy:
660     *
661     *      constant_count + tuple_count <= 13
662     *
663     * Also implicitly constant_count <= tuple_count since a tuple only
664     * reads a single constant.
665     */
666    uint64_t constants[8];
667    unsigned constant_count;
668 
669    /* Index of a constant to be PC-relative */
670    unsigned pcrel_idx;
671 
672    /* Branches encode a constant offset relative to the program counter
673     * with some magic flags. By convention, if there is a branch, its
674     * constant will be last. Set this flag to indicate this is required.
675     */
676    bool branch_constant;
677 
678    /* Unique in a clause */
679    enum bifrost_message_type message_type;
680    bi_instr *message;
681 
682    /* Discard helper threads */
683    bool td;
684 
685    /* Should flush-to-zero mode be enabled for this clause? */
686    bool ftz;
687 } bi_clause;
688 
689 #define BI_NUM_SLOTS 8
690 
691 /* A model for the state of the scoreboard */
692 struct bi_scoreboard_state {
693    /** Bitmap of registers read/written by a slot */
694    uint64_t read[BI_NUM_SLOTS];
695    uint64_t write[BI_NUM_SLOTS];
696 
697    /* Nonregister dependencies present by a slot */
698    uint8_t varying : BI_NUM_SLOTS;
699    uint8_t memory : BI_NUM_SLOTS;
700 };
701 
702 typedef struct bi_block {
703    /* Link to next block. Must be first for mir_get_block */
704    struct list_head link;
705 
706    /* List of instructions emitted for the current block */
707    struct list_head instructions;
708 
709    /* Index of the block in source order */
710    unsigned index;
711 
712    /* Control flow graph */
713    struct bi_block *successors[2];
714    struct util_dynarray predecessors;
715    bool unconditional_jumps;
716    bool loop_header;
717 
718    /* Per 32-bit word live masks for the block indexed by node */
719    uint8_t *live_in;
720    uint8_t *live_out;
721 
722    /* Scalar liveness indexed by SSA index */
723    BITSET_WORD *ssa_live_in;
724    BITSET_WORD *ssa_live_out;
725 
726    /* If true, uses clauses; if false, uses instructions */
727    bool scheduled;
728    struct list_head clauses; /* list of bi_clause */
729 
730    /* Post-RA liveness */
731    uint64_t reg_live_in, reg_live_out;
732 
733    /* Scoreboard state at the start/end of block */
734    struct bi_scoreboard_state scoreboard_in, scoreboard_out;
735 
736    /* On Valhall, indicates we need a terminal NOP to implement jumps to
737     * the end of the shader.
738     */
739    bool needs_nop;
740 
741    /* Flags available for pass-internal use */
742    uint8_t pass_flags;
743 } bi_block;
744 
745 static inline unsigned
bi_num_successors(bi_block * block)746 bi_num_successors(bi_block *block)
747 {
748    STATIC_ASSERT(ARRAY_SIZE(block->successors) == 2);
749    assert(block->successors[0] || !block->successors[1]);
750 
751    if (block->successors[1])
752       return 2;
753    else if (block->successors[0])
754       return 1;
755    else
756       return 0;
757 }
758 
759 static inline unsigned
bi_num_predecessors(bi_block * block)760 bi_num_predecessors(bi_block *block)
761 {
762    return util_dynarray_num_elements(&block->predecessors, bi_block *);
763 }
764 
765 static inline bi_block *
bi_start_block(struct list_head * blocks)766 bi_start_block(struct list_head *blocks)
767 {
768    bi_block *first = list_first_entry(blocks, bi_block, link);
769    assert(bi_num_predecessors(first) == 0);
770    return first;
771 }
772 
773 static inline bi_block *
bi_exit_block(struct list_head * blocks)774 bi_exit_block(struct list_head *blocks)
775 {
776    bi_block *last = list_last_entry(blocks, bi_block, link);
777    assert(bi_num_successors(last) == 0);
778    return last;
779 }
780 
781 static inline void
bi_block_add_successor(bi_block * block,bi_block * successor)782 bi_block_add_successor(bi_block *block, bi_block *successor)
783 {
784    assert(block != NULL && successor != NULL);
785 
786    /* Cull impossible edges */
787    if (block->unconditional_jumps)
788       return;
789 
790    for (unsigned i = 0; i < ARRAY_SIZE(block->successors); ++i) {
791       if (block->successors[i]) {
792          if (block->successors[i] == successor)
793             return;
794          else
795             continue;
796       }
797 
798       block->successors[i] = successor;
799       util_dynarray_append(&successor->predecessors, bi_block *, block);
800       return;
801    }
802 
803    unreachable("Too many successors");
804 }
805 
806 /* Subset of pan_shader_info needed per-variant, in order to support IDVS */
807 struct bi_shader_info {
808    struct panfrost_ubo_push *push;
809    struct bifrost_shader_info *bifrost;
810    unsigned tls_size;
811    unsigned work_reg_count;
812    unsigned push_offset;
813 };
814 
815 /* State of index-driven vertex shading for current shader */
816 enum bi_idvs_mode {
817    /* IDVS not in use */
818    BI_IDVS_NONE = 0,
819 
820    /* IDVS in use. Compiling a position shader */
821    BI_IDVS_POSITION = 1,
822 
823    /* IDVS in use. Compiling a varying shader */
824    BI_IDVS_VARYING = 2,
825 };
826 
827 typedef struct {
828    const struct panfrost_compile_inputs *inputs;
829    nir_shader *nir;
830    struct bi_shader_info info;
831    gl_shader_stage stage;
832    struct list_head blocks; /* list of bi_block */
833    uint32_t quirks;
834    unsigned arch;
835    enum bi_idvs_mode idvs;
836    unsigned num_blocks;
837 
838    /* In any graphics shader, whether the "IDVS with memory
839     * allocation" flow is used. This affects how varyings are loaded and
840     * stored. Ignore for compute.
841     */
842    bool malloc_idvs;
843 
844    /* During NIR->BIR */
845    bi_block *current_block;
846    bi_block *after_block;
847    bi_block *break_block;
848    bi_block *continue_block;
849    bi_block **indexed_nir_blocks;
850    bool emitted_atest;
851 
852    /* During NIR->BIR, the coverage bitmap. If this is NULL, the default
853     * coverage bitmap should be source from preloaded register r60. This is
854     * written by ATEST and ZS_EMIT
855     */
856    bi_index coverage;
857 
858    /* During NIR->BIR, table of preloaded registers, or NULL if never
859     * preloaded.
860     */
861    bi_index preloaded[64];
862 
863    /* For creating temporaries */
864    unsigned ssa_alloc;
865    unsigned reg_alloc;
866 
867    /* Mask of UBOs that need to be uploaded */
868    uint32_t ubo_mask;
869 
870    /* During instruction selection, map from vector bi_index to its scalar
871     * components, populated by a split.
872     */
873    struct hash_table_u64 *allocated_vec;
874 
875    /* Stats for shader-db */
876    unsigned loop_count;
877    unsigned spills;
878    unsigned fills;
879 } bi_context;
880 
881 static inline void
bi_remove_instruction(bi_instr * ins)882 bi_remove_instruction(bi_instr *ins)
883 {
884    list_del(&ins->link);
885 }
886 
887 enum bir_fau {
888    BIR_FAU_ZERO = 0,
889    BIR_FAU_LANE_ID = 1,
890    BIR_FAU_WARP_ID = 2,
891    BIR_FAU_CORE_ID = 3,
892    BIR_FAU_FB_EXTENT = 4,
893    BIR_FAU_ATEST_PARAM = 5,
894    BIR_FAU_SAMPLE_POS_ARRAY = 6,
895    BIR_FAU_BLEND_0 = 8,
896    /* blend descs 1 - 7 */
897    BIR_FAU_TYPE_MASK = 15,
898 
899    /* Valhall only */
900    BIR_FAU_TLS_PTR = 16,
901    BIR_FAU_WLS_PTR = 17,
902    BIR_FAU_PROGRAM_COUNTER = 18,
903 
904    BIR_FAU_UNIFORM = (1 << 7),
905    /* Look up table on Valhall */
906    BIR_FAU_IMMEDIATE = (1 << 8),
907 
908 };
909 
910 static inline bi_index
bi_fau(enum bir_fau value,bool hi)911 bi_fau(enum bir_fau value, bool hi)
912 {
913    return (bi_index){
914       .value = value,
915       .swizzle = BI_SWIZZLE_H01,
916       .offset = hi ? 1u : 0u,
917       .type = BI_INDEX_FAU,
918    };
919 }
920 
921 /*
922  * Builder for Valhall LUT entries. Generally, constants are modeled with
923  * BI_INDEX_IMMEDIATE in the intermediate representation. This helper is only
924  * necessary for passes running after lowering constants, as well as when
925  * lowering constants.
926  *
927  */
928 static inline bi_index
va_lut(unsigned index)929 va_lut(unsigned index)
930 {
931    return bi_fau((enum bir_fau)(BIR_FAU_IMMEDIATE | (index >> 1)), index & 1);
932 }
933 
934 /*
935  * va_lut_zero is like bi_zero but only works on Valhall. It is intended for
936  * use by late passes that run after constants are lowered, specifically
937  * register allocation. bi_zero() is preferred where possible.
938  */
939 static inline bi_index
va_zero_lut()940 va_zero_lut()
941 {
942    return va_lut(0);
943 }
944 
945 static inline bi_index
bi_temp(bi_context * ctx)946 bi_temp(bi_context *ctx)
947 {
948    return bi_get_index(ctx->ssa_alloc++);
949 }
950 
951 static inline bi_index
bi_def_index(nir_def * def)952 bi_def_index(nir_def *def)
953 {
954    return bi_get_index(def->index);
955 }
956 
957 /* Inline constants automatically, will be lowered out by bi_lower_fau where a
958  * constant is not allowed. load_const_to_scalar gaurantees that this makes
959  * sense */
960 
961 static inline bi_index
bi_src_index(nir_src * src)962 bi_src_index(nir_src *src)
963 {
964    if (nir_src_is_const(*src) && nir_src_bit_size(*src) <= 32) {
965       return bi_imm_u32(nir_src_as_uint(*src));
966    } else {
967       return bi_def_index(src->ssa);
968    }
969 }
970 
971 /* Iterators for Bifrost IR */
972 
973 #define bi_foreach_block(ctx, v)                                               \
974    list_for_each_entry(bi_block, v, &ctx->blocks, link)
975 
976 #define bi_foreach_block_rev(ctx, v)                                           \
977    list_for_each_entry_rev(bi_block, v, &ctx->blocks, link)
978 
979 #define bi_foreach_block_from(ctx, from, v)                                    \
980    list_for_each_entry_from(bi_block, v, from, &ctx->blocks, link)
981 
982 #define bi_foreach_block_from_rev(ctx, from, v)                                \
983    list_for_each_entry_from_rev(bi_block, v, from, &ctx->blocks, link)
984 
985 #define bi_foreach_instr_in_block(block, v)                                    \
986    list_for_each_entry(bi_instr, v, &(block)->instructions, link)
987 
988 #define bi_foreach_instr_in_block_rev(block, v)                                \
989    list_for_each_entry_rev(bi_instr, v, &(block)->instructions, link)
990 
991 #define bi_foreach_instr_in_block_safe(block, v)                               \
992    list_for_each_entry_safe(bi_instr, v, &(block)->instructions, link)
993 
994 #define bi_foreach_instr_in_block_safe_rev(block, v)                           \
995    list_for_each_entry_safe_rev(bi_instr, v, &(block)->instructions, link)
996 
997 #define bi_foreach_instr_in_block_from(block, v, from)                         \
998    list_for_each_entry_from(bi_instr, v, from, &(block)->instructions, link)
999 
1000 #define bi_foreach_instr_in_block_from_rev(block, v, from)                     \
1001    list_for_each_entry_from_rev(bi_instr, v, from, &(block)->instructions, link)
1002 
1003 #define bi_foreach_clause_in_block(block, v)                                   \
1004    list_for_each_entry(bi_clause, v, &(block)->clauses, link)
1005 
1006 #define bi_foreach_clause_in_block_rev(block, v)                               \
1007    list_for_each_entry_rev(bi_clause, v, &(block)->clauses, link)
1008 
1009 #define bi_foreach_clause_in_block_safe(block, v)                              \
1010    list_for_each_entry_safe(bi_clause, v, &(block)->clauses, link)
1011 
1012 #define bi_foreach_clause_in_block_from(block, v, from)                        \
1013    list_for_each_entry_from(bi_clause, v, from, &(block)->clauses, link)
1014 
1015 #define bi_foreach_clause_in_block_from_rev(block, v, from)                    \
1016    list_for_each_entry_from_rev(bi_clause, v, from, &(block)->clauses, link)
1017 
1018 #define bi_foreach_instr_global(ctx, v)                                        \
1019    bi_foreach_block(ctx, v_block)                                              \
1020       bi_foreach_instr_in_block(v_block, v)
1021 
1022 #define bi_foreach_instr_global_rev(ctx, v)                                    \
1023    bi_foreach_block_rev(ctx, v_block)                                          \
1024       bi_foreach_instr_in_block_rev(v_block, v)
1025 
1026 #define bi_foreach_instr_global_safe(ctx, v)                                   \
1027    bi_foreach_block(ctx, v_block)                                              \
1028       bi_foreach_instr_in_block_safe(v_block, v)
1029 
1030 #define bi_foreach_instr_global_rev_safe(ctx, v)                               \
1031    bi_foreach_block_rev(ctx, v_block)                                          \
1032    bi_foreach_instr_in_block_rev_safe(v_block, v)
1033 
1034 #define bi_foreach_instr_in_tuple(tuple, v)                                    \
1035    for (bi_instr *v = (tuple)->fma ?: (tuple)->add; v != NULL;                 \
1036         v = (v == (tuple)->add) ? NULL : (tuple)->add)
1037 
1038 #define bi_foreach_successor(blk, v)                                           \
1039    bi_block *v;                                                                \
1040    bi_block **_v;                                                              \
1041    for (_v = &blk->successors[0], v = *_v;                                     \
1042         v != NULL && _v < &blk->successors[2]; _v++, v = *_v)
1043 
1044 #define bi_foreach_predecessor(blk, v)                                         \
1045    util_dynarray_foreach(&(blk)->predecessors, bi_block *, v)
1046 
1047 #define bi_foreach_src(ins, v) for (unsigned v = 0; v < ins->nr_srcs; ++v)
1048 
1049 #define bi_foreach_dest(ins, v) for (unsigned v = 0; v < ins->nr_dests; ++v)
1050 
1051 #define bi_foreach_ssa_src(ins, v)                                             \
1052    bi_foreach_src(ins, v)                                                      \
1053       if (ins->src[v].type == BI_INDEX_NORMAL)
1054 
1055 #define bi_foreach_ssa_dest(ins, v)                                            \
1056    bi_foreach_dest(ins, v)                                                     \
1057       if (ins->dest[v].type == BI_INDEX_NORMAL)
1058 
1059 #define bi_foreach_instr_and_src_in_tuple(tuple, ins, s)                       \
1060    bi_foreach_instr_in_tuple(tuple, ins)                                       \
1061       bi_foreach_src(ins, s)
1062 
1063 /*
1064  * Find the index of a predecessor, used as the implicit order of phi sources.
1065  */
1066 static inline unsigned
bi_predecessor_index(bi_block * succ,bi_block * pred)1067 bi_predecessor_index(bi_block *succ, bi_block *pred)
1068 {
1069    unsigned index = 0;
1070 
1071    bi_foreach_predecessor(succ, x) {
1072       if (*x == pred)
1073          return index;
1074 
1075       index++;
1076    }
1077 
1078    unreachable("Invalid predecessor");
1079 }
1080 
1081 static inline bi_instr *
bi_prev_op(bi_instr * ins)1082 bi_prev_op(bi_instr *ins)
1083 {
1084    return list_last_entry(&(ins->link), bi_instr, link);
1085 }
1086 
1087 static inline bi_instr *
bi_next_op(bi_instr * ins)1088 bi_next_op(bi_instr *ins)
1089 {
1090    return list_first_entry(&(ins->link), bi_instr, link);
1091 }
1092 
1093 static inline bi_block *
bi_next_block(bi_block * block)1094 bi_next_block(bi_block *block)
1095 {
1096    return list_first_entry(&(block->link), bi_block, link);
1097 }
1098 
1099 static inline bi_block *
bi_entry_block(bi_context * ctx)1100 bi_entry_block(bi_context *ctx)
1101 {
1102    return list_first_entry(&ctx->blocks, bi_block, link);
1103 }
1104 
1105 /* BIR manipulation */
1106 
1107 bool bi_has_arg(const bi_instr *ins, bi_index arg);
1108 unsigned bi_count_read_registers(const bi_instr *ins, unsigned src);
1109 unsigned bi_count_write_registers(const bi_instr *ins, unsigned dest);
1110 bool bi_is_regfmt_16(enum bi_register_format fmt);
1111 unsigned bi_writemask(const bi_instr *ins, unsigned dest);
1112 bi_clause *bi_next_clause(bi_context *ctx, bi_block *block, bi_clause *clause);
1113 bool bi_side_effects(const bi_instr *I);
1114 bool bi_reconverge_branches(bi_block *block);
1115 
1116 bool bi_can_replace_with_csel(bi_instr *I);
1117 
1118 void bi_print_instr(const bi_instr *I, FILE *fp);
1119 void bi_print_slots(bi_registers *regs, FILE *fp);
1120 void bi_print_tuple(bi_tuple *tuple, FILE *fp);
1121 void bi_print_clause(bi_clause *clause, FILE *fp);
1122 void bi_print_block(bi_block *block, FILE *fp);
1123 void bi_print_shader(bi_context *ctx, FILE *fp);
1124 
1125 /* BIR passes */
1126 
1127 bool bi_instr_uses_helpers(bi_instr *I);
1128 bool bi_block_terminates_helpers(bi_block *block);
1129 void bi_analyze_helper_terminate(bi_context *ctx);
1130 void bi_mark_clauses_td(bi_context *ctx);
1131 
1132 void bi_analyze_helper_requirements(bi_context *ctx);
1133 void bi_opt_copy_prop(bi_context *ctx);
1134 void bi_opt_dce(bi_context *ctx, bool partial);
1135 void bi_opt_cse(bi_context *ctx);
1136 void bi_opt_mod_prop_forward(bi_context *ctx);
1137 void bi_opt_mod_prop_backward(bi_context *ctx);
1138 void bi_opt_fuse_dual_texture(bi_context *ctx);
1139 void bi_opt_dce_post_ra(bi_context *ctx);
1140 void bi_opt_message_preload(bi_context *ctx);
1141 void bi_opt_push_ubo(bi_context *ctx);
1142 void bi_opt_reorder_push(bi_context *ctx);
1143 void bi_lower_swizzle(bi_context *ctx);
1144 void bi_lower_fau(bi_context *ctx);
1145 void bi_assign_scoreboard(bi_context *ctx);
1146 void bi_register_allocate(bi_context *ctx);
1147 void va_optimize(bi_context *ctx);
1148 void va_lower_split_64bit(bi_context *ctx);
1149 
1150 void bi_lower_opt_instructions(bi_context *ctx);
1151 
1152 void bi_pressure_schedule(bi_context *ctx);
1153 void bi_schedule(bi_context *ctx);
1154 bool bi_can_fma(bi_instr *ins);
1155 bool bi_can_add(bi_instr *ins);
1156 bool bi_must_message(bi_instr *ins);
1157 bool bi_reads_zero(bi_instr *ins);
1158 bool bi_reads_temps(bi_instr *ins, unsigned src);
1159 bool bi_reads_t(bi_instr *ins, unsigned src);
1160 
1161 #ifndef NDEBUG
1162 bool bi_validate_initialization(bi_context *ctx);
1163 void bi_validate(bi_context *ctx, const char *after_str);
1164 #else
1165 static inline bool
bi_validate_initialization(UNUSED bi_context * ctx)1166 bi_validate_initialization(UNUSED bi_context *ctx)
1167 {
1168    return true;
1169 }
1170 static inline void
bi_validate(UNUSED bi_context * ctx,UNUSED const char * after_str)1171 bi_validate(UNUSED bi_context *ctx, UNUSED const char *after_str)
1172 {
1173    return;
1174 }
1175 #endif
1176 
1177 uint32_t bi_fold_constant(bi_instr *I, bool *unsupported);
1178 bool bi_opt_constant_fold(bi_context *ctx);
1179 
1180 /* Liveness */
1181 
1182 void bi_compute_liveness_ssa(bi_context *ctx);
1183 void bi_liveness_ins_update_ssa(BITSET_WORD *live, const bi_instr *ins);
1184 
1185 void bi_postra_liveness(bi_context *ctx);
1186 uint64_t MUST_CHECK bi_postra_liveness_ins(uint64_t live, bi_instr *ins);
1187 
1188 /* Layout */
1189 
1190 signed bi_block_offset(bi_context *ctx, bi_clause *start, bi_block *target);
1191 bool bi_ec0_packed(unsigned tuple_count);
1192 
1193 /* Check if there are no more instructions starting with a given block, this
1194  * needs to recurse in case a shader ends with multiple empty blocks */
1195 
1196 static inline bool
bi_is_terminal_block(bi_block * block)1197 bi_is_terminal_block(bi_block *block)
1198 {
1199    return (block == NULL) || (list_is_empty(&block->instructions) &&
1200                               bi_is_terminal_block(block->successors[0]) &&
1201                               bi_is_terminal_block(block->successors[1]));
1202 }
1203 
1204 /* Code emit */
1205 
1206 /* Returns the size of the final clause */
1207 unsigned bi_pack(bi_context *ctx, struct util_dynarray *emission);
1208 void bi_pack_valhall(bi_context *ctx, struct util_dynarray *emission);
1209 
1210 struct bi_packed_tuple {
1211    uint64_t lo;
1212    uint64_t hi;
1213 };
1214 
1215 uint8_t bi_pack_literal(enum bi_clause_subword literal);
1216 
1217 uint8_t bi_pack_upper(enum bi_clause_subword upper,
1218                       struct bi_packed_tuple *tuples,
1219                       ASSERTED unsigned tuple_count);
1220 uint64_t bi_pack_tuple_bits(enum bi_clause_subword idx,
1221                             struct bi_packed_tuple *tuples,
1222                             ASSERTED unsigned tuple_count, unsigned offset,
1223                             unsigned nbits);
1224 
1225 uint8_t bi_pack_sync(enum bi_clause_subword t1, enum bi_clause_subword t2,
1226                      enum bi_clause_subword t3, struct bi_packed_tuple *tuples,
1227                      ASSERTED unsigned tuple_count, bool z);
1228 
1229 void bi_pack_format(struct util_dynarray *emission, unsigned index,
1230                     struct bi_packed_tuple *tuples,
1231                     ASSERTED unsigned tuple_count, uint64_t header,
1232                     uint64_t ec0, unsigned m0, bool z);
1233 
1234 unsigned bi_pack_fma(bi_instr *I, enum bifrost_packed_src src0,
1235                      enum bifrost_packed_src src1, enum bifrost_packed_src src2,
1236                      enum bifrost_packed_src src3);
1237 unsigned bi_pack_add(bi_instr *I, enum bifrost_packed_src src0,
1238                      enum bifrost_packed_src src1, enum bifrost_packed_src src2,
1239                      enum bifrost_packed_src src3);
1240 
1241 /* Like in NIR, for use with the builder */
1242 
1243 enum bi_cursor_option {
1244    bi_cursor_after_block,
1245    bi_cursor_before_instr,
1246    bi_cursor_after_instr
1247 };
1248 
1249 typedef struct {
1250    enum bi_cursor_option option;
1251 
1252    union {
1253       bi_block *block;
1254       bi_instr *instr;
1255    };
1256 } bi_cursor;
1257 
1258 static inline bi_cursor
bi_after_block(bi_block * block)1259 bi_after_block(bi_block *block)
1260 {
1261    return (bi_cursor){.option = bi_cursor_after_block, .block = block};
1262 }
1263 
1264 static inline bi_cursor
bi_before_instr(bi_instr * instr)1265 bi_before_instr(bi_instr *instr)
1266 {
1267    return (bi_cursor){.option = bi_cursor_before_instr, .instr = instr};
1268 }
1269 
1270 static inline bi_cursor
bi_after_instr(bi_instr * instr)1271 bi_after_instr(bi_instr *instr)
1272 {
1273    return (bi_cursor){.option = bi_cursor_after_instr, .instr = instr};
1274 }
1275 
1276 static inline bi_cursor
bi_after_block_logical(bi_block * block)1277 bi_after_block_logical(bi_block *block)
1278 {
1279    if (list_is_empty(&block->instructions))
1280       return bi_after_block(block);
1281 
1282    bi_instr *last = list_last_entry(&block->instructions, bi_instr, link);
1283    assert(last != NULL);
1284 
1285    if (last->branch_target)
1286       return bi_before_instr(last);
1287    else
1288       return bi_after_block(block);
1289 }
1290 
1291 static inline bi_cursor
bi_before_nonempty_block(bi_block * block)1292 bi_before_nonempty_block(bi_block *block)
1293 {
1294    bi_instr *I = list_first_entry(&block->instructions, bi_instr, link);
1295    assert(I != NULL);
1296 
1297    return bi_before_instr(I);
1298 }
1299 
1300 static inline bi_cursor
bi_before_block(bi_block * block)1301 bi_before_block(bi_block *block)
1302 {
1303    if (list_is_empty(&block->instructions))
1304       return bi_after_block(block);
1305    else
1306       return bi_before_nonempty_block(block);
1307 }
1308 
1309 /* Invariant: a tuple must be nonempty UNLESS it is the last tuple of a clause,
1310  * in which case there must exist a nonempty penultimate tuple */
1311 
1312 ATTRIBUTE_RETURNS_NONNULL static inline bi_instr *
bi_first_instr_in_tuple(bi_tuple * tuple)1313 bi_first_instr_in_tuple(bi_tuple *tuple)
1314 {
1315    bi_instr *instr = tuple->fma ?: tuple->add;
1316    assert(instr != NULL);
1317    return instr;
1318 }
1319 
1320 ATTRIBUTE_RETURNS_NONNULL static inline bi_instr *
bi_first_instr_in_clause(bi_clause * clause)1321 bi_first_instr_in_clause(bi_clause *clause)
1322 {
1323    return bi_first_instr_in_tuple(&clause->tuples[0]);
1324 }
1325 
1326 ATTRIBUTE_RETURNS_NONNULL static inline bi_instr *
bi_last_instr_in_clause(bi_clause * clause)1327 bi_last_instr_in_clause(bi_clause *clause)
1328 {
1329    bi_tuple tuple = clause->tuples[clause->tuple_count - 1];
1330    bi_instr *instr = tuple.add ?: tuple.fma;
1331 
1332    if (!instr) {
1333       assert(clause->tuple_count >= 2);
1334       tuple = clause->tuples[clause->tuple_count - 2];
1335       instr = tuple.add ?: tuple.fma;
1336    }
1337 
1338    assert(instr != NULL);
1339    return instr;
1340 }
1341 
1342 /* Implemented by expanding bi_foreach_instr_in_block_from(_rev) with the start
1343  * (end) of the clause and adding a condition for the clause boundary */
1344 
1345 #define bi_foreach_instr_in_clause(block, clause, pos)                         \
1346    for (bi_instr *pos =                                                        \
1347            list_entry(bi_first_instr_in_clause(clause), bi_instr, link);       \
1348         (&pos->link != &(block)->instructions) &&                              \
1349         (pos != bi_next_op(bi_last_instr_in_clause(clause)));                  \
1350         pos = list_entry(pos->link.next, bi_instr, link))
1351 
1352 #define bi_foreach_instr_in_clause_rev(block, clause, pos)                     \
1353    for (bi_instr *pos =                                                        \
1354            list_entry(bi_last_instr_in_clause(clause), bi_instr, link);        \
1355         (&pos->link != &(block)->instructions) &&                              \
1356         pos != bi_prev_op(bi_first_instr_in_clause(clause));                   \
1357         pos = list_entry(pos->link.prev, bi_instr, link))
1358 
1359 static inline bi_cursor
bi_before_clause(bi_clause * clause)1360 bi_before_clause(bi_clause *clause)
1361 {
1362    return bi_before_instr(bi_first_instr_in_clause(clause));
1363 }
1364 
1365 static inline bi_cursor
bi_before_tuple(bi_tuple * tuple)1366 bi_before_tuple(bi_tuple *tuple)
1367 {
1368    return bi_before_instr(bi_first_instr_in_tuple(tuple));
1369 }
1370 
1371 static inline bi_cursor
bi_after_clause(bi_clause * clause)1372 bi_after_clause(bi_clause *clause)
1373 {
1374    return bi_after_instr(bi_last_instr_in_clause(clause));
1375 }
1376 
1377 /* IR builder in terms of cursor infrastructure */
1378 
1379 typedef struct {
1380    bi_context *shader;
1381    bi_cursor cursor;
1382 } bi_builder;
1383 
1384 static inline bi_builder
bi_init_builder(bi_context * ctx,bi_cursor cursor)1385 bi_init_builder(bi_context *ctx, bi_cursor cursor)
1386 {
1387    return (bi_builder){.shader = ctx, .cursor = cursor};
1388 }
1389 
1390 /* Insert an instruction at the cursor and move the cursor */
1391 
1392 static inline void
bi_builder_insert(bi_cursor * cursor,bi_instr * I)1393 bi_builder_insert(bi_cursor *cursor, bi_instr *I)
1394 {
1395    switch (cursor->option) {
1396    case bi_cursor_after_instr:
1397       list_add(&I->link, &cursor->instr->link);
1398       cursor->instr = I;
1399       return;
1400 
1401    case bi_cursor_after_block:
1402       list_addtail(&I->link, &cursor->block->instructions);
1403       cursor->option = bi_cursor_after_instr;
1404       cursor->instr = I;
1405       return;
1406 
1407    case bi_cursor_before_instr:
1408       list_addtail(&I->link, &cursor->instr->link);
1409       cursor->option = bi_cursor_after_instr;
1410       cursor->instr = I;
1411       return;
1412    }
1413 
1414    unreachable("Invalid cursor option");
1415 }
1416 
1417 bi_instr *bi_csel_from_mux(bi_builder *b, const bi_instr *I, bool must_sign);
1418 
1419 /* Read back power-efficent garbage, TODO maybe merge with null? */
1420 static inline bi_index
bi_dontcare(bi_builder * b)1421 bi_dontcare(bi_builder *b)
1422 {
1423    if (b->shader->arch >= 9)
1424       return bi_zero();
1425    else
1426       return bi_passthrough(BIFROST_SRC_FAU_HI);
1427 }
1428 
1429 #define bi_worklist_init(ctx, w)        u_worklist_init(w, ctx->num_blocks, ctx)
1430 #define bi_worklist_push_head(w, block) u_worklist_push_head(w, block, index)
1431 #define bi_worklist_push_tail(w, block) u_worklist_push_tail(w, block, index)
1432 #define bi_worklist_peek_head(w)        u_worklist_peek_head(w, bi_block, index)
1433 #define bi_worklist_pop_head(w)         u_worklist_pop_head(w, bi_block, index)
1434 #define bi_worklist_peek_tail(w)        u_worklist_peek_tail(w, bi_block, index)
1435 #define bi_worklist_pop_tail(w)         u_worklist_pop_tail(w, bi_block, index)
1436 
1437 /* NIR passes */
1438 
1439 bool bi_lower_divergent_indirects(nir_shader *shader, unsigned lanes);
1440 
1441 #ifdef __cplusplus
1442 } /* extern C */
1443 #endif
1444 
1445 #endif
1446