1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <stdlib.h>
25 #include <unistd.h>
26 #include <limits.h>
27 #include <assert.h>
28 #include <sys/mman.h>
29
30 #include "anv_private.h"
31
32 #include "util/anon_file.h"
33 #include "util/futex.h"
34
35 #ifdef HAVE_VALGRIND
36 #define VG_NOACCESS_READ(__ptr) ({ \
37 VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
38 __typeof(*(__ptr)) __val = *(__ptr); \
39 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
40 __val; \
41 })
42 #define VG_NOACCESS_WRITE(__ptr, __val) ({ \
43 VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
44 *(__ptr) = (__val); \
45 VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
46 })
47 #else
48 #define VG_NOACCESS_READ(__ptr) (*(__ptr))
49 #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
50 #endif
51
52 #ifndef MAP_POPULATE
53 #define MAP_POPULATE 0
54 #endif
55
56 /* Design goals:
57 *
58 * - Lock free (except when resizing underlying bos)
59 *
60 * - Constant time allocation with typically only one atomic
61 *
62 * - Multiple allocation sizes without fragmentation
63 *
64 * - Can grow while keeping addresses and offset of contents stable
65 *
66 * - All allocations within one bo so we can point one of the
67 * STATE_BASE_ADDRESS pointers at it.
68 *
69 * The overall design is a two-level allocator: top level is a fixed size, big
70 * block (8k) allocator, which operates out of a bo. Allocation is done by
71 * either pulling a block from the free list or growing the used range of the
72 * bo. Growing the range may run out of space in the bo which we then need to
73 * grow. Growing the bo is tricky in a multi-threaded, lockless environment:
74 * we need to keep all pointers and contents in the old map valid. GEM bos in
75 * general can't grow, but we use a trick: we create a memfd and use ftruncate
76 * to grow it as necessary. We mmap the new size and then create a gem bo for
77 * it using the new gem userptr ioctl. Without heavy-handed locking around
78 * our allocation fast-path, there isn't really a way to munmap the old mmap,
79 * so we just keep it around until garbage collection time. While the block
80 * allocator is lockless for normal operations, we block other threads trying
81 * to allocate while we're growing the map. It shouldn't happen often, and
82 * growing is fast anyway.
83 *
84 * At the next level we can use various sub-allocators. The state pool is a
85 * pool of smaller, fixed size objects, which operates much like the block
86 * pool. It uses a free list for freeing objects, but when it runs out of
87 * space it just allocates a new block from the block pool. This allocator is
88 * intended for longer lived state objects such as SURFACE_STATE and most
89 * other persistent state objects in the API. We may need to track more info
90 * with these object and a pointer back to the CPU object (eg VkImage). In
91 * those cases we just allocate a slightly bigger object and put the extra
92 * state after the GPU state object.
93 *
94 * The state stream allocator works similar to how the i965 DRI driver streams
95 * all its state. Even with Vulkan, we need to emit transient state (whether
96 * surface state base or dynamic state base), and for that we can just get a
97 * block and fill it up. These cases are local to a command buffer and the
98 * sub-allocator need not be thread safe. The streaming allocator gets a new
99 * block when it runs out of space and chains them together so they can be
100 * easily freed.
101 */
102
103 /* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
104 * We use it to indicate the free list is empty. */
105 #define EMPTY UINT32_MAX
106
107 /* On FreeBSD PAGE_SIZE is already defined in
108 * /usr/include/machine/param.h that is indirectly
109 * included here.
110 */
111 #ifndef PAGE_SIZE
112 #define PAGE_SIZE 4096
113 #endif
114
115 struct anv_mmap_cleanup {
116 void *map;
117 size_t size;
118 };
119
120 static inline uint32_t
ilog2_round_up(uint32_t value)121 ilog2_round_up(uint32_t value)
122 {
123 assert(value != 0);
124 return 32 - __builtin_clz(value - 1);
125 }
126
127 static inline uint32_t
round_to_power_of_two(uint32_t value)128 round_to_power_of_two(uint32_t value)
129 {
130 return 1 << ilog2_round_up(value);
131 }
132
133 struct anv_state_table_cleanup {
134 void *map;
135 size_t size;
136 };
137
138 #define ANV_STATE_TABLE_CLEANUP_INIT ((struct anv_state_table_cleanup){0})
139 #define ANV_STATE_ENTRY_SIZE (sizeof(struct anv_free_entry))
140
141 static VkResult
142 anv_state_table_expand_range(struct anv_state_table *table, uint32_t size);
143
144 VkResult
anv_state_table_init(struct anv_state_table * table,struct anv_device * device,uint32_t initial_entries)145 anv_state_table_init(struct anv_state_table *table,
146 struct anv_device *device,
147 uint32_t initial_entries)
148 {
149 VkResult result;
150
151 table->device = device;
152
153 /* Just make it 2GB up-front. The Linux kernel won't actually back it
154 * with pages until we either map and fault on one of them or we use
155 * userptr and send a chunk of it off to the GPU.
156 */
157 table->fd = os_create_anonymous_file(BLOCK_POOL_MEMFD_SIZE, "state table");
158 if (table->fd == -1)
159 return vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
160
161 if (!u_vector_init(&table->cleanups, 8,
162 sizeof(struct anv_state_table_cleanup))) {
163 result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
164 goto fail_fd;
165 }
166
167 table->state.next = 0;
168 table->state.end = 0;
169 table->size = 0;
170
171 uint32_t initial_size = initial_entries * ANV_STATE_ENTRY_SIZE;
172 result = anv_state_table_expand_range(table, initial_size);
173 if (result != VK_SUCCESS)
174 goto fail_cleanups;
175
176 return VK_SUCCESS;
177
178 fail_cleanups:
179 u_vector_finish(&table->cleanups);
180 fail_fd:
181 close(table->fd);
182
183 return result;
184 }
185
186 static VkResult
anv_state_table_expand_range(struct anv_state_table * table,uint32_t size)187 anv_state_table_expand_range(struct anv_state_table *table, uint32_t size)
188 {
189 void *map;
190 struct anv_state_table_cleanup *cleanup;
191
192 /* Assert that we only ever grow the pool */
193 assert(size >= table->state.end);
194
195 /* Make sure that we don't go outside the bounds of the memfd */
196 if (size > BLOCK_POOL_MEMFD_SIZE)
197 return vk_error(table->device, VK_ERROR_OUT_OF_HOST_MEMORY);
198
199 cleanup = u_vector_add(&table->cleanups);
200 if (!cleanup)
201 return vk_error(table->device, VK_ERROR_OUT_OF_HOST_MEMORY);
202
203 *cleanup = ANV_STATE_TABLE_CLEANUP_INIT;
204
205 /* Just leak the old map until we destroy the pool. We can't munmap it
206 * without races or imposing locking on the block allocate fast path. On
207 * the whole the leaked maps adds up to less than the size of the
208 * current map. MAP_POPULATE seems like the right thing to do, but we
209 * should try to get some numbers.
210 */
211 map = mmap(NULL, size, PROT_READ | PROT_WRITE,
212 MAP_SHARED | MAP_POPULATE, table->fd, 0);
213 if (map == MAP_FAILED) {
214 return vk_errorf(table->device, VK_ERROR_OUT_OF_HOST_MEMORY,
215 "mmap failed: %m");
216 }
217
218 cleanup->map = map;
219 cleanup->size = size;
220
221 table->map = map;
222 table->size = size;
223
224 return VK_SUCCESS;
225 }
226
227 static VkResult
anv_state_table_grow(struct anv_state_table * table)228 anv_state_table_grow(struct anv_state_table *table)
229 {
230 VkResult result = VK_SUCCESS;
231
232 uint32_t used = align(table->state.next * ANV_STATE_ENTRY_SIZE, PAGE_SIZE);
233 uint32_t old_size = table->size;
234
235 /* The block pool is always initialized to a nonzero size and this function
236 * is always called after initialization.
237 */
238 assert(old_size > 0);
239
240 uint32_t required = MAX2(used, old_size);
241 if (used * 2 <= required) {
242 /* If we're in this case then this isn't the firsta allocation and we
243 * already have enough space on both sides to hold double what we
244 * have allocated. There's nothing for us to do.
245 */
246 goto done;
247 }
248
249 uint32_t size = old_size * 2;
250 while (size < required)
251 size *= 2;
252
253 assert(size > table->size);
254
255 result = anv_state_table_expand_range(table, size);
256
257 done:
258 return result;
259 }
260
261 void
anv_state_table_finish(struct anv_state_table * table)262 anv_state_table_finish(struct anv_state_table *table)
263 {
264 struct anv_state_table_cleanup *cleanup;
265
266 u_vector_foreach(cleanup, &table->cleanups) {
267 if (cleanup->map)
268 munmap(cleanup->map, cleanup->size);
269 }
270
271 u_vector_finish(&table->cleanups);
272
273 close(table->fd);
274 }
275
276 VkResult
anv_state_table_add(struct anv_state_table * table,uint32_t * idx,uint32_t count)277 anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
278 uint32_t count)
279 {
280 struct anv_block_state state, old, new;
281 VkResult result;
282
283 assert(idx);
284
285 while(1) {
286 state.u64 = __sync_fetch_and_add(&table->state.u64, count);
287 if (state.next + count <= state.end) {
288 assert(table->map);
289 struct anv_free_entry *entry = &table->map[state.next];
290 for (int i = 0; i < count; i++) {
291 entry[i].state.idx = state.next + i;
292 }
293 *idx = state.next;
294 return VK_SUCCESS;
295 } else if (state.next <= state.end) {
296 /* We allocated the first block outside the pool so we have to grow
297 * the pool. pool_state->next acts a mutex: threads who try to
298 * allocate now will get block indexes above the current limit and
299 * hit futex_wait below.
300 */
301 new.next = state.next + count;
302 do {
303 result = anv_state_table_grow(table);
304 if (result != VK_SUCCESS)
305 return result;
306 new.end = table->size / ANV_STATE_ENTRY_SIZE;
307 } while (new.end < new.next);
308
309 old.u64 = __sync_lock_test_and_set(&table->state.u64, new.u64);
310 if (old.next != state.next)
311 futex_wake(&table->state.end, INT32_MAX);
312 } else {
313 futex_wait(&table->state.end, state.end, NULL);
314 continue;
315 }
316 }
317 }
318
319 void
anv_free_list_push(union anv_free_list * list,struct anv_state_table * table,uint32_t first,uint32_t count)320 anv_free_list_push(union anv_free_list *list,
321 struct anv_state_table *table,
322 uint32_t first, uint32_t count)
323 {
324 union anv_free_list current, old, new;
325 uint32_t last = first;
326
327 for (uint32_t i = 1; i < count; i++, last++)
328 table->map[last].next = last + 1;
329
330 old.u64 = list->u64;
331 do {
332 current = old;
333 table->map[last].next = current.offset;
334 new.offset = first;
335 new.count = current.count + 1;
336 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
337 } while (old.u64 != current.u64);
338 }
339
340 struct anv_state *
anv_free_list_pop(union anv_free_list * list,struct anv_state_table * table)341 anv_free_list_pop(union anv_free_list *list,
342 struct anv_state_table *table)
343 {
344 union anv_free_list current, new, old;
345
346 current.u64 = list->u64;
347 while (current.offset != EMPTY) {
348 __sync_synchronize();
349 new.offset = table->map[current.offset].next;
350 new.count = current.count + 1;
351 old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
352 if (old.u64 == current.u64) {
353 struct anv_free_entry *entry = &table->map[current.offset];
354 return &entry->state;
355 }
356 current = old;
357 }
358
359 return NULL;
360 }
361
362 static VkResult
363 anv_block_pool_expand_range(struct anv_block_pool *pool,
364 uint32_t center_bo_offset, uint32_t size);
365
366 VkResult
anv_block_pool_init(struct anv_block_pool * pool,struct anv_device * device,const char * name,uint64_t start_address,uint32_t initial_size)367 anv_block_pool_init(struct anv_block_pool *pool,
368 struct anv_device *device,
369 const char *name,
370 uint64_t start_address,
371 uint32_t initial_size)
372 {
373 VkResult result;
374
375 pool->name = name;
376 pool->device = device;
377 pool->use_relocations = anv_use_relocations(device->physical);
378 pool->nbos = 0;
379 pool->size = 0;
380 pool->center_bo_offset = 0;
381 pool->start_address = intel_canonical_address(start_address);
382 pool->map = NULL;
383
384 if (!pool->use_relocations) {
385 pool->bo = NULL;
386 pool->fd = -1;
387 } else {
388 /* Just make it 2GB up-front. The Linux kernel won't actually back it
389 * with pages until we either map and fault on one of them or we use
390 * userptr and send a chunk of it off to the GPU.
391 */
392 pool->fd = os_create_anonymous_file(BLOCK_POOL_MEMFD_SIZE, "block pool");
393 if (pool->fd == -1)
394 return vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
395
396 pool->wrapper_bo = (struct anv_bo) {
397 .refcount = 1,
398 .offset = -1,
399 .is_wrapper = true,
400 };
401 pool->bo = &pool->wrapper_bo;
402 }
403
404 if (!u_vector_init(&pool->mmap_cleanups, 8,
405 sizeof(struct anv_mmap_cleanup))) {
406 result = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
407 goto fail_fd;
408 }
409
410 pool->state.next = 0;
411 pool->state.end = 0;
412 pool->back_state.next = 0;
413 pool->back_state.end = 0;
414
415 result = anv_block_pool_expand_range(pool, 0, initial_size);
416 if (result != VK_SUCCESS)
417 goto fail_mmap_cleanups;
418
419 /* Make the entire pool available in the front of the pool. If back
420 * allocation needs to use this space, the "ends" will be re-arranged.
421 */
422 pool->state.end = pool->size;
423
424 return VK_SUCCESS;
425
426 fail_mmap_cleanups:
427 u_vector_finish(&pool->mmap_cleanups);
428 fail_fd:
429 if (pool->fd >= 0)
430 close(pool->fd);
431
432 return result;
433 }
434
435 void
anv_block_pool_finish(struct anv_block_pool * pool)436 anv_block_pool_finish(struct anv_block_pool *pool)
437 {
438 anv_block_pool_foreach_bo(bo, pool) {
439 assert(bo->refcount == 1);
440 anv_device_release_bo(pool->device, bo);
441 }
442
443 struct anv_mmap_cleanup *cleanup;
444 u_vector_foreach(cleanup, &pool->mmap_cleanups)
445 munmap(cleanup->map, cleanup->size);
446 u_vector_finish(&pool->mmap_cleanups);
447
448 if (pool->fd >= 0)
449 close(pool->fd);
450 }
451
452 static VkResult
anv_block_pool_expand_range(struct anv_block_pool * pool,uint32_t center_bo_offset,uint32_t size)453 anv_block_pool_expand_range(struct anv_block_pool *pool,
454 uint32_t center_bo_offset, uint32_t size)
455 {
456 /* Assert that we only ever grow the pool */
457 assert(center_bo_offset >= pool->back_state.end);
458 assert(size - center_bo_offset >= pool->state.end);
459
460 /* Assert that we don't go outside the bounds of the memfd */
461 assert(center_bo_offset <= BLOCK_POOL_MEMFD_CENTER);
462 assert(!pool->use_relocations ||
463 size - center_bo_offset <=
464 BLOCK_POOL_MEMFD_SIZE - BLOCK_POOL_MEMFD_CENTER);
465
466 /* For state pool BOs we have to be a bit careful about where we place them
467 * in the GTT. There are two documented workarounds for state base address
468 * placement : Wa32bitGeneralStateOffset and Wa32bitInstructionBaseOffset
469 * which state that those two base addresses do not support 48-bit
470 * addresses and need to be placed in the bottom 32-bit range.
471 * Unfortunately, this is not quite accurate.
472 *
473 * The real problem is that we always set the size of our state pools in
474 * STATE_BASE_ADDRESS to 0xfffff (the maximum) even though the BO is most
475 * likely significantly smaller. We do this because we do not no at the
476 * time we emit STATE_BASE_ADDRESS whether or not we will need to expand
477 * the pool during command buffer building so we don't actually have a
478 * valid final size. If the address + size, as seen by STATE_BASE_ADDRESS
479 * overflows 48 bits, the GPU appears to treat all accesses to the buffer
480 * as being out of bounds and returns zero. For dynamic state, this
481 * usually just leads to rendering corruptions, but shaders that are all
482 * zero hang the GPU immediately.
483 *
484 * The easiest solution to do is exactly what the bogus workarounds say to
485 * do: restrict these buffers to 32-bit addresses. We could also pin the
486 * BO to some particular location of our choosing, but that's significantly
487 * more work than just not setting a flag. So, we explicitly DO NOT set
488 * the EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and the kernel does all of the
489 * hard work for us. When using softpin, we're in control and the fixed
490 * addresses we choose are fine for base addresses.
491 */
492 enum anv_bo_alloc_flags bo_alloc_flags = ANV_BO_ALLOC_CAPTURE;
493 if (pool->use_relocations)
494 bo_alloc_flags |= ANV_BO_ALLOC_32BIT_ADDRESS;
495
496 if (!pool->use_relocations) {
497 uint32_t new_bo_size = size - pool->size;
498 struct anv_bo *new_bo;
499 assert(center_bo_offset == 0);
500 VkResult result = anv_device_alloc_bo(pool->device,
501 pool->name,
502 new_bo_size,
503 bo_alloc_flags |
504 ANV_BO_ALLOC_FIXED_ADDRESS |
505 ANV_BO_ALLOC_MAPPED |
506 ANV_BO_ALLOC_SNOOPED,
507 pool->start_address + pool->size,
508 &new_bo);
509 if (result != VK_SUCCESS)
510 return result;
511
512 pool->bos[pool->nbos++] = new_bo;
513
514 /* This pointer will always point to the first BO in the list */
515 pool->bo = pool->bos[0];
516 } else {
517 /* Just leak the old map until we destroy the pool. We can't munmap it
518 * without races or imposing locking on the block allocate fast path. On
519 * the whole the leaked maps adds up to less than the size of the
520 * current map. MAP_POPULATE seems like the right thing to do, but we
521 * should try to get some numbers.
522 */
523 void *map = mmap(NULL, size, PROT_READ | PROT_WRITE,
524 MAP_SHARED | MAP_POPULATE, pool->fd,
525 BLOCK_POOL_MEMFD_CENTER - center_bo_offset);
526 if (map == MAP_FAILED)
527 return vk_errorf(pool->device, VK_ERROR_MEMORY_MAP_FAILED,
528 "mmap failed: %m");
529
530 struct anv_bo *new_bo;
531 VkResult result = anv_device_import_bo_from_host_ptr(pool->device,
532 map, size,
533 bo_alloc_flags,
534 0 /* client_address */,
535 &new_bo);
536 if (result != VK_SUCCESS) {
537 munmap(map, size);
538 return result;
539 }
540
541 struct anv_mmap_cleanup *cleanup = u_vector_add(&pool->mmap_cleanups);
542 if (!cleanup) {
543 munmap(map, size);
544 anv_device_release_bo(pool->device, new_bo);
545 return vk_error(pool->device, VK_ERROR_OUT_OF_HOST_MEMORY);
546 }
547 cleanup->map = map;
548 cleanup->size = size;
549
550 /* Now that we mapped the new memory, we can write the new
551 * center_bo_offset back into pool and update pool->map. */
552 pool->center_bo_offset = center_bo_offset;
553 pool->map = map + center_bo_offset;
554
555 pool->bos[pool->nbos++] = new_bo;
556 pool->wrapper_bo.map = new_bo;
557 }
558
559 assert(pool->nbos < ANV_MAX_BLOCK_POOL_BOS);
560 pool->size = size;
561
562 return VK_SUCCESS;
563 }
564
565 /** Returns current memory map of the block pool.
566 *
567 * The returned pointer points to the map for the memory at the specified
568 * offset. The offset parameter is relative to the "center" of the block pool
569 * rather than the start of the block pool BO map.
570 */
571 void*
anv_block_pool_map(struct anv_block_pool * pool,int32_t offset,uint32_t size)572 anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t size)
573 {
574 if (!pool->use_relocations) {
575 struct anv_bo *bo = NULL;
576 int32_t bo_offset = 0;
577 anv_block_pool_foreach_bo(iter_bo, pool) {
578 if (offset < bo_offset + iter_bo->size) {
579 bo = iter_bo;
580 break;
581 }
582 bo_offset += iter_bo->size;
583 }
584 assert(bo != NULL);
585 assert(offset >= bo_offset);
586 assert((offset - bo_offset) + size <= bo->size);
587
588 return bo->map + (offset - bo_offset);
589 } else {
590 return pool->map + offset;
591 }
592 }
593
594 /** Grows and re-centers the block pool.
595 *
596 * We grow the block pool in one or both directions in such a way that the
597 * following conditions are met:
598 *
599 * 1) The size of the entire pool is always a power of two.
600 *
601 * 2) The pool only grows on both ends. Neither end can get
602 * shortened.
603 *
604 * 3) At the end of the allocation, we have about twice as much space
605 * allocated for each end as we have used. This way the pool doesn't
606 * grow too far in one direction or the other.
607 *
608 * 4) If the _alloc_back() has never been called, then the back portion of
609 * the pool retains a size of zero. (This makes it easier for users of
610 * the block pool that only want a one-sided pool.)
611 *
612 * 5) We have enough space allocated for at least one more block in
613 * whichever side `state` points to.
614 *
615 * 6) The center of the pool is always aligned to both the block_size of
616 * the pool and a 4K CPU page.
617 */
618 static uint32_t
anv_block_pool_grow(struct anv_block_pool * pool,struct anv_block_state * state,uint32_t contiguous_size)619 anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state,
620 uint32_t contiguous_size)
621 {
622 VkResult result = VK_SUCCESS;
623
624 pthread_mutex_lock(&pool->device->mutex);
625
626 assert(state == &pool->state || state == &pool->back_state);
627
628 /* Gather a little usage information on the pool. Since we may have
629 * threadsd waiting in queue to get some storage while we resize, it's
630 * actually possible that total_used will be larger than old_size. In
631 * particular, block_pool_alloc() increments state->next prior to
632 * calling block_pool_grow, so this ensures that we get enough space for
633 * which ever side tries to grow the pool.
634 *
635 * We align to a page size because it makes it easier to do our
636 * calculations later in such a way that we state page-aigned.
637 */
638 uint32_t back_used = align(pool->back_state.next, PAGE_SIZE);
639 uint32_t front_used = align(pool->state.next, PAGE_SIZE);
640 uint32_t total_used = front_used + back_used;
641
642 assert(state == &pool->state || back_used > 0);
643
644 uint32_t old_size = pool->size;
645
646 /* The block pool is always initialized to a nonzero size and this function
647 * is always called after initialization.
648 */
649 assert(old_size > 0);
650
651 const uint32_t old_back = pool->center_bo_offset;
652 const uint32_t old_front = old_size - pool->center_bo_offset;
653
654 /* The back_used and front_used may actually be smaller than the actual
655 * requirement because they are based on the next pointers which are
656 * updated prior to calling this function.
657 */
658 uint32_t back_required = MAX2(back_used, old_back);
659 uint32_t front_required = MAX2(front_used, old_front);
660
661 if (!pool->use_relocations) {
662 /* With softpin, the pool is made up of a bunch of buffers with separate
663 * maps. Make sure we have enough contiguous space that we can get a
664 * properly contiguous map for the next chunk.
665 */
666 assert(old_back == 0);
667 front_required = MAX2(front_required, old_front + contiguous_size);
668 }
669
670 if (back_used * 2 <= back_required && front_used * 2 <= front_required) {
671 /* If we're in this case then this isn't the firsta allocation and we
672 * already have enough space on both sides to hold double what we
673 * have allocated. There's nothing for us to do.
674 */
675 goto done;
676 }
677
678 uint32_t size = old_size * 2;
679 while (size < back_required + front_required)
680 size *= 2;
681
682 assert(size > pool->size);
683
684 /* We compute a new center_bo_offset such that, when we double the size
685 * of the pool, we maintain the ratio of how much is used by each side.
686 * This way things should remain more-or-less balanced.
687 */
688 uint32_t center_bo_offset;
689 if (back_used == 0) {
690 /* If we're in this case then we have never called alloc_back(). In
691 * this case, we want keep the offset at 0 to make things as simple
692 * as possible for users that don't care about back allocations.
693 */
694 center_bo_offset = 0;
695 } else {
696 /* Try to "center" the allocation based on how much is currently in
697 * use on each side of the center line.
698 */
699 center_bo_offset = ((uint64_t)size * back_used) / total_used;
700
701 /* Align down to a multiple of the page size */
702 center_bo_offset &= ~(PAGE_SIZE - 1);
703
704 assert(center_bo_offset >= back_used);
705
706 /* Make sure we don't shrink the back end of the pool */
707 if (center_bo_offset < back_required)
708 center_bo_offset = back_required;
709
710 /* Make sure that we don't shrink the front end of the pool */
711 if (size - center_bo_offset < front_required)
712 center_bo_offset = size - front_required;
713 }
714
715 assert(center_bo_offset % PAGE_SIZE == 0);
716
717 result = anv_block_pool_expand_range(pool, center_bo_offset, size);
718
719 done:
720 pthread_mutex_unlock(&pool->device->mutex);
721
722 if (result == VK_SUCCESS) {
723 /* Return the appropriate new size. This function never actually
724 * updates state->next. Instead, we let the caller do that because it
725 * needs to do so in order to maintain its concurrency model.
726 */
727 if (state == &pool->state) {
728 return pool->size - pool->center_bo_offset;
729 } else {
730 assert(pool->center_bo_offset > 0);
731 return pool->center_bo_offset;
732 }
733 } else {
734 return 0;
735 }
736 }
737
738 static uint32_t
anv_block_pool_alloc_new(struct anv_block_pool * pool,struct anv_block_state * pool_state,uint32_t block_size,uint32_t * padding)739 anv_block_pool_alloc_new(struct anv_block_pool *pool,
740 struct anv_block_state *pool_state,
741 uint32_t block_size, uint32_t *padding)
742 {
743 struct anv_block_state state, old, new;
744
745 /* Most allocations won't generate any padding */
746 if (padding)
747 *padding = 0;
748
749 while (1) {
750 state.u64 = __sync_fetch_and_add(&pool_state->u64, block_size);
751 if (state.next + block_size <= state.end) {
752 return state.next;
753 } else if (state.next <= state.end) {
754 if (!pool->use_relocations && state.next < state.end) {
755 /* We need to grow the block pool, but still have some leftover
756 * space that can't be used by that particular allocation. So we
757 * add that as a "padding", and return it.
758 */
759 uint32_t leftover = state.end - state.next;
760
761 /* If there is some leftover space in the pool, the caller must
762 * deal with it.
763 */
764 assert(leftover == 0 || padding);
765 if (padding)
766 *padding = leftover;
767 state.next += leftover;
768 }
769
770 /* We allocated the first block outside the pool so we have to grow
771 * the pool. pool_state->next acts a mutex: threads who try to
772 * allocate now will get block indexes above the current limit and
773 * hit futex_wait below.
774 */
775 new.next = state.next + block_size;
776 do {
777 new.end = anv_block_pool_grow(pool, pool_state, block_size);
778 } while (new.end < new.next);
779
780 old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
781 if (old.next != state.next)
782 futex_wake(&pool_state->end, INT32_MAX);
783 return state.next;
784 } else {
785 futex_wait(&pool_state->end, state.end, NULL);
786 continue;
787 }
788 }
789 }
790
791 int32_t
anv_block_pool_alloc(struct anv_block_pool * pool,uint32_t block_size,uint32_t * padding)792 anv_block_pool_alloc(struct anv_block_pool *pool,
793 uint32_t block_size, uint32_t *padding)
794 {
795 uint32_t offset;
796
797 offset = anv_block_pool_alloc_new(pool, &pool->state, block_size, padding);
798
799 return offset;
800 }
801
802 /* Allocates a block out of the back of the block pool.
803 *
804 * This will allocated a block earlier than the "start" of the block pool.
805 * The offsets returned from this function will be negative but will still
806 * be correct relative to the block pool's map pointer.
807 *
808 * If you ever use anv_block_pool_alloc_back, then you will have to do
809 * gymnastics with the block pool's BO when doing relocations.
810 */
811 int32_t
anv_block_pool_alloc_back(struct anv_block_pool * pool,uint32_t block_size)812 anv_block_pool_alloc_back(struct anv_block_pool *pool,
813 uint32_t block_size)
814 {
815 int32_t offset = anv_block_pool_alloc_new(pool, &pool->back_state,
816 block_size, NULL);
817
818 /* The offset we get out of anv_block_pool_alloc_new() is actually the
819 * number of bytes downwards from the middle to the end of the block.
820 * We need to turn it into a (negative) offset from the middle to the
821 * start of the block.
822 */
823 assert(offset >= 0);
824 return -(offset + block_size);
825 }
826
827 VkResult
anv_state_pool_init(struct anv_state_pool * pool,struct anv_device * device,const char * name,uint64_t base_address,int32_t start_offset,uint32_t block_size)828 anv_state_pool_init(struct anv_state_pool *pool,
829 struct anv_device *device,
830 const char *name,
831 uint64_t base_address,
832 int32_t start_offset,
833 uint32_t block_size)
834 {
835 /* We don't want to ever see signed overflow */
836 assert(start_offset < INT32_MAX - (int32_t)BLOCK_POOL_MEMFD_SIZE);
837
838 uint32_t initial_size = block_size * 16;
839
840 VkResult result = anv_block_pool_init(&pool->block_pool, device, name,
841 base_address + start_offset,
842 initial_size);
843 if (result != VK_SUCCESS)
844 return result;
845
846 pool->start_offset = start_offset;
847
848 result = anv_state_table_init(&pool->table, device, 64);
849 if (result != VK_SUCCESS) {
850 anv_block_pool_finish(&pool->block_pool);
851 return result;
852 }
853
854 assert(util_is_power_of_two_or_zero(block_size));
855 pool->block_size = block_size;
856 pool->back_alloc_free_list = ANV_FREE_LIST_EMPTY;
857 for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
858 pool->buckets[i].free_list = ANV_FREE_LIST_EMPTY;
859 pool->buckets[i].block.next = 0;
860 pool->buckets[i].block.end = 0;
861 }
862 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
863
864 return VK_SUCCESS;
865 }
866
867 void
anv_state_pool_finish(struct anv_state_pool * pool)868 anv_state_pool_finish(struct anv_state_pool *pool)
869 {
870 VG(VALGRIND_DESTROY_MEMPOOL(pool));
871 anv_state_table_finish(&pool->table);
872 anv_block_pool_finish(&pool->block_pool);
873 }
874
875 static uint32_t
anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool * pool,struct anv_block_pool * block_pool,uint32_t state_size,uint32_t block_size,uint32_t * padding)876 anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool *pool,
877 struct anv_block_pool *block_pool,
878 uint32_t state_size,
879 uint32_t block_size,
880 uint32_t *padding)
881 {
882 struct anv_block_state block, old, new;
883 uint32_t offset;
884
885 /* We don't always use anv_block_pool_alloc(), which would set *padding to
886 * zero for us. So if we have a pointer to padding, we must zero it out
887 * ourselves here, to make sure we always return some sensible value.
888 */
889 if (padding)
890 *padding = 0;
891
892 /* If our state is large, we don't need any sub-allocation from a block.
893 * Instead, we just grab whole (potentially large) blocks.
894 */
895 if (state_size >= block_size)
896 return anv_block_pool_alloc(block_pool, state_size, padding);
897
898 restart:
899 block.u64 = __sync_fetch_and_add(&pool->block.u64, state_size);
900
901 if (block.next < block.end) {
902 return block.next;
903 } else if (block.next == block.end) {
904 offset = anv_block_pool_alloc(block_pool, block_size, padding);
905 new.next = offset + state_size;
906 new.end = offset + block_size;
907 old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
908 if (old.next != block.next)
909 futex_wake(&pool->block.end, INT32_MAX);
910 return offset;
911 } else {
912 futex_wait(&pool->block.end, block.end, NULL);
913 goto restart;
914 }
915 }
916
917 static uint32_t
anv_state_pool_get_bucket(uint32_t size)918 anv_state_pool_get_bucket(uint32_t size)
919 {
920 unsigned size_log2 = ilog2_round_up(size);
921 assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
922 if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
923 size_log2 = ANV_MIN_STATE_SIZE_LOG2;
924 return size_log2 - ANV_MIN_STATE_SIZE_LOG2;
925 }
926
927 static uint32_t
anv_state_pool_get_bucket_size(uint32_t bucket)928 anv_state_pool_get_bucket_size(uint32_t bucket)
929 {
930 uint32_t size_log2 = bucket + ANV_MIN_STATE_SIZE_LOG2;
931 return 1 << size_log2;
932 }
933
934 /** Helper to push a chunk into the state table.
935 *
936 * It creates 'count' entries into the state table and update their sizes,
937 * offsets and maps, also pushing them as "free" states.
938 */
939 static void
anv_state_pool_return_blocks(struct anv_state_pool * pool,uint32_t chunk_offset,uint32_t count,uint32_t block_size)940 anv_state_pool_return_blocks(struct anv_state_pool *pool,
941 uint32_t chunk_offset, uint32_t count,
942 uint32_t block_size)
943 {
944 /* Disallow returning 0 chunks */
945 assert(count != 0);
946
947 /* Make sure we always return chunks aligned to the block_size */
948 assert(chunk_offset % block_size == 0);
949
950 uint32_t st_idx;
951 UNUSED VkResult result = anv_state_table_add(&pool->table, &st_idx, count);
952 assert(result == VK_SUCCESS);
953 for (int i = 0; i < count; i++) {
954 /* update states that were added back to the state table */
955 struct anv_state *state_i = anv_state_table_get(&pool->table,
956 st_idx + i);
957 state_i->alloc_size = block_size;
958 state_i->offset = pool->start_offset + chunk_offset + block_size * i;
959 state_i->map = anv_block_pool_map(&pool->block_pool,
960 state_i->offset,
961 state_i->alloc_size);
962 }
963
964 uint32_t block_bucket = anv_state_pool_get_bucket(block_size);
965 anv_free_list_push(&pool->buckets[block_bucket].free_list,
966 &pool->table, st_idx, count);
967 }
968
969 /** Returns a chunk of memory back to the state pool.
970 *
971 * Do a two-level split. If chunk_size is bigger than divisor
972 * (pool->block_size), we return as many divisor sized blocks as we can, from
973 * the end of the chunk.
974 *
975 * The remaining is then split into smaller blocks (starting at small_size if
976 * it is non-zero), with larger blocks always being taken from the end of the
977 * chunk.
978 */
979 static void
anv_state_pool_return_chunk(struct anv_state_pool * pool,uint32_t chunk_offset,uint32_t chunk_size,uint32_t small_size)980 anv_state_pool_return_chunk(struct anv_state_pool *pool,
981 uint32_t chunk_offset, uint32_t chunk_size,
982 uint32_t small_size)
983 {
984 uint32_t divisor = pool->block_size;
985 uint32_t nblocks = chunk_size / divisor;
986 uint32_t rest = chunk_size - nblocks * divisor;
987
988 if (nblocks > 0) {
989 /* First return divisor aligned and sized chunks. We start returning
990 * larger blocks from the end of the chunk, since they should already be
991 * aligned to divisor. Also anv_state_pool_return_blocks() only accepts
992 * aligned chunks.
993 */
994 uint32_t offset = chunk_offset + rest;
995 anv_state_pool_return_blocks(pool, offset, nblocks, divisor);
996 }
997
998 chunk_size = rest;
999 divisor /= 2;
1000
1001 if (small_size > 0 && small_size < divisor)
1002 divisor = small_size;
1003
1004 uint32_t min_size = 1 << ANV_MIN_STATE_SIZE_LOG2;
1005
1006 /* Just as before, return larger divisor aligned blocks from the end of the
1007 * chunk first.
1008 */
1009 while (chunk_size > 0 && divisor >= min_size) {
1010 nblocks = chunk_size / divisor;
1011 rest = chunk_size - nblocks * divisor;
1012 if (nblocks > 0) {
1013 anv_state_pool_return_blocks(pool, chunk_offset + rest,
1014 nblocks, divisor);
1015 chunk_size = rest;
1016 }
1017 divisor /= 2;
1018 }
1019 }
1020
1021 static struct anv_state
anv_state_pool_alloc_no_vg(struct anv_state_pool * pool,uint32_t size,uint32_t align)1022 anv_state_pool_alloc_no_vg(struct anv_state_pool *pool,
1023 uint32_t size, uint32_t align)
1024 {
1025 uint32_t bucket = anv_state_pool_get_bucket(MAX2(size, align));
1026
1027 struct anv_state *state;
1028 uint32_t alloc_size = anv_state_pool_get_bucket_size(bucket);
1029 int32_t offset;
1030
1031 /* Try free list first. */
1032 state = anv_free_list_pop(&pool->buckets[bucket].free_list,
1033 &pool->table);
1034 if (state) {
1035 assert(state->offset >= pool->start_offset);
1036 goto done;
1037 }
1038
1039 /* Try to grab a chunk from some larger bucket and split it up */
1040 for (unsigned b = bucket + 1; b < ANV_STATE_BUCKETS; b++) {
1041 state = anv_free_list_pop(&pool->buckets[b].free_list, &pool->table);
1042 if (state) {
1043 unsigned chunk_size = anv_state_pool_get_bucket_size(b);
1044 int32_t chunk_offset = state->offset;
1045
1046 /* First lets update the state we got to its new size. offset and map
1047 * remain the same.
1048 */
1049 state->alloc_size = alloc_size;
1050
1051 /* Now return the unused part of the chunk back to the pool as free
1052 * blocks
1053 *
1054 * There are a couple of options as to what we do with it:
1055 *
1056 * 1) We could fully split the chunk into state.alloc_size sized
1057 * pieces. However, this would mean that allocating a 16B
1058 * state could potentially split a 2MB chunk into 512K smaller
1059 * chunks. This would lead to unnecessary fragmentation.
1060 *
1061 * 2) The classic "buddy allocator" method would have us split the
1062 * chunk in half and return one half. Then we would split the
1063 * remaining half in half and return one half, and repeat as
1064 * needed until we get down to the size we want. However, if
1065 * you are allocating a bunch of the same size state (which is
1066 * the common case), this means that every other allocation has
1067 * to go up a level and every fourth goes up two levels, etc.
1068 * This is not nearly as efficient as it could be if we did a
1069 * little more work up-front.
1070 *
1071 * 3) Split the difference between (1) and (2) by doing a
1072 * two-level split. If it's bigger than some fixed block_size,
1073 * we split it into block_size sized chunks and return all but
1074 * one of them. Then we split what remains into
1075 * state.alloc_size sized chunks and return them.
1076 *
1077 * We choose something close to option (3), which is implemented with
1078 * anv_state_pool_return_chunk(). That is done by returning the
1079 * remaining of the chunk, with alloc_size as a hint of the size that
1080 * we want the smaller chunk split into.
1081 */
1082 anv_state_pool_return_chunk(pool, chunk_offset + alloc_size,
1083 chunk_size - alloc_size, alloc_size);
1084 goto done;
1085 }
1086 }
1087
1088 uint32_t padding;
1089 offset = anv_fixed_size_state_pool_alloc_new(&pool->buckets[bucket],
1090 &pool->block_pool,
1091 alloc_size,
1092 pool->block_size,
1093 &padding);
1094 /* Every time we allocate a new state, add it to the state pool */
1095 uint32_t idx;
1096 UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1097 assert(result == VK_SUCCESS);
1098
1099 state = anv_state_table_get(&pool->table, idx);
1100 state->offset = pool->start_offset + offset;
1101 state->alloc_size = alloc_size;
1102 state->map = anv_block_pool_map(&pool->block_pool, offset, alloc_size);
1103
1104 if (padding > 0) {
1105 uint32_t return_offset = offset - padding;
1106 anv_state_pool_return_chunk(pool, return_offset, padding, 0);
1107 }
1108
1109 done:
1110 return *state;
1111 }
1112
1113 struct anv_state
anv_state_pool_alloc(struct anv_state_pool * pool,uint32_t size,uint32_t align)1114 anv_state_pool_alloc(struct anv_state_pool *pool, uint32_t size, uint32_t align)
1115 {
1116 if (size == 0)
1117 return ANV_STATE_NULL;
1118
1119 struct anv_state state = anv_state_pool_alloc_no_vg(pool, size, align);
1120 VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
1121 return state;
1122 }
1123
1124 struct anv_state
anv_state_pool_alloc_back(struct anv_state_pool * pool)1125 anv_state_pool_alloc_back(struct anv_state_pool *pool)
1126 {
1127 struct anv_state *state;
1128 uint32_t alloc_size = pool->block_size;
1129
1130 /* This function is only used with pools where start_offset == 0 */
1131 assert(pool->start_offset == 0);
1132
1133 state = anv_free_list_pop(&pool->back_alloc_free_list, &pool->table);
1134 if (state) {
1135 assert(state->offset < pool->start_offset);
1136 goto done;
1137 }
1138
1139 int32_t offset;
1140 offset = anv_block_pool_alloc_back(&pool->block_pool,
1141 pool->block_size);
1142 uint32_t idx;
1143 UNUSED VkResult result = anv_state_table_add(&pool->table, &idx, 1);
1144 assert(result == VK_SUCCESS);
1145
1146 state = anv_state_table_get(&pool->table, idx);
1147 state->offset = pool->start_offset + offset;
1148 state->alloc_size = alloc_size;
1149 state->map = anv_block_pool_map(&pool->block_pool, offset, alloc_size);
1150
1151 done:
1152 VG(VALGRIND_MEMPOOL_ALLOC(pool, state->map, state->alloc_size));
1153 return *state;
1154 }
1155
1156 static void
anv_state_pool_free_no_vg(struct anv_state_pool * pool,struct anv_state state)1157 anv_state_pool_free_no_vg(struct anv_state_pool *pool, struct anv_state state)
1158 {
1159 assert(util_is_power_of_two_or_zero(state.alloc_size));
1160 unsigned bucket = anv_state_pool_get_bucket(state.alloc_size);
1161
1162 if (state.offset < pool->start_offset) {
1163 assert(state.alloc_size == pool->block_size);
1164 anv_free_list_push(&pool->back_alloc_free_list,
1165 &pool->table, state.idx, 1);
1166 } else {
1167 anv_free_list_push(&pool->buckets[bucket].free_list,
1168 &pool->table, state.idx, 1);
1169 }
1170 }
1171
1172 void
anv_state_pool_free(struct anv_state_pool * pool,struct anv_state state)1173 anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
1174 {
1175 if (state.alloc_size == 0)
1176 return;
1177
1178 VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
1179 anv_state_pool_free_no_vg(pool, state);
1180 }
1181
1182 struct anv_state_stream_block {
1183 struct anv_state block;
1184
1185 /* The next block */
1186 struct anv_state_stream_block *next;
1187
1188 #ifdef HAVE_VALGRIND
1189 /* A pointer to the first user-allocated thing in this block. This is
1190 * what valgrind sees as the start of the block.
1191 */
1192 void *_vg_ptr;
1193 #endif
1194 };
1195
1196 /* The state stream allocator is a one-shot, single threaded allocator for
1197 * variable sized blocks. We use it for allocating dynamic state.
1198 */
1199 void
anv_state_stream_init(struct anv_state_stream * stream,struct anv_state_pool * state_pool,uint32_t block_size)1200 anv_state_stream_init(struct anv_state_stream *stream,
1201 struct anv_state_pool *state_pool,
1202 uint32_t block_size)
1203 {
1204 stream->state_pool = state_pool;
1205 stream->block_size = block_size;
1206
1207 stream->block = ANV_STATE_NULL;
1208
1209 /* Ensure that next + whatever > block_size. This way the first call to
1210 * state_stream_alloc fetches a new block.
1211 */
1212 stream->next = block_size;
1213
1214 util_dynarray_init(&stream->all_blocks, NULL);
1215
1216 VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
1217 }
1218
1219 void
anv_state_stream_finish(struct anv_state_stream * stream)1220 anv_state_stream_finish(struct anv_state_stream *stream)
1221 {
1222 util_dynarray_foreach(&stream->all_blocks, struct anv_state, block) {
1223 VG(VALGRIND_MEMPOOL_FREE(stream, block->map));
1224 VG(VALGRIND_MAKE_MEM_NOACCESS(block->map, block->alloc_size));
1225 anv_state_pool_free_no_vg(stream->state_pool, *block);
1226 }
1227 util_dynarray_fini(&stream->all_blocks);
1228
1229 VG(VALGRIND_DESTROY_MEMPOOL(stream));
1230 }
1231
1232 struct anv_state
anv_state_stream_alloc(struct anv_state_stream * stream,uint32_t size,uint32_t alignment)1233 anv_state_stream_alloc(struct anv_state_stream *stream,
1234 uint32_t size, uint32_t alignment)
1235 {
1236 if (size == 0)
1237 return ANV_STATE_NULL;
1238
1239 assert(alignment <= PAGE_SIZE);
1240
1241 uint32_t offset = align(stream->next, alignment);
1242 if (offset + size > stream->block.alloc_size) {
1243 uint32_t block_size = stream->block_size;
1244 if (block_size < size)
1245 block_size = round_to_power_of_two(size);
1246
1247 stream->block = anv_state_pool_alloc_no_vg(stream->state_pool,
1248 block_size, PAGE_SIZE);
1249 util_dynarray_append(&stream->all_blocks,
1250 struct anv_state, stream->block);
1251 VG(VALGRIND_MAKE_MEM_NOACCESS(stream->block.map, block_size));
1252
1253 /* Reset back to the start */
1254 stream->next = offset = 0;
1255 assert(offset + size <= stream->block.alloc_size);
1256 }
1257 const bool new_block = stream->next == 0;
1258
1259 struct anv_state state = stream->block;
1260 state.offset += offset;
1261 state.alloc_size = size;
1262 state.map += offset;
1263
1264 stream->next = offset + size;
1265
1266 if (new_block) {
1267 assert(state.map == stream->block.map);
1268 VG(VALGRIND_MEMPOOL_ALLOC(stream, state.map, size));
1269 } else {
1270 /* This only updates the mempool. The newly allocated chunk is still
1271 * marked as NOACCESS. */
1272 VG(VALGRIND_MEMPOOL_CHANGE(stream, stream->block.map, stream->block.map,
1273 stream->next));
1274 /* Mark the newly allocated chunk as undefined */
1275 VG(VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size));
1276 }
1277
1278 return state;
1279 }
1280
1281 void
anv_state_reserved_pool_init(struct anv_state_reserved_pool * pool,struct anv_state_pool * parent,uint32_t count,uint32_t size,uint32_t alignment)1282 anv_state_reserved_pool_init(struct anv_state_reserved_pool *pool,
1283 struct anv_state_pool *parent,
1284 uint32_t count, uint32_t size, uint32_t alignment)
1285 {
1286 pool->pool = parent;
1287 pool->reserved_blocks = ANV_FREE_LIST_EMPTY;
1288 pool->count = count;
1289
1290 for (unsigned i = 0; i < count; i++) {
1291 struct anv_state state = anv_state_pool_alloc(pool->pool, size, alignment);
1292 anv_free_list_push(&pool->reserved_blocks, &pool->pool->table, state.idx, 1);
1293 }
1294 }
1295
1296 void
anv_state_reserved_pool_finish(struct anv_state_reserved_pool * pool)1297 anv_state_reserved_pool_finish(struct anv_state_reserved_pool *pool)
1298 {
1299 struct anv_state *state;
1300
1301 while ((state = anv_free_list_pop(&pool->reserved_blocks, &pool->pool->table))) {
1302 anv_state_pool_free(pool->pool, *state);
1303 pool->count--;
1304 }
1305 assert(pool->count == 0);
1306 }
1307
1308 struct anv_state
anv_state_reserved_pool_alloc(struct anv_state_reserved_pool * pool)1309 anv_state_reserved_pool_alloc(struct anv_state_reserved_pool *pool)
1310 {
1311 return *anv_free_list_pop(&pool->reserved_blocks, &pool->pool->table);
1312 }
1313
1314 void
anv_state_reserved_pool_free(struct anv_state_reserved_pool * pool,struct anv_state state)1315 anv_state_reserved_pool_free(struct anv_state_reserved_pool *pool,
1316 struct anv_state state)
1317 {
1318 anv_free_list_push(&pool->reserved_blocks, &pool->pool->table, state.idx, 1);
1319 }
1320
1321 void
anv_bo_pool_init(struct anv_bo_pool * pool,struct anv_device * device,const char * name)1322 anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
1323 const char *name)
1324 {
1325 pool->name = name;
1326 pool->device = device;
1327 for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
1328 util_sparse_array_free_list_init(&pool->free_list[i],
1329 &device->bo_cache.bo_map, 0,
1330 offsetof(struct anv_bo, free_index));
1331 }
1332
1333 VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
1334 }
1335
1336 void
anv_bo_pool_finish(struct anv_bo_pool * pool)1337 anv_bo_pool_finish(struct anv_bo_pool *pool)
1338 {
1339 for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
1340 while (1) {
1341 struct anv_bo *bo =
1342 util_sparse_array_free_list_pop_elem(&pool->free_list[i]);
1343 if (bo == NULL)
1344 break;
1345
1346 /* anv_device_release_bo is going to "free" it */
1347 VG(VALGRIND_MALLOCLIKE_BLOCK(bo->map, bo->size, 0, 1));
1348 anv_device_release_bo(pool->device, bo);
1349 }
1350 }
1351
1352 VG(VALGRIND_DESTROY_MEMPOOL(pool));
1353 }
1354
1355 VkResult
anv_bo_pool_alloc(struct anv_bo_pool * pool,uint32_t size,struct anv_bo ** bo_out)1356 anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
1357 struct anv_bo **bo_out)
1358 {
1359 const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size);
1360 const unsigned pow2_size = 1 << size_log2;
1361 const unsigned bucket = size_log2 - 12;
1362 assert(bucket < ARRAY_SIZE(pool->free_list));
1363
1364 struct anv_bo *bo =
1365 util_sparse_array_free_list_pop_elem(&pool->free_list[bucket]);
1366 if (bo != NULL) {
1367 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1368 *bo_out = bo;
1369 return VK_SUCCESS;
1370 }
1371
1372 VkResult result = anv_device_alloc_bo(pool->device,
1373 pool->name,
1374 pow2_size,
1375 ANV_BO_ALLOC_MAPPED |
1376 ANV_BO_ALLOC_SNOOPED |
1377 ANV_BO_ALLOC_CAPTURE,
1378 0 /* explicit_address */,
1379 &bo);
1380 if (result != VK_SUCCESS)
1381 return result;
1382
1383 /* We want it to look like it came from this pool */
1384 VG(VALGRIND_FREELIKE_BLOCK(bo->map, 0));
1385 VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
1386
1387 *bo_out = bo;
1388
1389 return VK_SUCCESS;
1390 }
1391
1392 void
anv_bo_pool_free(struct anv_bo_pool * pool,struct anv_bo * bo)1393 anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo)
1394 {
1395 VG(VALGRIND_MEMPOOL_FREE(pool, bo->map));
1396
1397 assert(util_is_power_of_two_or_zero(bo->size));
1398 const unsigned size_log2 = ilog2_round_up(bo->size);
1399 const unsigned bucket = size_log2 - 12;
1400 assert(bucket < ARRAY_SIZE(pool->free_list));
1401
1402 assert(util_sparse_array_get(&pool->device->bo_cache.bo_map,
1403 bo->gem_handle) == bo);
1404 util_sparse_array_free_list_push(&pool->free_list[bucket],
1405 &bo->gem_handle, 1);
1406 }
1407
1408 // Scratch pool
1409
1410 void
anv_scratch_pool_init(struct anv_device * device,struct anv_scratch_pool * pool)1411 anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool)
1412 {
1413 memset(pool, 0, sizeof(*pool));
1414 }
1415
1416 void
anv_scratch_pool_finish(struct anv_device * device,struct anv_scratch_pool * pool)1417 anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool)
1418 {
1419 for (unsigned s = 0; s < ARRAY_SIZE(pool->bos[0]); s++) {
1420 for (unsigned i = 0; i < 16; i++) {
1421 if (pool->bos[i][s] != NULL)
1422 anv_device_release_bo(device, pool->bos[i][s]);
1423 }
1424 }
1425 }
1426
1427 struct anv_bo *
anv_scratch_pool_alloc(struct anv_device * device,struct anv_scratch_pool * pool,gl_shader_stage stage,unsigned per_thread_scratch)1428 anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool,
1429 gl_shader_stage stage, unsigned per_thread_scratch)
1430 {
1431 if (per_thread_scratch == 0)
1432 return NULL;
1433
1434 unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
1435 assert(scratch_size_log2 < 16);
1436
1437 assert(stage < ARRAY_SIZE(pool->bos));
1438
1439 const struct intel_device_info *devinfo = device->info;
1440
1441 struct anv_bo *bo = p_atomic_read(&pool->bos[scratch_size_log2][stage]);
1442
1443 if (bo != NULL)
1444 return bo;
1445
1446 assert(stage < ARRAY_SIZE(devinfo->max_scratch_ids));
1447 uint32_t size = per_thread_scratch * devinfo->max_scratch_ids[stage];
1448
1449 /* Even though the Scratch base pointers in 3DSTATE_*S are 64 bits, they
1450 * are still relative to the general state base address. When we emit
1451 * STATE_BASE_ADDRESS, we set general state base address to 0 and the size
1452 * to the maximum (1 page under 4GB). This allows us to just place the
1453 * scratch buffers anywhere we wish in the bottom 32 bits of address space
1454 * and just set the scratch base pointer in 3DSTATE_*S using a relocation.
1455 * However, in order to do so, we need to ensure that the kernel does not
1456 * place the scratch BO above the 32-bit boundary.
1457 *
1458 * NOTE: Technically, it can't go "anywhere" because the top page is off
1459 * limits. However, when EXEC_OBJECT_SUPPORTS_48B_ADDRESS is set, the
1460 * kernel allocates space using
1461 *
1462 * end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
1463 *
1464 * so nothing will ever touch the top page.
1465 */
1466 VkResult result = anv_device_alloc_bo(device, "scratch", size,
1467 ANV_BO_ALLOC_32BIT_ADDRESS,
1468 0 /* explicit_address */,
1469 &bo);
1470 if (result != VK_SUCCESS)
1471 return NULL; /* TODO */
1472
1473 struct anv_bo *current_bo =
1474 p_atomic_cmpxchg(&pool->bos[scratch_size_log2][stage], NULL, bo);
1475 if (current_bo) {
1476 anv_device_release_bo(device, bo);
1477 return current_bo;
1478 } else {
1479 return bo;
1480 }
1481 }
1482
1483 VkResult
anv_bo_cache_init(struct anv_bo_cache * cache,struct anv_device * device)1484 anv_bo_cache_init(struct anv_bo_cache *cache, struct anv_device *device)
1485 {
1486 util_sparse_array_init(&cache->bo_map, sizeof(struct anv_bo), 1024);
1487
1488 if (pthread_mutex_init(&cache->mutex, NULL)) {
1489 util_sparse_array_finish(&cache->bo_map);
1490 return vk_errorf(device, VK_ERROR_OUT_OF_HOST_MEMORY,
1491 "pthread_mutex_init failed: %m");
1492 }
1493
1494 return VK_SUCCESS;
1495 }
1496
1497 void
anv_bo_cache_finish(struct anv_bo_cache * cache)1498 anv_bo_cache_finish(struct anv_bo_cache *cache)
1499 {
1500 util_sparse_array_finish(&cache->bo_map);
1501 pthread_mutex_destroy(&cache->mutex);
1502 }
1503
1504 #define ANV_BO_CACHE_SUPPORTED_FLAGS \
1505 (EXEC_OBJECT_WRITE | \
1506 EXEC_OBJECT_ASYNC | \
1507 EXEC_OBJECT_SUPPORTS_48B_ADDRESS | \
1508 EXEC_OBJECT_PINNED | \
1509 EXEC_OBJECT_CAPTURE)
1510
1511 static uint32_t
anv_bo_alloc_flags_to_bo_flags(struct anv_device * device,enum anv_bo_alloc_flags alloc_flags)1512 anv_bo_alloc_flags_to_bo_flags(struct anv_device *device,
1513 enum anv_bo_alloc_flags alloc_flags)
1514 {
1515 struct anv_physical_device *pdevice = device->physical;
1516
1517 uint64_t bo_flags = 0;
1518 if (!(alloc_flags & ANV_BO_ALLOC_32BIT_ADDRESS) &&
1519 pdevice->supports_48bit_addresses)
1520 bo_flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1521
1522 if ((alloc_flags & ANV_BO_ALLOC_CAPTURE) && pdevice->has_exec_capture)
1523 bo_flags |= EXEC_OBJECT_CAPTURE;
1524
1525 if (alloc_flags & ANV_BO_ALLOC_IMPLICIT_WRITE) {
1526 assert(alloc_flags & ANV_BO_ALLOC_IMPLICIT_SYNC);
1527 bo_flags |= EXEC_OBJECT_WRITE;
1528 }
1529
1530 if (!(alloc_flags & ANV_BO_ALLOC_IMPLICIT_SYNC) && pdevice->has_exec_async)
1531 bo_flags |= EXEC_OBJECT_ASYNC;
1532
1533 if (pdevice->use_softpin)
1534 bo_flags |= EXEC_OBJECT_PINNED;
1535
1536 return bo_flags;
1537 }
1538
1539 static void
anv_bo_finish(struct anv_device * device,struct anv_bo * bo)1540 anv_bo_finish(struct anv_device *device, struct anv_bo *bo)
1541 {
1542 if (bo->offset != 0 && anv_bo_is_pinned(bo) && !bo->has_fixed_address)
1543 anv_vma_free(device, bo->offset, bo->size);
1544
1545 if (bo->map && !bo->from_host_ptr)
1546 anv_device_unmap_bo(device, bo, bo->map, bo->size);
1547
1548 assert(bo->gem_handle != 0);
1549 anv_gem_close(device, bo->gem_handle);
1550 }
1551
1552 static VkResult
anv_bo_vma_alloc_or_close(struct anv_device * device,struct anv_bo * bo,enum anv_bo_alloc_flags alloc_flags,uint64_t explicit_address)1553 anv_bo_vma_alloc_or_close(struct anv_device *device,
1554 struct anv_bo *bo,
1555 enum anv_bo_alloc_flags alloc_flags,
1556 uint64_t explicit_address)
1557 {
1558 assert(anv_bo_is_pinned(bo));
1559 assert(explicit_address == intel_48b_address(explicit_address));
1560
1561 uint32_t align = 4096;
1562
1563 if (alloc_flags & ANV_BO_ALLOC_FIXED_ADDRESS) {
1564 bo->has_fixed_address = true;
1565 bo->offset = explicit_address;
1566 } else {
1567 bo->offset = anv_vma_alloc(device, bo->size,
1568 align, alloc_flags, explicit_address);
1569 if (bo->offset == 0) {
1570 anv_bo_finish(device, bo);
1571 return vk_errorf(device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
1572 "failed to allocate virtual address for BO");
1573 }
1574 }
1575
1576 return VK_SUCCESS;
1577 }
1578
1579 VkResult
anv_device_alloc_bo(struct anv_device * device,const char * name,uint64_t size,enum anv_bo_alloc_flags alloc_flags,uint64_t explicit_address,struct anv_bo ** bo_out)1580 anv_device_alloc_bo(struct anv_device *device,
1581 const char *name,
1582 uint64_t size,
1583 enum anv_bo_alloc_flags alloc_flags,
1584 uint64_t explicit_address,
1585 struct anv_bo **bo_out)
1586 {
1587 const uint32_t bo_flags =
1588 anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1589 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1590
1591 /* The kernel is going to give us whole pages anyway */
1592 size = align64(size, 4096);
1593
1594 uint32_t gem_handle = anv_gem_create(device, size);
1595 if (gem_handle == 0)
1596 return vk_error(device, VK_ERROR_OUT_OF_DEVICE_MEMORY);
1597
1598 struct anv_bo new_bo = {
1599 .name = name,
1600 .gem_handle = gem_handle,
1601 .refcount = 1,
1602 .offset = -1,
1603 .size = size,
1604 .flags = bo_flags,
1605 .is_external = (alloc_flags & ANV_BO_ALLOC_EXTERNAL),
1606 .has_client_visible_address =
1607 (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
1608 };
1609
1610 if (alloc_flags & ANV_BO_ALLOC_MAPPED) {
1611 VkResult result = anv_device_map_bo(device, &new_bo, 0, size,
1612 0 /* gem_flags */, &new_bo.map);
1613 if (unlikely(result != VK_SUCCESS)) {
1614 anv_gem_close(device, new_bo.gem_handle);
1615 return result;
1616 }
1617 }
1618
1619 if (alloc_flags & ANV_BO_ALLOC_SNOOPED) {
1620 assert(alloc_flags & ANV_BO_ALLOC_MAPPED);
1621 /* We don't want to change these defaults if it's going to be shared
1622 * with another process.
1623 */
1624 assert(!(alloc_flags & ANV_BO_ALLOC_EXTERNAL));
1625
1626 /* Regular objects are created I915_CACHING_CACHED on LLC platforms and
1627 * I915_CACHING_NONE on non-LLC platforms. For many internal state
1628 * objects, we'd rather take the snooping overhead than risk forgetting
1629 * a CLFLUSH somewhere. Userptr objects are always created as
1630 * I915_CACHING_CACHED, which on non-LLC means snooped so there's no
1631 * need to do this there.
1632 */
1633 if (!device->info->has_llc) {
1634 anv_gem_set_caching(device, new_bo.gem_handle,
1635 I915_CACHING_CACHED);
1636 }
1637 }
1638
1639 if (anv_bo_is_pinned(&new_bo)) {
1640 VkResult result = anv_bo_vma_alloc_or_close(device, &new_bo,
1641 alloc_flags,
1642 explicit_address);
1643 if (result != VK_SUCCESS)
1644 return result;
1645 } else {
1646 assert(!new_bo.has_client_visible_address);
1647 }
1648
1649 assert(new_bo.gem_handle);
1650
1651 /* If we just got this gem_handle from anv_bo_init_new then we know no one
1652 * else is touching this BO at the moment so we don't need to lock here.
1653 */
1654 struct anv_bo *bo = anv_device_lookup_bo(device, new_bo.gem_handle);
1655 *bo = new_bo;
1656
1657 *bo_out = bo;
1658
1659 return VK_SUCCESS;
1660 }
1661
1662 VkResult
anv_device_map_bo(struct anv_device * device,struct anv_bo * bo,uint64_t offset,size_t size,uint32_t gem_flags,void ** map_out)1663 anv_device_map_bo(struct anv_device *device,
1664 struct anv_bo *bo,
1665 uint64_t offset,
1666 size_t size,
1667 uint32_t gem_flags,
1668 void **map_out)
1669 {
1670 assert(!bo->is_wrapper && !bo->from_host_ptr);
1671 assert(size > 0);
1672
1673 void *map = anv_gem_mmap(device, bo->gem_handle, offset, size, gem_flags);
1674 if (unlikely(map == MAP_FAILED))
1675 return vk_errorf(device, VK_ERROR_MEMORY_MAP_FAILED, "mmap failed: %m");
1676
1677 assert(map != NULL);
1678
1679 if (map_out)
1680 *map_out = map;
1681
1682 return VK_SUCCESS;
1683 }
1684
1685 void
anv_device_unmap_bo(struct anv_device * device,struct anv_bo * bo,void * map,size_t map_size)1686 anv_device_unmap_bo(struct anv_device *device,
1687 struct anv_bo *bo,
1688 void *map, size_t map_size)
1689 {
1690 assert(!bo->is_wrapper && !bo->from_host_ptr);
1691
1692 anv_gem_munmap(device, map, map_size);
1693 }
1694
1695 VkResult
anv_device_import_bo_from_host_ptr(struct anv_device * device,void * host_ptr,uint32_t size,enum anv_bo_alloc_flags alloc_flags,uint64_t client_address,struct anv_bo ** bo_out)1696 anv_device_import_bo_from_host_ptr(struct anv_device *device,
1697 void *host_ptr, uint32_t size,
1698 enum anv_bo_alloc_flags alloc_flags,
1699 uint64_t client_address,
1700 struct anv_bo **bo_out)
1701 {
1702 assert(!(alloc_flags & (ANV_BO_ALLOC_MAPPED |
1703 ANV_BO_ALLOC_SNOOPED |
1704 ANV_BO_ALLOC_FIXED_ADDRESS)));
1705
1706 struct anv_bo_cache *cache = &device->bo_cache;
1707 const uint32_t bo_flags =
1708 anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1709 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1710
1711 uint32_t gem_handle = anv_gem_userptr(device, host_ptr, size);
1712 if (!gem_handle)
1713 return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
1714
1715 pthread_mutex_lock(&cache->mutex);
1716
1717 struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle);
1718 if (bo->refcount > 0) {
1719 /* VK_EXT_external_memory_host doesn't require handling importing the
1720 * same pointer twice at the same time, but we don't get in the way. If
1721 * kernel gives us the same gem_handle, only succeed if the flags match.
1722 */
1723 assert(bo->gem_handle == gem_handle);
1724 if (bo_flags != bo->flags) {
1725 pthread_mutex_unlock(&cache->mutex);
1726 return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1727 "same host pointer imported two different ways");
1728 }
1729
1730 if (bo->has_client_visible_address !=
1731 ((alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0)) {
1732 pthread_mutex_unlock(&cache->mutex);
1733 return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1734 "The same BO was imported with and without buffer "
1735 "device address");
1736 }
1737
1738 if (client_address && client_address != intel_48b_address(bo->offset)) {
1739 pthread_mutex_unlock(&cache->mutex);
1740 return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1741 "The same BO was imported at two different "
1742 "addresses");
1743 }
1744
1745 __sync_fetch_and_add(&bo->refcount, 1);
1746 } else {
1747 struct anv_bo new_bo = {
1748 .name = "host-ptr",
1749 .gem_handle = gem_handle,
1750 .refcount = 1,
1751 .offset = -1,
1752 .size = size,
1753 .map = host_ptr,
1754 .flags = bo_flags,
1755 .is_external = true,
1756 .from_host_ptr = true,
1757 .has_client_visible_address =
1758 (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
1759 };
1760
1761 if (anv_bo_is_pinned(&new_bo)) {
1762 VkResult result = anv_bo_vma_alloc_or_close(device, &new_bo,
1763 alloc_flags,
1764 client_address);
1765 if (result != VK_SUCCESS) {
1766 pthread_mutex_unlock(&cache->mutex);
1767 return result;
1768 }
1769 } else {
1770 assert(!new_bo.has_client_visible_address);
1771 }
1772
1773 *bo = new_bo;
1774 }
1775
1776 pthread_mutex_unlock(&cache->mutex);
1777 *bo_out = bo;
1778
1779 return VK_SUCCESS;
1780 }
1781
1782 VkResult
anv_device_import_bo(struct anv_device * device,int fd,enum anv_bo_alloc_flags alloc_flags,uint64_t client_address,struct anv_bo ** bo_out)1783 anv_device_import_bo(struct anv_device *device,
1784 int fd,
1785 enum anv_bo_alloc_flags alloc_flags,
1786 uint64_t client_address,
1787 struct anv_bo **bo_out)
1788 {
1789 assert(!(alloc_flags & (ANV_BO_ALLOC_MAPPED |
1790 ANV_BO_ALLOC_SNOOPED |
1791 ANV_BO_ALLOC_FIXED_ADDRESS)));
1792
1793 struct anv_bo_cache *cache = &device->bo_cache;
1794 const uint32_t bo_flags =
1795 anv_bo_alloc_flags_to_bo_flags(device, alloc_flags);
1796 assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
1797
1798 pthread_mutex_lock(&cache->mutex);
1799
1800 uint32_t gem_handle = anv_gem_fd_to_handle(device, fd);
1801 if (!gem_handle) {
1802 pthread_mutex_unlock(&cache->mutex);
1803 return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
1804 }
1805
1806 struct anv_bo *bo = anv_device_lookup_bo(device, gem_handle);
1807 if (bo->refcount > 0) {
1808 /* We have to be careful how we combine flags so that it makes sense.
1809 * Really, though, if we get to this case and it actually matters, the
1810 * client has imported a BO twice in different ways and they get what
1811 * they have coming.
1812 */
1813 uint64_t new_flags = 0;
1814 new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_WRITE;
1815 new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_ASYNC;
1816 new_flags |= (bo->flags & bo_flags) & EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
1817 new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_PINNED;
1818 new_flags |= (bo->flags | bo_flags) & EXEC_OBJECT_CAPTURE;
1819
1820 /* It's theoretically possible for a BO to get imported such that it's
1821 * both pinned and not pinned. The only way this can happen is if it
1822 * gets imported as both a semaphore and a memory object and that would
1823 * be an application error. Just fail out in that case.
1824 */
1825 if ((bo->flags & EXEC_OBJECT_PINNED) !=
1826 (bo_flags & EXEC_OBJECT_PINNED)) {
1827 pthread_mutex_unlock(&cache->mutex);
1828 return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1829 "The same BO was imported two different ways");
1830 }
1831
1832 /* It's also theoretically possible that someone could export a BO from
1833 * one heap and import it into another or to import the same BO into two
1834 * different heaps. If this happens, we could potentially end up both
1835 * allowing and disallowing 48-bit addresses. There's not much we can
1836 * do about it if we're pinning so we just throw an error and hope no
1837 * app is actually that stupid.
1838 */
1839 if ((new_flags & EXEC_OBJECT_PINNED) &&
1840 (bo->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) !=
1841 (bo_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) {
1842 pthread_mutex_unlock(&cache->mutex);
1843 return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1844 "The same BO was imported on two different heaps");
1845 }
1846
1847 if (bo->has_client_visible_address !=
1848 ((alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0)) {
1849 pthread_mutex_unlock(&cache->mutex);
1850 return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1851 "The same BO was imported with and without buffer "
1852 "device address");
1853 }
1854
1855 if (client_address && client_address != intel_48b_address(bo->offset)) {
1856 pthread_mutex_unlock(&cache->mutex);
1857 return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1858 "The same BO was imported at two different "
1859 "addresses");
1860 }
1861
1862 bo->flags = new_flags;
1863
1864 __sync_fetch_and_add(&bo->refcount, 1);
1865 } else {
1866 off_t size = lseek(fd, 0, SEEK_END);
1867 if (size == (off_t)-1) {
1868 anv_gem_close(device, gem_handle);
1869 pthread_mutex_unlock(&cache->mutex);
1870 return vk_error(device, VK_ERROR_INVALID_EXTERNAL_HANDLE);
1871 }
1872
1873 struct anv_bo new_bo = {
1874 .name = "imported",
1875 .gem_handle = gem_handle,
1876 .refcount = 1,
1877 .offset = -1,
1878 .size = size,
1879 .flags = bo_flags,
1880 .is_external = true,
1881 .has_client_visible_address =
1882 (alloc_flags & ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS) != 0,
1883 };
1884
1885 if (anv_bo_is_pinned(&new_bo)) {
1886 VkResult result = anv_bo_vma_alloc_or_close(device, &new_bo,
1887 alloc_flags,
1888 client_address);
1889 if (result != VK_SUCCESS) {
1890 pthread_mutex_unlock(&cache->mutex);
1891 return result;
1892 }
1893 } else {
1894 assert(!new_bo.has_client_visible_address);
1895 }
1896
1897 *bo = new_bo;
1898 }
1899
1900 pthread_mutex_unlock(&cache->mutex);
1901 *bo_out = bo;
1902
1903 return VK_SUCCESS;
1904 }
1905
1906 VkResult
anv_device_export_bo(struct anv_device * device,struct anv_bo * bo,int * fd_out)1907 anv_device_export_bo(struct anv_device *device,
1908 struct anv_bo *bo, int *fd_out)
1909 {
1910 assert(anv_device_lookup_bo(device, bo->gem_handle) == bo);
1911
1912 /* This BO must have been flagged external in order for us to be able
1913 * to export it. This is done based on external options passed into
1914 * anv_AllocateMemory.
1915 */
1916 assert(bo->is_external);
1917
1918 int fd = anv_gem_handle_to_fd(device, bo->gem_handle);
1919 if (fd < 0)
1920 return vk_error(device, VK_ERROR_TOO_MANY_OBJECTS);
1921
1922 *fd_out = fd;
1923
1924 return VK_SUCCESS;
1925 }
1926
1927 VkResult
anv_device_get_bo_tiling(struct anv_device * device,struct anv_bo * bo,enum isl_tiling * tiling_out)1928 anv_device_get_bo_tiling(struct anv_device *device,
1929 struct anv_bo *bo,
1930 enum isl_tiling *tiling_out)
1931 {
1932 int i915_tiling = anv_gem_get_tiling(device, bo->gem_handle);
1933 if (i915_tiling < 0) {
1934 return vk_errorf(device, VK_ERROR_INVALID_EXTERNAL_HANDLE,
1935 "failed to get BO tiling: %m");
1936 }
1937
1938 *tiling_out = isl_tiling_from_i915_tiling(i915_tiling);
1939
1940 return VK_SUCCESS;
1941 }
1942
1943 VkResult
anv_device_set_bo_tiling(struct anv_device * device,struct anv_bo * bo,uint32_t row_pitch_B,enum isl_tiling tiling)1944 anv_device_set_bo_tiling(struct anv_device *device,
1945 struct anv_bo *bo,
1946 uint32_t row_pitch_B,
1947 enum isl_tiling tiling)
1948 {
1949 int ret = anv_gem_set_tiling(device, bo->gem_handle, row_pitch_B,
1950 isl_tiling_to_i915_tiling(tiling));
1951 if (ret) {
1952 return vk_errorf(device, VK_ERROR_OUT_OF_DEVICE_MEMORY,
1953 "failed to set BO tiling: %m");
1954 }
1955
1956 return VK_SUCCESS;
1957 }
1958
1959 static bool
atomic_dec_not_one(uint32_t * counter)1960 atomic_dec_not_one(uint32_t *counter)
1961 {
1962 uint32_t old, val;
1963
1964 val = *counter;
1965 while (1) {
1966 if (val == 1)
1967 return false;
1968
1969 old = __sync_val_compare_and_swap(counter, val, val - 1);
1970 if (old == val)
1971 return true;
1972
1973 val = old;
1974 }
1975 }
1976
1977 void
anv_device_release_bo(struct anv_device * device,struct anv_bo * bo)1978 anv_device_release_bo(struct anv_device *device,
1979 struct anv_bo *bo)
1980 {
1981 struct anv_bo_cache *cache = &device->bo_cache;
1982 assert(anv_device_lookup_bo(device, bo->gem_handle) == bo);
1983
1984 /* Try to decrement the counter but don't go below one. If this succeeds
1985 * then the refcount has been decremented and we are not the last
1986 * reference.
1987 */
1988 if (atomic_dec_not_one(&bo->refcount))
1989 return;
1990
1991 pthread_mutex_lock(&cache->mutex);
1992
1993 /* We are probably the last reference since our attempt to decrement above
1994 * failed. However, we can't actually know until we are inside the mutex.
1995 * Otherwise, someone could import the BO between the decrement and our
1996 * taking the mutex.
1997 */
1998 if (unlikely(__sync_sub_and_fetch(&bo->refcount, 1) > 0)) {
1999 /* Turns out we're not the last reference. Unlock and bail. */
2000 pthread_mutex_unlock(&cache->mutex);
2001 return;
2002 }
2003 assert(bo->refcount == 0);
2004
2005 /* Memset the BO just in case. The refcount being zero should be enough to
2006 * prevent someone from assuming the data is valid but it's safer to just
2007 * stomp to zero just in case. We explicitly do this *before* we actually
2008 * close the GEM handle to ensure that if anyone allocates something and
2009 * gets the same GEM handle, the memset has already happen and won't stomp
2010 * all over any data they may write in this BO.
2011 */
2012 struct anv_bo old_bo = *bo;
2013
2014 memset(bo, 0, sizeof(*bo));
2015
2016 anv_bo_finish(device, &old_bo);
2017
2018 /* Don't unlock until we've actually closed the BO. The whole point of
2019 * the BO cache is to ensure that we correctly handle races with creating
2020 * and releasing GEM handles and we don't want to let someone import the BO
2021 * again between mutex unlock and closing the GEM handle.
2022 */
2023 pthread_mutex_unlock(&cache->mutex);
2024 }
2025