1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010-2015 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 */
24
25 #ifndef BRW_IR_FS_H
26 #define BRW_IR_FS_H
27
28 #include "brw_ir.h"
29 #include "brw_ir_allocator.h"
30
31 struct fs_inst : public exec_node {
32 private:
33 fs_inst &operator=(const fs_inst &);
34
35 void init(enum opcode opcode, uint8_t exec_width, const brw_reg &dst,
36 const brw_reg *src, unsigned sources);
37
38 public:
39 DECLARE_RALLOC_CXX_OPERATORS(fs_inst)
40
41 fs_inst();
42 fs_inst(enum opcode opcode, uint8_t exec_size);
43 fs_inst(enum opcode opcode, uint8_t exec_size, const brw_reg &dst);
44 fs_inst(enum opcode opcode, uint8_t exec_size, const brw_reg &dst,
45 const brw_reg &src0);
46 fs_inst(enum opcode opcode, uint8_t exec_size, const brw_reg &dst,
47 const brw_reg &src0, const brw_reg &src1);
48 fs_inst(enum opcode opcode, uint8_t exec_size, const brw_reg &dst,
49 const brw_reg &src0, const brw_reg &src1, const brw_reg &src2);
50 fs_inst(enum opcode opcode, uint8_t exec_size, const brw_reg &dst,
51 const brw_reg src[], unsigned sources);
52 fs_inst(const fs_inst &that);
53 ~fs_inst();
54
55 void resize_sources(uint8_t num_sources);
56
57 bool is_send_from_grf() const;
58 bool is_payload(unsigned arg) const;
59 bool is_partial_write() const;
60 unsigned components_read(unsigned i) const;
61 unsigned size_read(int arg) const;
62 bool can_do_source_mods(const struct intel_device_info *devinfo) const;
63 bool can_do_cmod() const;
64 bool can_change_types() const;
65 bool has_source_and_destination_hazard() const;
66
67 bool is_3src(const struct brw_compiler *compiler) const;
68 bool is_math() const;
69 bool is_control_flow_begin() const;
70 bool is_control_flow_end() const;
71 bool is_control_flow() const;
72 bool is_commutative() const;
73 bool is_raw_move() const;
74 bool can_do_saturate() const;
75 bool reads_accumulator_implicitly() const;
76 bool writes_accumulator_implicitly(const struct intel_device_info *devinfo) const;
77
78 /**
79 * Instructions that use indirect addressing have additional register
80 * regioning restrictions.
81 */
82 bool uses_indirect_addressing() const;
83
84 void remove(bblock_t *block, bool defer_later_block_ip_updates = false);
85 void insert_after(bblock_t *block, fs_inst *inst);
86 void insert_before(bblock_t *block, fs_inst *inst);
87
88 /**
89 * True if the instruction has side effects other than writing to
90 * its destination registers. You are expected not to reorder or
91 * optimize these out unless you know what you are doing.
92 */
93 bool has_side_effects() const;
94
95 /**
96 * True if the instruction might be affected by side effects of other
97 * instructions.
98 */
99 bool is_volatile() const;
100
101 /**
102 * Return whether \p arg is a control source of a virtual instruction which
103 * shouldn't contribute to the execution type and usual regioning
104 * restriction calculations of arithmetic instructions.
105 */
106 bool is_control_source(unsigned arg) const;
107
108 /**
109 * Return the subset of flag registers read by the instruction as a bitset
110 * with byte granularity.
111 */
112 unsigned flags_read(const intel_device_info *devinfo) const;
113
114 /**
115 * Return the subset of flag registers updated by the instruction (either
116 * partially or fully) as a bitset with byte granularity.
117 */
118 unsigned flags_written(const intel_device_info *devinfo) const;
119
120 /**
121 * Return true if this instruction is a sampler message gathering residency
122 * data.
123 */
124 bool has_sampler_residency() const;
125
126 uint8_t sources; /**< Number of brw_reg sources. */
127
128 /**
129 * Execution size of the instruction. This is used by the generator to
130 * generate the correct binary for the given instruction. Current valid
131 * values are 1, 4, 8, 16, 32.
132 */
133 uint8_t exec_size;
134
135 /**
136 * Channel group from the hardware execution and predication mask that
137 * should be applied to the instruction. The subset of channel enable
138 * signals (calculated from the EU control flow and predication state)
139 * given by [group, group + exec_size) will be used to mask GRF writes and
140 * any other side effects of the instruction.
141 */
142 uint8_t group;
143
144 uint8_t mlen; /**< SEND message length */
145 uint8_t ex_mlen; /**< SENDS extended message length */
146 uint8_t sfid; /**< SFID for SEND instructions */
147 /** The number of hardware registers used for a message header. */
148 uint8_t header_size;
149 uint8_t target; /**< MRT target. */
150 uint32_t desc; /**< SEND[S] message descriptor immediate */
151 uint32_t ex_desc; /**< SEND[S] extended message descriptor immediate */
152
153 uint32_t offset; /**< spill/unspill offset or texture offset bitfield */
154 unsigned size_written; /**< Data written to the destination register in bytes. */
155
156 enum opcode opcode; /* BRW_OPCODE_* or FS_OPCODE_* */
157 enum brw_conditional_mod conditional_mod; /**< BRW_CONDITIONAL_* */
158 enum brw_predicate predicate;
159
160 tgl_swsb sched; /**< Scheduling info. */
161
162 union {
163 struct {
164 /* Chooses which flag subregister (f0.0 to f3.1) is used for
165 * conditional mod and predication.
166 */
167 unsigned flag_subreg:3;
168
169 /**
170 * Systolic depth used by DPAS instruction.
171 */
172 unsigned sdepth:4;
173
174 /**
175 * Repeat count used by DPAS instruction.
176 */
177 unsigned rcount:4;
178
179 unsigned pad:2;
180
181 bool predicate_inverse:1;
182 bool writes_accumulator:1; /**< instruction implicitly writes accumulator */
183 bool force_writemask_all:1;
184 bool no_dd_clear:1;
185 bool no_dd_check:1;
186 bool saturate:1;
187 bool shadow_compare:1;
188 bool check_tdr:1; /**< Only valid for SEND; turns it into a SENDC */
189 bool send_has_side_effects:1; /**< Only valid for SHADER_OPCODE_SEND */
190 bool send_is_volatile:1; /**< Only valid for SHADER_OPCODE_SEND */
191 bool send_ex_desc_scratch:1; /**< Only valid for SHADER_OPCODE_SEND, use
192 * the scratch surface offset to build
193 * extended descriptor
194 */
195 bool send_ex_bso:1; /**< Only for SHADER_OPCODE_SEND, use extended
196 * bindless surface offset (26bits instead of
197 * 20bits)
198 */
199 /**
200 * The predication mask applied to this instruction is guaranteed to
201 * be uniform and a superset of the execution mask of the present block.
202 * No currently enabled channel will be disabled by the predicate.
203 */
204 bool predicate_trivial:1;
205 bool eot:1;
206 bool last_rt:1;
207 bool pi_noperspective:1; /**< Pixel interpolator noperspective flag */
208 bool keep_payload_trailing_zeros:1;
209 /**
210 * Whether the parameters of the SEND instructions are build with
211 * NoMask (for A32 messages this covers only the surface handle, for
212 * A64 messages this covers the load address).
213 */
214 bool has_no_mask_send_params:1;
215 };
216 uint32_t bits;
217 };
218
219 brw_reg dst;
220 brw_reg *src;
221 brw_reg builtin_src[4];
222
223 #ifndef NDEBUG
224 /** @{
225 * Annotation for the generated IR.
226 */
227 const char *annotation;
228 /** @} */
229 #endif
230 };
231
232 /**
233 * Make the execution of \p inst dependent on the evaluation of a possibly
234 * inverted predicate.
235 */
236 static inline fs_inst *
set_predicate_inv(enum brw_predicate pred,bool inverse,fs_inst * inst)237 set_predicate_inv(enum brw_predicate pred, bool inverse,
238 fs_inst *inst)
239 {
240 inst->predicate = pred;
241 inst->predicate_inverse = inverse;
242 return inst;
243 }
244
245 /**
246 * Make the execution of \p inst dependent on the evaluation of a predicate.
247 */
248 static inline fs_inst *
set_predicate(enum brw_predicate pred,fs_inst * inst)249 set_predicate(enum brw_predicate pred, fs_inst *inst)
250 {
251 return set_predicate_inv(pred, false, inst);
252 }
253
254 /**
255 * Write the result of evaluating the condition given by \p mod to a flag
256 * register.
257 */
258 static inline fs_inst *
set_condmod(enum brw_conditional_mod mod,fs_inst * inst)259 set_condmod(enum brw_conditional_mod mod, fs_inst *inst)
260 {
261 inst->conditional_mod = mod;
262 return inst;
263 }
264
265 /**
266 * Clamp the result of \p inst to the saturation range of its destination
267 * datatype.
268 */
269 static inline fs_inst *
set_saturate(bool saturate,fs_inst * inst)270 set_saturate(bool saturate, fs_inst *inst)
271 {
272 inst->saturate = saturate;
273 return inst;
274 }
275
276 /**
277 * Return the number of dataflow registers written by the instruction (either
278 * fully or partially) counted from 'floor(reg_offset(inst->dst) /
279 * register_size)'. The somewhat arbitrary register size unit is 4B for the
280 * UNIFORM and IMM files and 32B for all other files.
281 */
282 inline unsigned
regs_written(const fs_inst * inst)283 regs_written(const fs_inst *inst)
284 {
285 assert(inst->dst.file != UNIFORM && inst->dst.file != IMM);
286 return DIV_ROUND_UP(reg_offset(inst->dst) % REG_SIZE +
287 inst->size_written -
288 MIN2(inst->size_written, reg_padding(inst->dst)),
289 REG_SIZE);
290 }
291
292 /**
293 * Return the number of dataflow registers read by the instruction (either
294 * fully or partially) counted from 'floor(reg_offset(inst->src[i]) /
295 * register_size)'. The somewhat arbitrary register size unit is 4B for the
296 * UNIFORM files and 32B for all other files.
297 */
298 inline unsigned
regs_read(const fs_inst * inst,unsigned i)299 regs_read(const fs_inst *inst, unsigned i)
300 {
301 if (inst->src[i].file == IMM)
302 return 1;
303
304 const unsigned reg_size = inst->src[i].file == UNIFORM ? 4 : REG_SIZE;
305 return DIV_ROUND_UP(reg_offset(inst->src[i]) % reg_size +
306 inst->size_read(i) -
307 MIN2(inst->size_read(i), reg_padding(inst->src[i])),
308 reg_size);
309 }
310
311 static inline enum brw_reg_type
get_exec_type(const fs_inst * inst)312 get_exec_type(const fs_inst *inst)
313 {
314 brw_reg_type exec_type = BRW_TYPE_B;
315
316 for (int i = 0; i < inst->sources; i++) {
317 if (inst->src[i].file != BAD_FILE &&
318 !inst->is_control_source(i)) {
319 const brw_reg_type t = get_exec_type(inst->src[i].type);
320 if (brw_type_size_bytes(t) > brw_type_size_bytes(exec_type))
321 exec_type = t;
322 else if (brw_type_size_bytes(t) == brw_type_size_bytes(exec_type) &&
323 brw_type_is_float(t))
324 exec_type = t;
325 }
326 }
327
328 if (exec_type == BRW_TYPE_B)
329 exec_type = inst->dst.type;
330
331 assert(exec_type != BRW_TYPE_B);
332
333 /* Promotion of the execution type to 32-bit for conversions from or to
334 * half-float seems to be consistent with the following text from the
335 * Cherryview PRM Vol. 7, "Execution Data Type":
336 *
337 * "When single precision and half precision floats are mixed between
338 * source operands or between source and destination operand [..] single
339 * precision float is the execution datatype."
340 *
341 * and from "Register Region Restrictions":
342 *
343 * "Conversion between Integer and HF (Half Float) must be DWord aligned
344 * and strided by a DWord on the destination."
345 */
346 if (brw_type_size_bytes(exec_type) == 2 &&
347 inst->dst.type != exec_type) {
348 if (exec_type == BRW_TYPE_HF)
349 exec_type = BRW_TYPE_F;
350 else if (inst->dst.type == BRW_TYPE_HF)
351 exec_type = BRW_TYPE_D;
352 }
353
354 return exec_type;
355 }
356
357 static inline unsigned
get_exec_type_size(const fs_inst * inst)358 get_exec_type_size(const fs_inst *inst)
359 {
360 return brw_type_size_bytes(get_exec_type(inst));
361 }
362
363 static inline bool
is_send(const fs_inst * inst)364 is_send(const fs_inst *inst)
365 {
366 return inst->mlen || inst->is_send_from_grf();
367 }
368
369 /**
370 * Return whether the instruction isn't an ALU instruction and cannot be
371 * assumed to complete in-order.
372 */
373 static inline bool
is_unordered(const intel_device_info * devinfo,const fs_inst * inst)374 is_unordered(const intel_device_info *devinfo, const fs_inst *inst)
375 {
376 return is_send(inst) || (devinfo->ver < 20 && inst->is_math()) ||
377 inst->opcode == BRW_OPCODE_DPAS ||
378 (devinfo->has_64bit_float_via_math_pipe &&
379 (get_exec_type(inst) == BRW_TYPE_DF ||
380 inst->dst.type == BRW_TYPE_DF));
381 }
382
383 /**
384 * Return whether the following regioning restriction applies to the specified
385 * instruction. From the Cherryview PRM Vol 7. "Register Region
386 * Restrictions":
387 *
388 * "When source or destination datatype is 64b or operation is integer DWord
389 * multiply, regioning in Align1 must follow these rules:
390 *
391 * 1. Source and Destination horizontal stride must be aligned to the same qword.
392 * 2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride.
393 * 3. Source and Destination offset must be the same, except the case of
394 * scalar source."
395 */
396 static inline bool
has_dst_aligned_region_restriction(const intel_device_info * devinfo,const fs_inst * inst,brw_reg_type dst_type)397 has_dst_aligned_region_restriction(const intel_device_info *devinfo,
398 const fs_inst *inst,
399 brw_reg_type dst_type)
400 {
401 const brw_reg_type exec_type = get_exec_type(inst);
402 /* Even though the hardware spec claims that "integer DWord multiply"
403 * operations are restricted, empirical evidence and the behavior of the
404 * simulator suggest that only 32x32-bit integer multiplication is
405 * restricted.
406 */
407 const bool is_dword_multiply = !brw_type_is_float(exec_type) &&
408 ((inst->opcode == BRW_OPCODE_MUL &&
409 MIN2(brw_type_size_bytes(inst->src[0].type), brw_type_size_bytes(inst->src[1].type)) >= 4) ||
410 (inst->opcode == BRW_OPCODE_MAD &&
411 MIN2(brw_type_size_bytes(inst->src[1].type), brw_type_size_bytes(inst->src[2].type)) >= 4));
412
413 if (brw_type_size_bytes(dst_type) > 4 || brw_type_size_bytes(exec_type) > 4 ||
414 (brw_type_size_bytes(exec_type) == 4 && is_dword_multiply))
415 return intel_device_info_is_9lp(devinfo) || devinfo->verx10 >= 125;
416
417 else if (brw_type_is_float(dst_type))
418 return devinfo->verx10 >= 125;
419
420 else
421 return false;
422 }
423
424 static inline bool
has_dst_aligned_region_restriction(const intel_device_info * devinfo,const fs_inst * inst)425 has_dst_aligned_region_restriction(const intel_device_info *devinfo,
426 const fs_inst *inst)
427 {
428 return has_dst_aligned_region_restriction(devinfo, inst, inst->dst.type);
429 }
430
431 /**
432 * Return true if the instruction can be potentially affected by the Xe2+
433 * regioning restrictions that apply to integer types smaller than a dword.
434 * The restriction isn't quoted here due to its length, see BSpec #56640 for
435 * details.
436 */
437 static inline bool
has_subdword_integer_region_restriction(const intel_device_info * devinfo,const fs_inst * inst,const brw_reg * srcs,unsigned num_srcs)438 has_subdword_integer_region_restriction(const intel_device_info *devinfo,
439 const fs_inst *inst,
440 const brw_reg *srcs, unsigned num_srcs)
441 {
442 if (devinfo->ver >= 20 &&
443 brw_type_is_int(inst->dst.type) &&
444 MAX2(byte_stride(inst->dst),
445 brw_type_size_bytes(inst->dst.type)) < 4) {
446 for (unsigned i = 0; i < num_srcs; i++) {
447 if (brw_type_is_int(srcs[i].type) &&
448 brw_type_size_bytes(srcs[i].type) < 4 &&
449 byte_stride(srcs[i]) >= 4)
450 return true;
451 }
452 }
453
454 return false;
455 }
456
457 static inline bool
has_subdword_integer_region_restriction(const intel_device_info * devinfo,const fs_inst * inst)458 has_subdword_integer_region_restriction(const intel_device_info *devinfo,
459 const fs_inst *inst)
460 {
461 return has_subdword_integer_region_restriction(devinfo, inst,
462 inst->src, inst->sources);
463 }
464
465 /**
466 * Return whether the LOAD_PAYLOAD instruction is a plain copy of bits from
467 * the specified register file into a VGRF.
468 *
469 * This implies identity register regions without any source-destination
470 * overlap, but otherwise has no implications on the location of sources and
471 * destination in the register file: Gathering any number of portions from
472 * multiple virtual registers in any order is allowed.
473 */
474 inline bool
is_copy_payload(brw_reg_file file,const fs_inst * inst)475 is_copy_payload(brw_reg_file file, const fs_inst *inst)
476 {
477 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD ||
478 inst->is_partial_write() || inst->saturate ||
479 inst->dst.file != VGRF)
480 return false;
481
482 for (unsigned i = 0; i < inst->sources; i++) {
483 if (inst->src[i].file != file ||
484 inst->src[i].abs || inst->src[i].negate)
485 return false;
486
487 if (!inst->src[i].is_contiguous())
488 return false;
489
490 if (regions_overlap(inst->dst, inst->size_written,
491 inst->src[i], inst->size_read(i)))
492 return false;
493 }
494
495 return true;
496 }
497
498 /**
499 * Like is_copy_payload(), but the instruction is required to copy a single
500 * contiguous block of registers from the given register file into the
501 * destination without any reordering.
502 */
503 inline bool
is_identity_payload(brw_reg_file file,const fs_inst * inst)504 is_identity_payload(brw_reg_file file, const fs_inst *inst) {
505 if (is_copy_payload(file, inst)) {
506 brw_reg reg = inst->src[0];
507
508 for (unsigned i = 0; i < inst->sources; i++) {
509 reg.type = inst->src[i].type;
510 if (!inst->src[i].equals(reg))
511 return false;
512
513 reg = byte_offset(reg, inst->size_read(i));
514 }
515
516 return true;
517 } else {
518 return false;
519 }
520 }
521
522 /**
523 * Like is_copy_payload(), but the instruction is required to source data from
524 * at least two disjoint VGRFs.
525 *
526 * This doesn't necessarily rule out the elimination of this instruction
527 * through register coalescing, but due to limitations of the register
528 * coalesce pass it might be impossible to do so directly until a later stage,
529 * when the LOAD_PAYLOAD instruction is unrolled into a sequence of MOV
530 * instructions.
531 */
532 inline bool
is_multi_copy_payload(const fs_inst * inst)533 is_multi_copy_payload(const fs_inst *inst) {
534 if (is_copy_payload(VGRF, inst)) {
535 for (unsigned i = 0; i < inst->sources; i++) {
536 if (inst->src[i].nr != inst->src[0].nr)
537 return true;
538 }
539 }
540
541 return false;
542 }
543
544 /**
545 * Like is_identity_payload(), but the instruction is required to copy the
546 * whole contents of a single VGRF into the destination.
547 *
548 * This means that there is a good chance that the instruction will be
549 * eliminated through register coalescing, but it's neither a necessary nor a
550 * sufficient condition for that to happen -- E.g. consider the case where
551 * source and destination registers diverge due to other instructions in the
552 * program overwriting part of their contents, which isn't something we can
553 * predict up front based on a cheap strictly local test of the copy
554 * instruction.
555 */
556 inline bool
is_coalescing_payload(const brw::simple_allocator & alloc,const fs_inst * inst)557 is_coalescing_payload(const brw::simple_allocator &alloc, const fs_inst *inst)
558 {
559 return is_identity_payload(VGRF, inst) &&
560 inst->src[0].offset == 0 &&
561 alloc.sizes[inst->src[0].nr] * REG_SIZE == inst->size_written;
562 }
563
564 bool
565 has_bank_conflict(const struct brw_isa_info *isa, const fs_inst *inst);
566
567 /* Return the subset of flag registers that an instruction could
568 * potentially read or write based on the execution controls and flag
569 * subregister number of the instruction.
570 */
571 static inline unsigned
brw_fs_flag_mask(const fs_inst * inst,unsigned width)572 brw_fs_flag_mask(const fs_inst *inst, unsigned width)
573 {
574 assert(util_is_power_of_two_nonzero(width));
575 const unsigned start = (inst->flag_subreg * 16 + inst->group) &
576 ~(width - 1);
577 const unsigned end = start + ALIGN(inst->exec_size, width);
578 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
579 }
580
581 static inline unsigned
brw_fs_bit_mask(unsigned n)582 brw_fs_bit_mask(unsigned n)
583 {
584 return (n >= CHAR_BIT * sizeof(brw_fs_bit_mask(n)) ? ~0u : (1u << n) - 1);
585 }
586
587 static inline unsigned
brw_fs_flag_mask(const brw_reg & r,unsigned sz)588 brw_fs_flag_mask(const brw_reg &r, unsigned sz)
589 {
590 if (r.file == ARF) {
591 const unsigned start = (r.nr - BRW_ARF_FLAG) * 4 + r.subnr;
592 const unsigned end = start + sz;
593 return brw_fs_bit_mask(end) & ~brw_fs_bit_mask(start);
594 } else {
595 return 0;
596 }
597 }
598
599 #endif
600