1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <[email protected]>
25 *
26 */
27
28 #include "brw_fs.h"
29 #include "brw_fs_live_variables.h"
30
31 using namespace brw;
32
33 #define MAX_INSTRUCTION (1 << 30)
34
35 /** @file
36 *
37 * Support for calculating liveness information about virtual GRFs.
38 *
39 * This produces a live interval for each whole virtual GRF. We could
40 * choose to expose per-component live intervals for VGRFs of size > 1,
41 * but we currently do not. It is easier for the consumers of this
42 * information to work with whole VGRFs.
43 *
44 * However, we internally track use/def information at the per-GRF level for
45 * greater accuracy. Large VGRFs may be accessed piecemeal over many
46 * (possibly non-adjacent) instructions. In this case, examining a single
47 * instruction is insufficient to decide whether a whole VGRF is ultimately
48 * used or defined. Tracking individual components allows us to easily
49 * assemble this information.
50 *
51 * See Muchnick's Advanced Compiler Design and Implementation, section
52 * 14.1 (p444).
53 */
54
55 void
setup_one_read(struct block_data * bd,int ip,const brw_reg & reg)56 fs_live_variables::setup_one_read(struct block_data *bd,
57 int ip, const brw_reg ®)
58 {
59 int var = var_from_reg(reg);
60 assert(var < num_vars);
61
62 start[var] = MIN2(start[var], ip);
63 end[var] = MAX2(end[var], ip);
64
65 /* The use[] bitset marks when the block makes use of a variable (VGRF
66 * channel) without having completely defined that variable within the
67 * block.
68 */
69 if (!BITSET_TEST(bd->def, var))
70 BITSET_SET(bd->use, var);
71 }
72
73 void
setup_one_write(struct block_data * bd,fs_inst * inst,int ip,const brw_reg & reg)74 fs_live_variables::setup_one_write(struct block_data *bd, fs_inst *inst,
75 int ip, const brw_reg ®)
76 {
77 int var = var_from_reg(reg);
78 assert(var < num_vars);
79
80 start[var] = MIN2(start[var], ip);
81 end[var] = MAX2(end[var], ip);
82
83 /* The def[] bitset marks when an initialization in a block completely
84 * screens off previous updates of that variable (VGRF channel).
85 */
86 if (inst->dst.file == VGRF) {
87 if (!inst->is_partial_write() && !BITSET_TEST(bd->use, var))
88 BITSET_SET(bd->def, var);
89
90 BITSET_SET(bd->defout, var);
91 }
92 }
93
94 /**
95 * Sets up the use[] and def[] bitsets.
96 *
97 * The basic-block-level live variable analysis needs to know which
98 * variables get used before they're completely defined, and which
99 * variables are completely defined before they're used.
100 *
101 * These are tracked at the per-component level, rather than whole VGRFs.
102 */
103 void
setup_def_use()104 fs_live_variables::setup_def_use()
105 {
106 int ip = 0;
107
108 foreach_block (block, cfg) {
109 assert(ip == block->start_ip);
110 if (block->num > 0)
111 assert(cfg->blocks[block->num - 1]->end_ip == ip - 1);
112
113 struct block_data *bd = &block_data[block->num];
114
115 foreach_inst_in_block(fs_inst, inst, block) {
116 /* Set use[] for this instruction */
117 for (unsigned int i = 0; i < inst->sources; i++) {
118 brw_reg reg = inst->src[i];
119
120 if (reg.file != VGRF)
121 continue;
122
123 for (unsigned j = 0; j < regs_read(inst, i); j++) {
124 setup_one_read(bd, ip, reg);
125 reg.offset += REG_SIZE;
126 }
127 }
128
129 bd->flag_use[0] |= inst->flags_read(devinfo) & ~bd->flag_def[0];
130
131 /* Set def[] for this instruction */
132 if (inst->dst.file == VGRF) {
133 brw_reg reg = inst->dst;
134 for (unsigned j = 0; j < regs_written(inst); j++) {
135 setup_one_write(bd, inst, ip, reg);
136 reg.offset += REG_SIZE;
137 }
138 }
139
140 if (!inst->predicate && inst->exec_size >= 8)
141 bd->flag_def[0] |= inst->flags_written(devinfo) & ~bd->flag_use[0];
142
143 ip++;
144 }
145 }
146 }
147
148 /**
149 * The algorithm incrementally sets bits in liveout and livein,
150 * propagating it through control flow. It will eventually terminate
151 * because it only ever adds bits, and stops when no bits are added in
152 * a pass.
153 */
154 void
compute_live_variables()155 fs_live_variables::compute_live_variables()
156 {
157 bool cont = true;
158
159 /* Propagate defin and defout down the CFG to calculate the union of live
160 * variables potentially defined along any possible control flow path.
161 */
162 do {
163 cont = false;
164
165 foreach_block (block, cfg) {
166 const struct block_data *bd = &block_data[block->num];
167
168 foreach_list_typed(bblock_link, child_link, link, &block->children) {
169 struct block_data *child_bd = &block_data[child_link->block->num];
170
171 for (int i = 0; i < bitset_words; i++) {
172 const BITSET_WORD new_def = bd->defout[i] & ~child_bd->defin[i];
173 child_bd->defin[i] |= new_def;
174 child_bd->defout[i] |= new_def;
175 cont |= new_def;
176 }
177 }
178 }
179 } while (cont);
180
181 do {
182 cont = false;
183
184 foreach_block_reverse (block, cfg) {
185 struct block_data *bd = &block_data[block->num];
186
187 /* Update liveout */
188 foreach_list_typed(bblock_link, child_link, link, &block->children) {
189 struct block_data *child_bd = &block_data[child_link->block->num];
190
191 for (int i = 0; i < bitset_words; i++) {
192 BITSET_WORD new_liveout = (child_bd->livein[i] &
193 ~bd->liveout[i]);
194 new_liveout &= bd->defout[i]; /* Screen off uses with no reaching def */
195 if (new_liveout)
196 bd->liveout[i] |= new_liveout;
197 }
198 BITSET_WORD new_liveout = (child_bd->flag_livein[0] &
199 ~bd->flag_liveout[0]);
200 if (new_liveout)
201 bd->flag_liveout[0] |= new_liveout;
202 }
203
204 /* Update livein */
205 for (int i = 0; i < bitset_words; i++) {
206 BITSET_WORD new_livein = (bd->use[i] |
207 (bd->liveout[i] &
208 ~bd->def[i]));
209 new_livein &= bd->defin[i]; /* Screen off uses with no reaching def */
210 if (new_livein & ~bd->livein[i]) {
211 bd->livein[i] |= new_livein;
212 cont = true;
213 }
214 }
215 BITSET_WORD new_livein = (bd->flag_use[0] |
216 (bd->flag_liveout[0] &
217 ~bd->flag_def[0]));
218 if (new_livein & ~bd->flag_livein[0]) {
219 bd->flag_livein[0] |= new_livein;
220 cont = true;
221 }
222 }
223 } while (cont);
224 }
225
226 /**
227 * Extend the start/end ranges for each variable to account for the
228 * new information calculated from control flow.
229 */
230 void
compute_start_end()231 fs_live_variables::compute_start_end()
232 {
233 foreach_block (block, cfg) {
234 struct block_data *bd = &block_data[block->num];
235 unsigned i;
236
237 BITSET_FOREACH_SET(i, bd->livein, (unsigned)num_vars) {
238 start[i] = MIN2(start[i], block->start_ip);
239 end[i] = MAX2(end[i], block->start_ip);
240 }
241
242 BITSET_FOREACH_SET(i, bd->liveout, (unsigned)num_vars) {
243 start[i] = MIN2(start[i], block->end_ip);
244 end[i] = MAX2(end[i], block->end_ip);
245 }
246 }
247 }
248
fs_live_variables(const fs_visitor * s)249 fs_live_variables::fs_live_variables(const fs_visitor *s)
250 : devinfo(s->devinfo), cfg(s->cfg)
251 {
252 mem_ctx = ralloc_context(NULL);
253 linear_ctx *lin_ctx = linear_context(mem_ctx);
254
255 num_vgrfs = s->alloc.count;
256 num_vars = 0;
257 var_from_vgrf = linear_alloc_array(lin_ctx, int, num_vgrfs);
258 for (int i = 0; i < num_vgrfs; i++) {
259 var_from_vgrf[i] = num_vars;
260 num_vars += s->alloc.sizes[i];
261 }
262
263 vgrf_from_var = linear_alloc_array(lin_ctx, int, num_vars);
264 for (int i = 0; i < num_vgrfs; i++) {
265 for (unsigned j = 0; j < s->alloc.sizes[i]; j++) {
266 vgrf_from_var[var_from_vgrf[i] + j] = i;
267 }
268 }
269
270 start = linear_alloc_array(lin_ctx, int, num_vars);
271 end = linear_alloc_array(lin_ctx, int, num_vars);
272 for (int i = 0; i < num_vars; i++) {
273 start[i] = MAX_INSTRUCTION;
274 end[i] = -1;
275 }
276
277 vgrf_start = linear_alloc_array(lin_ctx, int, num_vgrfs);
278 vgrf_end = linear_alloc_array(lin_ctx, int, num_vgrfs);
279 for (int i = 0; i < num_vgrfs; i++) {
280 vgrf_start[i] = MAX_INSTRUCTION;
281 vgrf_end[i] = -1;
282 }
283
284 block_data = linear_alloc_array(lin_ctx, struct block_data, cfg->num_blocks);
285
286 bitset_words = BITSET_WORDS(num_vars);
287 for (int i = 0; i < cfg->num_blocks; i++) {
288 block_data[i].def = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
289 block_data[i].use = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
290 block_data[i].livein = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
291 block_data[i].liveout = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
292 block_data[i].defin = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
293 block_data[i].defout = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words);
294
295 block_data[i].flag_def[0] = 0;
296 block_data[i].flag_use[0] = 0;
297 block_data[i].flag_livein[0] = 0;
298 block_data[i].flag_liveout[0] = 0;
299 }
300
301 setup_def_use();
302 compute_live_variables();
303 compute_start_end();
304
305 /* Merge the per-component live ranges to whole VGRF live ranges. */
306 for (int i = 0; i < num_vars; i++) {
307 const unsigned vgrf = vgrf_from_var[i];
308 vgrf_start[vgrf] = MIN2(vgrf_start[vgrf], start[i]);
309 vgrf_end[vgrf] = MAX2(vgrf_end[vgrf], end[i]);
310 }
311 }
312
~fs_live_variables()313 fs_live_variables::~fs_live_variables()
314 {
315 ralloc_free(mem_ctx);
316 }
317
318 static bool
check_register_live_range(const fs_live_variables * live,int ip,const brw_reg & reg,unsigned n)319 check_register_live_range(const fs_live_variables *live, int ip,
320 const brw_reg ®, unsigned n)
321 {
322 const unsigned var = live->var_from_reg(reg);
323
324 if (var + n > unsigned(live->num_vars) ||
325 live->vgrf_start[reg.nr] > ip || live->vgrf_end[reg.nr] < ip)
326 return false;
327
328 for (unsigned j = 0; j < n; j++) {
329 if (live->start[var + j] > ip || live->end[var + j] < ip)
330 return false;
331 }
332
333 return true;
334 }
335
336 bool
validate(const fs_visitor * s) const337 fs_live_variables::validate(const fs_visitor *s) const
338 {
339 int ip = 0;
340
341 foreach_block_and_inst(block, fs_inst, inst, s->cfg) {
342 for (unsigned i = 0; i < inst->sources; i++) {
343 if (inst->src[i].file == VGRF &&
344 !check_register_live_range(this, ip,
345 inst->src[i], regs_read(inst, i)))
346 return false;
347 }
348
349 if (inst->dst.file == VGRF &&
350 !check_register_live_range(this, ip, inst->dst, regs_written(inst)))
351 return false;
352
353 ip++;
354 }
355
356 return true;
357 }
358
359 bool
vars_interfere(int a,int b) const360 fs_live_variables::vars_interfere(int a, int b) const
361 {
362 return !(end[b] <= start[a] ||
363 end[a] <= start[b]);
364 }
365
366 bool
vgrfs_interfere(int a,int b) const367 fs_live_variables::vgrfs_interfere(int a, int b) const
368 {
369 return !(vgrf_end[a] <= vgrf_start[b] ||
370 vgrf_end[b] <= vgrf_start[a]);
371 }
372