1 /*
2 * Copyright © 2015-2019 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file
25 *
26 * This file implements a pass that validates shader assembly.
27 *
28 * The restrictions implemented herein are intended to verify that instructions
29 * in shader assembly do not violate restrictions documented in the graphics
30 * programming reference manuals.
31 *
32 * The restrictions are difficult for humans to quickly verify due to their
33 * complexity and abundance.
34 *
35 * It is critical that this code is thoroughly unit tested because false
36 * results will lead developers astray, which is worse than having no validator
37 * at all. Functional changes to this file without corresponding unit tests (in
38 * test_eu_validate.cpp) will be rejected.
39 */
40
41 #include <stdlib.h>
42 #include "brw_eu.h"
43 #include "brw_disasm_info.h"
44
45 /* We're going to do lots of string concatenation, so this should help. */
46 struct string {
47 char *str;
48 size_t len;
49 };
50
51 static void
cat(struct string * dest,const struct string src)52 cat(struct string *dest, const struct string src)
53 {
54 dest->str = realloc(dest->str, dest->len + src.len + 1);
55 memcpy(dest->str + dest->len, src.str, src.len);
56 dest->str[dest->len + src.len] = '\0';
57 dest->len = dest->len + src.len;
58 }
59 #define CAT(dest, src) cat(&dest, (struct string){src, strlen(src)})
60
61 static bool
contains(const struct string haystack,const struct string needle)62 contains(const struct string haystack, const struct string needle)
63 {
64 return haystack.str && memmem(haystack.str, haystack.len,
65 needle.str, needle.len) != NULL;
66 }
67 #define CONTAINS(haystack, needle) \
68 contains(haystack, (struct string){needle, strlen(needle)})
69
70 #define error(str) "\tERROR: " str "\n"
71 #define ERROR_INDENT "\t "
72
73 #define ERROR(msg) ERROR_IF(true, msg)
74 #define ERROR_IF(cond, msg) \
75 do { \
76 if ((cond) && !CONTAINS(error_msg, error(msg))) { \
77 CAT(error_msg, error(msg)); \
78 } \
79 } while(0)
80
81 #define CHECK(func, args...) \
82 do { \
83 struct string __msg = func(isa, inst, ##args); \
84 if (__msg.str) { \
85 cat(&error_msg, __msg); \
86 free(__msg.str); \
87 } \
88 } while (0)
89
90 #define STRIDE(stride) (stride != 0 ? 1 << ((stride) - 1) : 0)
91 #define WIDTH(width) (1 << (width))
92
93 static bool
inst_is_send(const struct brw_isa_info * isa,const brw_inst * inst)94 inst_is_send(const struct brw_isa_info *isa, const brw_inst *inst)
95 {
96 switch (brw_inst_opcode(isa, inst)) {
97 case BRW_OPCODE_SEND:
98 case BRW_OPCODE_SENDC:
99 case BRW_OPCODE_SENDS:
100 case BRW_OPCODE_SENDSC:
101 return true;
102 default:
103 return false;
104 }
105 }
106
107 static bool
inst_is_split_send(const struct brw_isa_info * isa,const brw_inst * inst)108 inst_is_split_send(const struct brw_isa_info *isa, const brw_inst *inst)
109 {
110 const struct intel_device_info *devinfo = isa->devinfo;
111
112 if (devinfo->ver >= 12) {
113 return inst_is_send(isa, inst);
114 } else {
115 switch (brw_inst_opcode(isa, inst)) {
116 case BRW_OPCODE_SENDS:
117 case BRW_OPCODE_SENDSC:
118 return true;
119 default:
120 return false;
121 }
122 }
123 }
124
125 static unsigned
signed_type(unsigned type)126 signed_type(unsigned type)
127 {
128 return brw_type_is_uint(type) ? (type | BRW_TYPE_BASE_SINT) : type;
129 }
130
131 static enum brw_reg_type
inst_dst_type(const struct brw_isa_info * isa,const brw_inst * inst)132 inst_dst_type(const struct brw_isa_info *isa, const brw_inst *inst)
133 {
134 const struct intel_device_info *devinfo = isa->devinfo;
135
136 return (devinfo->ver < 12 || !inst_is_send(isa, inst)) ?
137 brw_inst_dst_type(devinfo, inst) : BRW_TYPE_D;
138 }
139
140 static bool
inst_is_raw_move(const struct brw_isa_info * isa,const brw_inst * inst)141 inst_is_raw_move(const struct brw_isa_info *isa, const brw_inst *inst)
142 {
143 const struct intel_device_info *devinfo = isa->devinfo;
144
145 unsigned dst_type = signed_type(inst_dst_type(isa, inst));
146 unsigned src_type = signed_type(brw_inst_src0_type(devinfo, inst));
147
148 if (brw_inst_src0_reg_file(devinfo, inst) == IMM) {
149 /* FIXME: not strictly true */
150 if (brw_inst_src0_type(devinfo, inst) == BRW_TYPE_VF ||
151 brw_inst_src0_type(devinfo, inst) == BRW_TYPE_UV ||
152 brw_inst_src0_type(devinfo, inst) == BRW_TYPE_V) {
153 return false;
154 }
155 } else if (brw_inst_src0_negate(devinfo, inst) ||
156 brw_inst_src0_abs(devinfo, inst)) {
157 return false;
158 }
159
160 return brw_inst_opcode(isa, inst) == BRW_OPCODE_MOV &&
161 brw_inst_saturate(devinfo, inst) == 0 &&
162 dst_type == src_type;
163 }
164
165 static bool
dst_is_null(const struct intel_device_info * devinfo,const brw_inst * inst)166 dst_is_null(const struct intel_device_info *devinfo, const brw_inst *inst)
167 {
168 return brw_inst_dst_reg_file(devinfo, inst) == ARF &&
169 brw_inst_dst_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
170 }
171
172 static bool
src0_is_null(const struct intel_device_info * devinfo,const brw_inst * inst)173 src0_is_null(const struct intel_device_info *devinfo, const brw_inst *inst)
174 {
175 return brw_inst_src0_address_mode(devinfo, inst) == BRW_ADDRESS_DIRECT &&
176 brw_inst_src0_reg_file(devinfo, inst) == ARF &&
177 brw_inst_src0_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
178 }
179
180 static bool
src1_is_null(const struct intel_device_info * devinfo,const brw_inst * inst)181 src1_is_null(const struct intel_device_info *devinfo, const brw_inst *inst)
182 {
183 return brw_inst_src1_reg_file(devinfo, inst) == ARF &&
184 brw_inst_src1_da_reg_nr(devinfo, inst) == BRW_ARF_NULL;
185 }
186
187 static bool
src0_is_acc(const struct intel_device_info * devinfo,const brw_inst * inst)188 src0_is_acc(const struct intel_device_info *devinfo, const brw_inst *inst)
189 {
190 return brw_inst_src0_reg_file(devinfo, inst) == ARF &&
191 (brw_inst_src0_da_reg_nr(devinfo, inst) & 0xF0) == BRW_ARF_ACCUMULATOR;
192 }
193
194 static bool
src1_is_acc(const struct intel_device_info * devinfo,const brw_inst * inst)195 src1_is_acc(const struct intel_device_info *devinfo, const brw_inst *inst)
196 {
197 return brw_inst_src1_reg_file(devinfo, inst) == ARF &&
198 (brw_inst_src1_da_reg_nr(devinfo, inst) & 0xF0) == BRW_ARF_ACCUMULATOR;
199 }
200
201 static bool
src0_has_scalar_region(const struct intel_device_info * devinfo,const brw_inst * inst)202 src0_has_scalar_region(const struct intel_device_info *devinfo,
203 const brw_inst *inst)
204 {
205 return brw_inst_src0_vstride(devinfo, inst) == BRW_VERTICAL_STRIDE_0 &&
206 brw_inst_src0_width(devinfo, inst) == BRW_WIDTH_1 &&
207 brw_inst_src0_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0;
208 }
209
210 static bool
src1_has_scalar_region(const struct intel_device_info * devinfo,const brw_inst * inst)211 src1_has_scalar_region(const struct intel_device_info *devinfo,
212 const brw_inst *inst)
213 {
214 return brw_inst_src1_vstride(devinfo, inst) == BRW_VERTICAL_STRIDE_0 &&
215 brw_inst_src1_width(devinfo, inst) == BRW_WIDTH_1 &&
216 brw_inst_src1_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0;
217 }
218
219 static struct string
invalid_values(const struct brw_isa_info * isa,const brw_inst * inst)220 invalid_values(const struct brw_isa_info *isa, const brw_inst *inst)
221 {
222 const struct intel_device_info *devinfo = isa->devinfo;
223
224 unsigned num_sources = brw_num_sources_from_inst(isa, inst);
225 struct string error_msg = { .str = NULL, .len = 0 };
226
227 switch ((enum brw_execution_size) brw_inst_exec_size(devinfo, inst)) {
228 case BRW_EXECUTE_1:
229 case BRW_EXECUTE_2:
230 case BRW_EXECUTE_4:
231 case BRW_EXECUTE_8:
232 case BRW_EXECUTE_16:
233 case BRW_EXECUTE_32:
234 break;
235 default:
236 ERROR("invalid execution size");
237 break;
238 }
239
240 if (error_msg.str)
241 return error_msg;
242
243 if (devinfo->ver >= 12) {
244 unsigned group_size = 1 << brw_inst_exec_size(devinfo, inst);
245 unsigned qtr_ctrl = brw_inst_qtr_control(devinfo, inst);
246 unsigned nib_ctrl =
247 devinfo->ver == 12 ? brw_inst_nib_control(devinfo, inst) : 0;
248
249 unsigned chan_off = (qtr_ctrl * 2 + nib_ctrl) << 2;
250 ERROR_IF(chan_off % group_size != 0,
251 "The execution size must be a factor of the chosen offset");
252 }
253
254 if (inst_is_send(isa, inst))
255 return error_msg;
256
257 if (error_msg.str)
258 return error_msg;
259
260 if (num_sources == 3) {
261 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1) {
262 if (devinfo->ver >= 10) {
263 ERROR_IF(brw_inst_3src_a1_dst_type (devinfo, inst) == BRW_TYPE_INVALID ||
264 brw_inst_3src_a1_src0_type(devinfo, inst) == BRW_TYPE_INVALID ||
265 brw_inst_3src_a1_src1_type(devinfo, inst) == BRW_TYPE_INVALID ||
266 brw_inst_3src_a1_src2_type(devinfo, inst) == BRW_TYPE_INVALID,
267 "invalid register type encoding");
268 } else {
269 ERROR("Align1 mode not allowed on Gen < 10");
270 }
271 } else {
272 ERROR_IF(brw_inst_3src_a16_dst_type(devinfo, inst) == BRW_TYPE_INVALID ||
273 brw_inst_3src_a16_src_type(devinfo, inst) == BRW_TYPE_INVALID,
274 "invalid register type encoding");
275 }
276 } else {
277 ERROR_IF(brw_inst_dst_type (devinfo, inst) == BRW_TYPE_INVALID ||
278 (num_sources > 0 &&
279 brw_inst_src0_type(devinfo, inst) == BRW_TYPE_INVALID) ||
280 (num_sources > 1 &&
281 brw_inst_src1_type(devinfo, inst) == BRW_TYPE_INVALID),
282 "invalid register type encoding");
283 }
284
285 return error_msg;
286 }
287
288 static struct string
sources_not_null(const struct brw_isa_info * isa,const brw_inst * inst)289 sources_not_null(const struct brw_isa_info *isa,
290 const brw_inst *inst)
291 {
292 const struct intel_device_info *devinfo = isa->devinfo;
293 unsigned num_sources = brw_num_sources_from_inst(isa, inst);
294 struct string error_msg = { .str = NULL, .len = 0 };
295
296 /* Nothing to test. 3-src instructions can only have GRF sources, and
297 * there's no bit to control the file.
298 */
299 if (num_sources == 3)
300 return (struct string){};
301
302 /* Nothing to test. Split sends can only encode a file in sources that are
303 * allowed to be NULL.
304 */
305 if (inst_is_split_send(isa, inst))
306 return (struct string){};
307
308 if (num_sources >= 1 && brw_inst_opcode(isa, inst) != BRW_OPCODE_SYNC)
309 ERROR_IF(src0_is_null(devinfo, inst), "src0 is null");
310
311 if (num_sources == 2)
312 ERROR_IF(src1_is_null(devinfo, inst), "src1 is null");
313
314 return error_msg;
315 }
316
317 static struct string
alignment_supported(const struct brw_isa_info * isa,const brw_inst * inst)318 alignment_supported(const struct brw_isa_info *isa,
319 const brw_inst *inst)
320 {
321 const struct intel_device_info *devinfo = isa->devinfo;
322 struct string error_msg = { .str = NULL, .len = 0 };
323
324 ERROR_IF(devinfo->ver >= 11 && brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16,
325 "Align16 not supported");
326
327 return error_msg;
328 }
329
330 static bool
inst_uses_src_acc(const struct brw_isa_info * isa,const brw_inst * inst)331 inst_uses_src_acc(const struct brw_isa_info *isa,
332 const brw_inst *inst)
333 {
334 const struct intel_device_info *devinfo = isa->devinfo;
335
336 /* Check instructions that use implicit accumulator sources */
337 switch (brw_inst_opcode(isa, inst)) {
338 case BRW_OPCODE_MAC:
339 case BRW_OPCODE_MACH:
340 return true;
341 default:
342 break;
343 }
344
345 /* FIXME: support 3-src instructions */
346 unsigned num_sources = brw_num_sources_from_inst(isa, inst);
347 assert(num_sources < 3);
348
349 return src0_is_acc(devinfo, inst) || (num_sources > 1 && src1_is_acc(devinfo, inst));
350 }
351
352 static struct string
send_restrictions(const struct brw_isa_info * isa,const brw_inst * inst)353 send_restrictions(const struct brw_isa_info *isa,
354 const brw_inst *inst)
355 {
356 const struct intel_device_info *devinfo = isa->devinfo;
357
358 struct string error_msg = { .str = NULL, .len = 0 };
359
360 if (inst_is_split_send(isa, inst)) {
361 ERROR_IF(brw_inst_send_src1_reg_file(devinfo, inst) == ARF &&
362 brw_inst_send_src1_reg_nr(devinfo, inst) != BRW_ARF_NULL,
363 "src1 of split send must be a GRF or NULL");
364
365 ERROR_IF(brw_inst_eot(devinfo, inst) &&
366 brw_inst_src0_da_reg_nr(devinfo, inst) < 112,
367 "send with EOT must use g112-g127");
368 ERROR_IF(brw_inst_eot(devinfo, inst) &&
369 brw_inst_send_src1_reg_file(devinfo, inst) == FIXED_GRF &&
370 brw_inst_send_src1_reg_nr(devinfo, inst) < 112,
371 "send with EOT must use g112-g127");
372
373 if (brw_inst_send_src0_reg_file(devinfo, inst) == FIXED_GRF &&
374 brw_inst_send_src1_reg_file(devinfo, inst) == FIXED_GRF) {
375 /* Assume minimums if we don't know */
376 unsigned mlen = 1;
377 if (!brw_inst_send_sel_reg32_desc(devinfo, inst)) {
378 const uint32_t desc = brw_inst_send_desc(devinfo, inst);
379 mlen = brw_message_desc_mlen(devinfo, desc) / reg_unit(devinfo);
380 }
381
382 unsigned ex_mlen = 1;
383 if (!brw_inst_send_sel_reg32_ex_desc(devinfo, inst)) {
384 const uint32_t ex_desc = brw_inst_sends_ex_desc(devinfo, inst);
385 ex_mlen = brw_message_ex_desc_ex_mlen(devinfo, ex_desc) /
386 reg_unit(devinfo);
387 }
388 const unsigned src0_reg_nr = brw_inst_src0_da_reg_nr(devinfo, inst);
389 const unsigned src1_reg_nr = brw_inst_send_src1_reg_nr(devinfo, inst);
390 ERROR_IF((src0_reg_nr <= src1_reg_nr &&
391 src1_reg_nr < src0_reg_nr + mlen) ||
392 (src1_reg_nr <= src0_reg_nr &&
393 src0_reg_nr < src1_reg_nr + ex_mlen),
394 "split send payloads must not overlap");
395 }
396 } else if (inst_is_send(isa, inst)) {
397 ERROR_IF(brw_inst_src0_address_mode(devinfo, inst) != BRW_ADDRESS_DIRECT,
398 "send must use direct addressing");
399
400 ERROR_IF(brw_inst_send_src0_reg_file(devinfo, inst) != FIXED_GRF,
401 "send from non-GRF");
402 ERROR_IF(brw_inst_eot(devinfo, inst) &&
403 brw_inst_src0_da_reg_nr(devinfo, inst) < 112,
404 "send with EOT must use g112-g127");
405
406 ERROR_IF(!dst_is_null(devinfo, inst) &&
407 (brw_inst_dst_da_reg_nr(devinfo, inst) +
408 brw_inst_rlen(devinfo, inst) > 127) &&
409 (brw_inst_src0_da_reg_nr(devinfo, inst) +
410 brw_inst_mlen(devinfo, inst) >
411 brw_inst_dst_da_reg_nr(devinfo, inst)),
412 "r127 must not be used for return address when there is "
413 "a src and dest overlap");
414 }
415
416 return error_msg;
417 }
418
419 static bool
is_unsupported_inst(const struct brw_isa_info * isa,const brw_inst * inst)420 is_unsupported_inst(const struct brw_isa_info *isa,
421 const brw_inst *inst)
422 {
423 return brw_inst_opcode(isa, inst) == BRW_OPCODE_ILLEGAL;
424 }
425
426 /**
427 * Returns whether a combination of two types would qualify as mixed float
428 * operation mode
429 */
430 static inline bool
types_are_mixed_float(enum brw_reg_type t0,enum brw_reg_type t1)431 types_are_mixed_float(enum brw_reg_type t0, enum brw_reg_type t1)
432 {
433 return (t0 == BRW_TYPE_F && t1 == BRW_TYPE_HF) ||
434 (t1 == BRW_TYPE_F && t0 == BRW_TYPE_HF);
435 }
436
437 static enum brw_reg_type
execution_type_for_type(enum brw_reg_type type)438 execution_type_for_type(enum brw_reg_type type)
439 {
440 switch (type) {
441 case BRW_TYPE_DF:
442 case BRW_TYPE_F:
443 case BRW_TYPE_HF:
444 return type;
445
446 case BRW_TYPE_VF:
447 return BRW_TYPE_F;
448
449 case BRW_TYPE_Q:
450 case BRW_TYPE_UQ:
451 return BRW_TYPE_Q;
452
453 case BRW_TYPE_D:
454 case BRW_TYPE_UD:
455 return BRW_TYPE_D;
456
457 case BRW_TYPE_W:
458 case BRW_TYPE_UW:
459 case BRW_TYPE_B:
460 case BRW_TYPE_UB:
461 case BRW_TYPE_V:
462 case BRW_TYPE_UV:
463 return BRW_TYPE_W;
464 default:
465 unreachable("invalid type");
466 }
467 }
468
469 /**
470 * Returns the execution type of an instruction \p inst
471 */
472 static enum brw_reg_type
execution_type(const struct brw_isa_info * isa,const brw_inst * inst)473 execution_type(const struct brw_isa_info *isa, const brw_inst *inst)
474 {
475 const struct intel_device_info *devinfo = isa->devinfo;
476
477 unsigned num_sources = brw_num_sources_from_inst(isa, inst);
478 enum brw_reg_type src0_exec_type, src1_exec_type;
479
480 /* Execution data type is independent of destination data type, except in
481 * mixed F/HF instructions.
482 */
483 enum brw_reg_type dst_exec_type = inst_dst_type(isa, inst);
484
485 src0_exec_type = execution_type_for_type(brw_inst_src0_type(devinfo, inst));
486 if (num_sources == 1) {
487 if (src0_exec_type == BRW_TYPE_HF)
488 return dst_exec_type;
489 return src0_exec_type;
490 }
491
492 src1_exec_type = execution_type_for_type(brw_inst_src1_type(devinfo, inst));
493 if (types_are_mixed_float(src0_exec_type, src1_exec_type) ||
494 types_are_mixed_float(src0_exec_type, dst_exec_type) ||
495 types_are_mixed_float(src1_exec_type, dst_exec_type)) {
496 return BRW_TYPE_F;
497 }
498
499 if (src0_exec_type == src1_exec_type)
500 return src0_exec_type;
501
502 if (src0_exec_type == BRW_TYPE_Q ||
503 src1_exec_type == BRW_TYPE_Q)
504 return BRW_TYPE_Q;
505
506 if (src0_exec_type == BRW_TYPE_D ||
507 src1_exec_type == BRW_TYPE_D)
508 return BRW_TYPE_D;
509
510 if (src0_exec_type == BRW_TYPE_W ||
511 src1_exec_type == BRW_TYPE_W)
512 return BRW_TYPE_W;
513
514 if (src0_exec_type == BRW_TYPE_DF ||
515 src1_exec_type == BRW_TYPE_DF)
516 return BRW_TYPE_DF;
517
518 unreachable("not reached");
519 }
520
521 /**
522 * Returns whether a region is packed
523 *
524 * A region is packed if its elements are adjacent in memory, with no
525 * intervening space, no overlap, and no replicated values.
526 */
527 static bool
is_packed(unsigned vstride,unsigned width,unsigned hstride)528 is_packed(unsigned vstride, unsigned width, unsigned hstride)
529 {
530 if (vstride == width) {
531 if (vstride == 1) {
532 return hstride == 0;
533 } else {
534 return hstride == 1;
535 }
536 }
537
538 return false;
539 }
540
541 /**
542 * Returns whether a region is linear
543 *
544 * A region is linear if its elements do not overlap and are not replicated.
545 * Unlike a packed region, intervening space (i.e. strided values) is allowed.
546 */
547 static bool
is_linear(unsigned vstride,unsigned width,unsigned hstride)548 is_linear(unsigned vstride, unsigned width, unsigned hstride)
549 {
550 return vstride == width * hstride ||
551 (hstride == 0 && width == 1);
552 }
553
554 /**
555 * Returns whether an instruction is an explicit or implicit conversion
556 * to/from half-float.
557 */
558 static bool
is_half_float_conversion(const struct brw_isa_info * isa,const brw_inst * inst)559 is_half_float_conversion(const struct brw_isa_info *isa,
560 const brw_inst *inst)
561 {
562 const struct intel_device_info *devinfo = isa->devinfo;
563
564 enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
565
566 unsigned num_sources = brw_num_sources_from_inst(isa, inst);
567 enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
568
569 if (dst_type != src0_type &&
570 (dst_type == BRW_TYPE_HF || src0_type == BRW_TYPE_HF)) {
571 return true;
572 } else if (num_sources > 1) {
573 enum brw_reg_type src1_type = brw_inst_src1_type(devinfo, inst);
574 return dst_type != src1_type &&
575 (dst_type == BRW_TYPE_HF ||
576 src1_type == BRW_TYPE_HF);
577 }
578
579 return false;
580 }
581
582 /*
583 * Returns whether an instruction is using mixed float operation mode
584 */
585 static bool
is_mixed_float(const struct brw_isa_info * isa,const brw_inst * inst)586 is_mixed_float(const struct brw_isa_info *isa, const brw_inst *inst)
587 {
588 const struct intel_device_info *devinfo = isa->devinfo;
589
590 if (inst_is_send(isa, inst))
591 return false;
592
593 unsigned opcode = brw_inst_opcode(isa, inst);
594 const struct opcode_desc *desc = brw_opcode_desc(isa, opcode);
595 if (desc->ndst == 0)
596 return false;
597
598 /* FIXME: support 3-src instructions */
599 unsigned num_sources = brw_num_sources_from_inst(isa, inst);
600 assert(num_sources < 3);
601
602 enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
603 enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
604
605 if (num_sources == 1)
606 return types_are_mixed_float(src0_type, dst_type);
607
608 enum brw_reg_type src1_type = brw_inst_src1_type(devinfo, inst);
609
610 return types_are_mixed_float(src0_type, src1_type) ||
611 types_are_mixed_float(src0_type, dst_type) ||
612 types_are_mixed_float(src1_type, dst_type);
613 }
614
615 /**
616 * Returns whether an instruction is an explicit or implicit conversion
617 * to/from byte.
618 */
619 static bool
is_byte_conversion(const struct brw_isa_info * isa,const brw_inst * inst)620 is_byte_conversion(const struct brw_isa_info *isa,
621 const brw_inst *inst)
622 {
623 const struct intel_device_info *devinfo = isa->devinfo;
624
625 enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
626
627 unsigned num_sources = brw_num_sources_from_inst(isa, inst);
628 enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
629
630 if (dst_type != src0_type &&
631 (brw_type_size_bytes(dst_type) == 1 ||
632 brw_type_size_bytes(src0_type) == 1)) {
633 return true;
634 } else if (num_sources > 1) {
635 enum brw_reg_type src1_type = brw_inst_src1_type(devinfo, inst);
636 return dst_type != src1_type &&
637 (brw_type_size_bytes(dst_type) == 1 ||
638 brw_type_size_bytes(src1_type) == 1);
639 }
640
641 return false;
642 }
643
644 /**
645 * Checks restrictions listed in "General Restrictions Based on Operand Types"
646 * in the "Register Region Restrictions" section.
647 */
648 static struct string
general_restrictions_based_on_operand_types(const struct brw_isa_info * isa,const brw_inst * inst)649 general_restrictions_based_on_operand_types(const struct brw_isa_info *isa,
650 const brw_inst *inst)
651 {
652 const struct intel_device_info *devinfo = isa->devinfo;
653
654 const struct opcode_desc *desc =
655 brw_opcode_desc(isa, brw_inst_opcode(isa, inst));
656 unsigned num_sources = brw_num_sources_from_inst(isa, inst);
657 unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
658 struct string error_msg = { .str = NULL, .len = 0 };
659
660 if (inst_is_send(isa, inst))
661 return error_msg;
662
663 if (devinfo->ver >= 11) {
664 /* A register type of B or UB for DPAS actually means 4 bytes packed into
665 * a D or UD, so it is allowed.
666 */
667 if (num_sources == 3 && brw_inst_opcode(isa, inst) != BRW_OPCODE_DPAS) {
668 ERROR_IF(brw_type_size_bytes(brw_inst_3src_a1_src1_type(devinfo, inst)) == 1 ||
669 brw_type_size_bytes(brw_inst_3src_a1_src2_type(devinfo, inst)) == 1,
670 "Byte data type is not supported for src1/2 register regioning. This includes "
671 "byte broadcast as well.");
672 }
673 if (num_sources == 2) {
674 ERROR_IF(brw_type_size_bytes(brw_inst_src1_type(devinfo, inst)) == 1,
675 "Byte data type is not supported for src1 register regioning. This includes "
676 "byte broadcast as well.");
677 }
678 }
679
680 enum brw_reg_type dst_type;
681
682 if (num_sources == 3) {
683 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1)
684 dst_type = brw_inst_3src_a1_dst_type(devinfo, inst);
685 else
686 dst_type = brw_inst_3src_a16_dst_type(devinfo, inst);
687 } else {
688 dst_type = inst_dst_type(isa, inst);
689 }
690
691 ERROR_IF(dst_type == BRW_TYPE_DF &&
692 !devinfo->has_64bit_float,
693 "64-bit float destination, but platform does not support it");
694
695 ERROR_IF((dst_type == BRW_TYPE_Q ||
696 dst_type == BRW_TYPE_UQ) &&
697 !devinfo->has_64bit_int,
698 "64-bit int destination, but platform does not support it");
699
700 for (unsigned s = 0; s < num_sources; s++) {
701 enum brw_reg_type src_type;
702 if (num_sources == 3) {
703 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1) {
704 switch (s) {
705 case 0: src_type = brw_inst_3src_a1_src0_type(devinfo, inst); break;
706 case 1: src_type = brw_inst_3src_a1_src1_type(devinfo, inst); break;
707 case 2: src_type = brw_inst_3src_a1_src2_type(devinfo, inst); break;
708 default: unreachable("invalid src");
709 }
710 } else {
711 src_type = brw_inst_3src_a16_src_type(devinfo, inst);
712 }
713 } else {
714 switch (s) {
715 case 0: src_type = brw_inst_src0_type(devinfo, inst); break;
716 case 1: src_type = brw_inst_src1_type(devinfo, inst); break;
717 default: unreachable("invalid src");
718 }
719 }
720
721 ERROR_IF(src_type == BRW_TYPE_DF &&
722 !devinfo->has_64bit_float,
723 "64-bit float source, but platform does not support it");
724
725 ERROR_IF((src_type == BRW_TYPE_Q ||
726 src_type == BRW_TYPE_UQ) &&
727 !devinfo->has_64bit_int,
728 "64-bit int source, but platform does not support it");
729 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16 &&
730 num_sources == 3 && brw_type_size_bytes(src_type) > 4) {
731 /* From the Broadwell PRM, Volume 7 "3D Media GPGPU", page 944:
732 *
733 * "This is applicable to 32b datatypes and 16b datatype. 64b
734 * datatypes cannot use the replicate control."
735 */
736 switch (s) {
737 case 0:
738 ERROR_IF(brw_inst_3src_a16_src0_rep_ctrl(devinfo, inst),
739 "RepCtrl must be zero for 64-bit source 0");
740 break;
741 case 1:
742 ERROR_IF(brw_inst_3src_a16_src1_rep_ctrl(devinfo, inst),
743 "RepCtrl must be zero for 64-bit source 1");
744 break;
745 case 2:
746 ERROR_IF(brw_inst_3src_a16_src2_rep_ctrl(devinfo, inst),
747 "RepCtrl must be zero for 64-bit source 2");
748 break;
749 default: unreachable("invalid src");
750 }
751 }
752 }
753
754 if (num_sources == 3)
755 return error_msg;
756
757 if (exec_size == 1)
758 return error_msg;
759
760 if (desc->ndst == 0)
761 return error_msg;
762
763 if (brw_inst_opcode(isa, inst) == BRW_OPCODE_MATH &&
764 intel_needs_workaround(devinfo, 22016140776)) {
765 /* Wa_22016140776:
766 *
767 * Scalar broadcast on HF math (packed or unpacked) must not be
768 * used. Compiler must use a mov instruction to expand the scalar
769 * value to a vector before using in a HF (packed or unpacked)
770 * math operation.
771 */
772 ERROR_IF(brw_inst_src0_type(devinfo, inst) == BRW_TYPE_HF &&
773 src0_has_scalar_region(devinfo, inst),
774 "Scalar broadcast on HF math (packed or unpacked) must not "
775 "be used.");
776
777 if (num_sources > 1) {
778 ERROR_IF(brw_inst_src1_type(devinfo, inst) == BRW_TYPE_HF &&
779 src1_has_scalar_region(devinfo, inst),
780 "Scalar broadcast on HF math (packed or unpacked) must not "
781 "be used.");
782 }
783 }
784
785 /* The PRMs say:
786 *
787 * Where n is the largest element size in bytes for any source or
788 * destination operand type, ExecSize * n must be <= 64.
789 *
790 * But we do not attempt to enforce it, because it is implied by other
791 * rules:
792 *
793 * - that the destination stride must match the execution data type
794 * - sources may not span more than two adjacent GRF registers
795 * - destination may not span more than two adjacent GRF registers
796 *
797 * In fact, checking it would weaken testing of the other rules.
798 */
799
800 unsigned dst_stride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
801 bool dst_type_is_byte =
802 inst_dst_type(isa, inst) == BRW_TYPE_B ||
803 inst_dst_type(isa, inst) == BRW_TYPE_UB;
804
805 if (dst_type_is_byte) {
806 if (is_packed(exec_size * dst_stride, exec_size, dst_stride)) {
807 if (!inst_is_raw_move(isa, inst))
808 ERROR("Only raw MOV supports a packed-byte destination");
809 return error_msg;
810 }
811 }
812
813 unsigned exec_type = execution_type(isa, inst);
814 unsigned exec_type_size = brw_type_size_bytes(exec_type);
815 unsigned dst_type_size = brw_type_size_bytes(dst_type);
816
817 if (is_byte_conversion(isa, inst)) {
818 /* From the BDW+ PRM, Volume 2a, Command Reference, Instructions - MOV:
819 *
820 * "There is no direct conversion from B/UB to DF or DF to B/UB.
821 * There is no direct conversion from B/UB to Q/UQ or Q/UQ to B/UB."
822 *
823 * Even if these restrictions are listed for the MOV instruction, we
824 * validate this more generally, since there is the possibility
825 * of implicit conversions from other instructions.
826 */
827 enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
828 enum brw_reg_type src1_type = num_sources > 1 ?
829 brw_inst_src1_type(devinfo, inst) : 0;
830
831 ERROR_IF(brw_type_size_bytes(dst_type) == 1 &&
832 (brw_type_size_bytes(src0_type) == 8 ||
833 (num_sources > 1 && brw_type_size_bytes(src1_type) == 8)),
834 "There are no direct conversions between 64-bit types and B/UB");
835
836 ERROR_IF(brw_type_size_bytes(dst_type) == 8 &&
837 (brw_type_size_bytes(src0_type) == 1 ||
838 (num_sources > 1 && brw_type_size_bytes(src1_type) == 1)),
839 "There are no direct conversions between 64-bit types and B/UB");
840 }
841
842 if (is_half_float_conversion(isa, inst)) {
843 /**
844 * A helper to validate used in the validation of the following restriction
845 * from the BDW+ PRM, Volume 2a, Command Reference, Instructions - MOV:
846 *
847 * "There is no direct conversion from HF to DF or DF to HF.
848 * There is no direct conversion from HF to Q/UQ or Q/UQ to HF."
849 *
850 * Even if these restrictions are listed for the MOV instruction, we
851 * validate this more generally, since there is the possibility
852 * of implicit conversions from other instructions, such us implicit
853 * conversion from integer to HF with the ADD instruction in SKL+.
854 */
855 enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
856 enum brw_reg_type src1_type = num_sources > 1 ?
857 brw_inst_src1_type(devinfo, inst) : 0;
858 ERROR_IF(dst_type == BRW_TYPE_HF &&
859 (brw_type_size_bytes(src0_type) == 8 ||
860 (num_sources > 1 && brw_type_size_bytes(src1_type) == 8)),
861 "There are no direct conversions between 64-bit types and HF");
862
863 ERROR_IF(brw_type_size_bytes(dst_type) == 8 &&
864 (src0_type == BRW_TYPE_HF ||
865 (num_sources > 1 && src1_type == BRW_TYPE_HF)),
866 "There are no direct conversions between 64-bit types and HF");
867
868 /* From the BDW+ PRM:
869 *
870 * "Conversion between Integer and HF (Half Float) must be
871 * DWord-aligned and strided by a DWord on the destination."
872 *
873 * Also, the above restrictions seems to be expanded on CHV and SKL+ by:
874 *
875 * "There is a relaxed alignment rule for word destinations. When
876 * the destination type is word (UW, W, HF), destination data types
877 * can be aligned to either the lowest word or the second lowest
878 * word of the execution channel. This means the destination data
879 * words can be either all in the even word locations or all in the
880 * odd word locations."
881 *
882 * We do not implement the second rule as is though, since empirical
883 * testing shows inconsistencies:
884 * - It suggests that packed 16-bit is not allowed, which is not true.
885 * - It suggests that conversions from Q/DF to W (which need to be
886 * 64-bit aligned on the destination) are not possible, which is
887 * not true.
888 *
889 * So from this rule we only validate the implication that conversions
890 * from F to HF need to be DWord strided (except in Align1 mixed
891 * float mode where packed fp16 destination is allowed so long as the
892 * destination is oword-aligned).
893 *
894 * Finally, we only validate this for Align1 because Align16 always
895 * requires packed destinations, so these restrictions can't possibly
896 * apply to Align16 mode.
897 */
898 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1) {
899 if ((dst_type == BRW_TYPE_HF &&
900 (brw_type_is_int(src0_type) ||
901 (num_sources > 1 && brw_type_is_int(src1_type)))) ||
902 (brw_type_is_int(dst_type) &&
903 (src0_type == BRW_TYPE_HF ||
904 (num_sources > 1 && src1_type == BRW_TYPE_HF)))) {
905 ERROR_IF(dst_stride * dst_type_size != 4,
906 "Conversions between integer and half-float must be "
907 "strided by a DWord on the destination");
908
909 unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
910 ERROR_IF(subreg % 4 != 0,
911 "Conversions between integer and half-float must be "
912 "aligned to a DWord on the destination");
913 } else if (dst_type == BRW_TYPE_HF) {
914 unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
915 ERROR_IF(dst_stride != 2 &&
916 !(is_mixed_float(isa, inst) &&
917 dst_stride == 1 && subreg % 16 == 0),
918 "Conversions to HF must have either all words in even "
919 "word locations or all words in odd word locations or "
920 "be mixed-float with Oword-aligned packed destination");
921 }
922 }
923 }
924
925 /* There are special regioning rules for mixed-float mode in CHV and SKL that
926 * override the general rule for the ratio of sizes of the destination type
927 * and the execution type. We will add validation for those in a later patch.
928 */
929 bool validate_dst_size_and_exec_size_ratio = !is_mixed_float(isa, inst);
930
931 if (validate_dst_size_and_exec_size_ratio &&
932 exec_type_size > dst_type_size) {
933 if (!(dst_type_is_byte && inst_is_raw_move(isa, inst))) {
934 ERROR_IF(dst_stride * dst_type_size != exec_type_size,
935 "Destination stride must be equal to the ratio of the sizes "
936 "of the execution data type to the destination type");
937 }
938
939 unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
940
941 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 &&
942 brw_inst_dst_address_mode(devinfo, inst) == BRW_ADDRESS_DIRECT) {
943 /* The i965 PRM says:
944 *
945 * Implementation Restriction: The relaxed alignment rule for byte
946 * destination (#10.5) is not supported.
947 */
948 if (dst_type_is_byte) {
949 ERROR_IF(subreg % exec_type_size != 0 &&
950 subreg % exec_type_size != 1,
951 "Destination subreg must be aligned to the size of the "
952 "execution data type (or to the next lowest byte for byte "
953 "destinations)");
954 } else {
955 ERROR_IF(subreg % exec_type_size != 0,
956 "Destination subreg must be aligned to the size of the "
957 "execution data type");
958 }
959 }
960 }
961
962 return error_msg;
963 }
964
965 /**
966 * Checks restrictions listed in "General Restrictions on Regioning Parameters"
967 * in the "Register Region Restrictions" section.
968 */
969 static struct string
general_restrictions_on_region_parameters(const struct brw_isa_info * isa,const brw_inst * inst)970 general_restrictions_on_region_parameters(const struct brw_isa_info *isa,
971 const brw_inst *inst)
972 {
973 const struct intel_device_info *devinfo = isa->devinfo;
974
975 const struct opcode_desc *desc =
976 brw_opcode_desc(isa, brw_inst_opcode(isa, inst));
977 unsigned num_sources = brw_num_sources_from_inst(isa, inst);
978 unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
979 struct string error_msg = { .str = NULL, .len = 0 };
980
981 if (num_sources == 3)
982 return (struct string){};
983
984 /* Split sends don't have the bits in the instruction to encode regions so
985 * there's nothing to check.
986 */
987 if (inst_is_split_send(isa, inst))
988 return (struct string){};
989
990 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16) {
991 if (desc->ndst != 0 && !dst_is_null(devinfo, inst))
992 ERROR_IF(brw_inst_dst_hstride(devinfo, inst) != BRW_HORIZONTAL_STRIDE_1,
993 "Destination Horizontal Stride must be 1");
994
995 if (num_sources >= 1) {
996 ERROR_IF(brw_inst_src0_reg_file(devinfo, inst) != IMM &&
997 brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
998 brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_2 &&
999 brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
1000 "In Align16 mode, only VertStride of 0, 2, or 4 is allowed");
1001 }
1002
1003 if (num_sources == 2) {
1004 ERROR_IF(brw_inst_src1_reg_file(devinfo, inst) != IMM &&
1005 brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_0 &&
1006 brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_2 &&
1007 brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
1008 "In Align16 mode, only VertStride of 0, 2, or 4 is allowed");
1009 }
1010
1011 return error_msg;
1012 }
1013
1014 for (unsigned i = 0; i < num_sources; i++) {
1015 unsigned vstride, width, hstride, element_size, subreg;
1016 enum brw_reg_type type;
1017
1018 #define DO_SRC(n) \
1019 if (brw_inst_src ## n ## _reg_file(devinfo, inst) == \
1020 IMM) \
1021 continue; \
1022 \
1023 vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst)); \
1024 width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst)); \
1025 hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst)); \
1026 type = brw_inst_src ## n ## _type(devinfo, inst); \
1027 element_size = brw_type_size_bytes(type); \
1028 subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst)
1029
1030 if (i == 0) {
1031 DO_SRC(0);
1032 } else {
1033 DO_SRC(1);
1034 }
1035 #undef DO_SRC
1036
1037 /* ExecSize must be greater than or equal to Width. */
1038 ERROR_IF(exec_size < width, "ExecSize must be greater than or equal "
1039 "to Width");
1040
1041 /* If ExecSize = Width and HorzStride ≠ 0,
1042 * VertStride must be set to Width * HorzStride.
1043 */
1044 if (exec_size == width && hstride != 0) {
1045 ERROR_IF(vstride != width * hstride,
1046 "If ExecSize = Width and HorzStride ≠ 0, "
1047 "VertStride must be set to Width * HorzStride");
1048 }
1049
1050 /* If Width = 1, HorzStride must be 0 regardless of the values of
1051 * ExecSize and VertStride.
1052 */
1053 if (width == 1) {
1054 ERROR_IF(hstride != 0,
1055 "If Width = 1, HorzStride must be 0 regardless "
1056 "of the values of ExecSize and VertStride");
1057 }
1058
1059 /* If ExecSize = Width = 1, both VertStride and HorzStride must be 0. */
1060 if (exec_size == 1 && width == 1) {
1061 ERROR_IF(vstride != 0 || hstride != 0,
1062 "If ExecSize = Width = 1, both VertStride "
1063 "and HorzStride must be 0");
1064 }
1065
1066 /* If VertStride = HorzStride = 0, Width must be 1 regardless of the
1067 * value of ExecSize.
1068 */
1069 if (vstride == 0 && hstride == 0) {
1070 ERROR_IF(width != 1,
1071 "If VertStride = HorzStride = 0, Width must be "
1072 "1 regardless of the value of ExecSize");
1073 }
1074
1075 /* VertStride must be used to cross GRF register boundaries. This rule
1076 * implies that elements within a 'Width' cannot cross GRF boundaries.
1077 */
1078 unsigned rowbase = subreg;
1079 assert(util_is_power_of_two_nonzero(reg_unit(devinfo)));
1080 unsigned grf_size_shift = ffs(REG_SIZE * reg_unit(devinfo)) - 1;
1081
1082 for (int y = 0; y < exec_size / width; y++) {
1083 bool spans_grfs = false;
1084 unsigned offset = rowbase;
1085 unsigned first_grf = offset >> grf_size_shift;
1086
1087 for (int x = 0; x < width; x++) {
1088 const unsigned end_byte = offset + (element_size - 1);
1089 const unsigned end_grf = end_byte >> grf_size_shift;
1090 spans_grfs = end_grf != first_grf;
1091 if (spans_grfs)
1092 break;
1093 offset += hstride * element_size;
1094 }
1095
1096 rowbase += vstride * element_size;
1097
1098 if (spans_grfs) {
1099 ERROR("VertStride must be used to cross GRF register boundaries");
1100 break;
1101 }
1102 }
1103 }
1104
1105 /* Dst.HorzStride must not be 0. */
1106 if (desc->ndst != 0 && !dst_is_null(devinfo, inst)) {
1107 ERROR_IF(brw_inst_dst_hstride(devinfo, inst) == BRW_HORIZONTAL_STRIDE_0,
1108 "Destination Horizontal Stride must not be 0");
1109 }
1110
1111 return error_msg;
1112 }
1113
1114 static struct string
special_restrictions_for_mixed_float_mode(const struct brw_isa_info * isa,const brw_inst * inst)1115 special_restrictions_for_mixed_float_mode(const struct brw_isa_info *isa,
1116 const brw_inst *inst)
1117 {
1118 const struct intel_device_info *devinfo = isa->devinfo;
1119
1120 struct string error_msg = { .str = NULL, .len = 0 };
1121
1122 const unsigned opcode = brw_inst_opcode(isa, inst);
1123 const unsigned num_sources = brw_num_sources_from_inst(isa, inst);
1124 if (num_sources >= 3)
1125 return error_msg;
1126
1127 if (!is_mixed_float(isa, inst))
1128 return error_msg;
1129
1130 unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
1131 bool is_align16 = brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16;
1132
1133 enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
1134 enum brw_reg_type src1_type = num_sources > 1 ?
1135 brw_inst_src1_type(devinfo, inst) : 0;
1136 enum brw_reg_type dst_type = brw_inst_dst_type(devinfo, inst);
1137
1138 unsigned dst_stride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
1139 bool dst_is_packed = is_packed(exec_size * dst_stride, exec_size, dst_stride);
1140
1141 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
1142 * Float Operations:
1143 *
1144 * "Indirect addressing on source is not supported when source and
1145 * destination data types are mixed float."
1146 */
1147 ERROR_IF(brw_inst_src0_address_mode(devinfo, inst) != BRW_ADDRESS_DIRECT ||
1148 (num_sources > 1 &&
1149 brw_inst_src1_address_mode(devinfo, inst) != BRW_ADDRESS_DIRECT),
1150 "Indirect addressing on source is not supported when source and "
1151 "destination data types are mixed float");
1152
1153 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
1154 * Float Operations:
1155 *
1156 * "No SIMD16 in mixed mode when destination is f32. Instruction
1157 * execution size must be no more than 8."
1158 */
1159 ERROR_IF(exec_size > 8 && devinfo->ver < 20 &&
1160 dst_type == BRW_TYPE_F &&
1161 opcode != BRW_OPCODE_MOV,
1162 "Mixed float mode with 32-bit float destination is limited "
1163 "to SIMD8");
1164
1165 if (is_align16) {
1166 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
1167 * Float Operations:
1168 *
1169 * "In Align16 mode, when half float and float data types are mixed
1170 * between source operands OR between source and destination operands,
1171 * the register content are assumed to be packed."
1172 *
1173 * Since Align16 doesn't have a concept of horizontal stride (or width),
1174 * it means that vertical stride must always be 4, since 0 and 2 would
1175 * lead to replicated data, and any other value is disallowed in Align16.
1176 */
1177 ERROR_IF(brw_inst_src0_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
1178 "Align16 mixed float mode assumes packed data (vstride must be 4");
1179
1180 ERROR_IF(num_sources >= 2 &&
1181 brw_inst_src1_vstride(devinfo, inst) != BRW_VERTICAL_STRIDE_4,
1182 "Align16 mixed float mode assumes packed data (vstride must be 4");
1183
1184 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
1185 * Float Operations:
1186 *
1187 * "For Align16 mixed mode, both input and output packed f16 data
1188 * must be oword aligned, no oword crossing in packed f16."
1189 *
1190 * The previous rule requires that Align16 operands are always packed,
1191 * and since there is only one bit for Align16 subnr, which represents
1192 * offsets 0B and 16B, this rule is always enforced and we don't need to
1193 * validate it.
1194 */
1195
1196 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
1197 * Float Operations:
1198 *
1199 * "No SIMD16 in mixed mode when destination is packed f16 for both
1200 * Align1 and Align16."
1201 *
1202 * And:
1203 *
1204 * "In Align16 mode, when half float and float data types are mixed
1205 * between source operands OR between source and destination operands,
1206 * the register content are assumed to be packed."
1207 *
1208 * Which implies that SIMD16 is not available in Align16. This is further
1209 * confirmed by:
1210 *
1211 * "For Align16 mixed mode, both input and output packed f16 data
1212 * must be oword aligned, no oword crossing in packed f16"
1213 *
1214 * Since oword-aligned packed f16 data would cross oword boundaries when
1215 * the execution size is larger than 8.
1216 */
1217 ERROR_IF(exec_size > 8, "Align16 mixed float mode is limited to SIMD8");
1218
1219 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
1220 * Float Operations:
1221 *
1222 * "No accumulator read access for Align16 mixed float."
1223 */
1224 ERROR_IF(inst_uses_src_acc(isa, inst),
1225 "No accumulator read access for Align16 mixed float");
1226 } else {
1227 assert(!is_align16);
1228
1229 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
1230 * Float Operations:
1231 *
1232 * "No SIMD16 in mixed mode when destination is packed f16 for both
1233 * Align1 and Align16."
1234 */
1235 ERROR_IF(exec_size > 8 && dst_is_packed &&
1236 dst_type == BRW_TYPE_HF &&
1237 opcode != BRW_OPCODE_MOV,
1238 "Align1 mixed float mode is limited to SIMD8 when destination "
1239 "is packed half-float");
1240
1241 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
1242 * Float Operations:
1243 *
1244 * "Math operations for mixed mode:
1245 * - In Align1, f16 inputs need to be strided"
1246 */
1247 if (opcode == BRW_OPCODE_MATH) {
1248 if (src0_type == BRW_TYPE_HF) {
1249 ERROR_IF(STRIDE(brw_inst_src0_hstride(devinfo, inst)) <= 1,
1250 "Align1 mixed mode math needs strided half-float inputs");
1251 }
1252
1253 if (num_sources >= 2 && src1_type == BRW_TYPE_HF) {
1254 ERROR_IF(STRIDE(brw_inst_src1_hstride(devinfo, inst)) <= 1,
1255 "Align1 mixed mode math needs strided half-float inputs");
1256 }
1257 }
1258
1259 if (dst_type == BRW_TYPE_HF && dst_stride == 1) {
1260 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
1261 * Float Operations:
1262 *
1263 * "In Align1, destination stride can be smaller than execution
1264 * type. When destination is stride of 1, 16 bit packed data is
1265 * updated on the destination. However, output packed f16 data
1266 * must be oword aligned, no oword crossing in packed f16."
1267 *
1268 * The requirement of not crossing oword boundaries for 16-bit oword
1269 * aligned data means that execution size is limited to 8.
1270 */
1271 unsigned subreg;
1272 if (brw_inst_dst_address_mode(devinfo, inst) == BRW_ADDRESS_DIRECT)
1273 subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
1274 else
1275 subreg = brw_inst_dst_ia_subreg_nr(devinfo, inst);
1276 ERROR_IF(subreg % 16 != 0,
1277 "Align1 mixed mode packed half-float output must be "
1278 "oword aligned");
1279 ERROR_IF(exec_size > 8,
1280 "Align1 mixed mode packed half-float output must not "
1281 "cross oword boundaries (max exec size is 8)");
1282
1283 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
1284 * Float Operations:
1285 *
1286 * "When source is float or half float from accumulator register and
1287 * destination is half float with a stride of 1, the source must
1288 * register aligned. i.e., source must have offset zero."
1289 *
1290 * Align16 mixed float mode doesn't allow accumulator access on sources,
1291 * so we only need to check this for Align1.
1292 */
1293 if (src0_is_acc(devinfo, inst) &&
1294 (src0_type == BRW_TYPE_F ||
1295 src0_type == BRW_TYPE_HF)) {
1296 ERROR_IF(brw_inst_src0_da1_subreg_nr(devinfo, inst) != 0,
1297 "Mixed float mode requires register-aligned accumulator "
1298 "source reads when destination is packed half-float");
1299
1300 }
1301
1302 if (num_sources > 1 &&
1303 src1_is_acc(devinfo, inst) &&
1304 (src1_type == BRW_TYPE_F ||
1305 src1_type == BRW_TYPE_HF)) {
1306 ERROR_IF(brw_inst_src1_da1_subreg_nr(devinfo, inst) != 0,
1307 "Mixed float mode requires register-aligned accumulator "
1308 "source reads when destination is packed half-float");
1309 }
1310 }
1311
1312 /* From the SKL PRM, Special Restrictions for Handling Mixed Mode
1313 * Float Operations:
1314 *
1315 * "No swizzle is allowed when an accumulator is used as an implicit
1316 * source or an explicit source in an instruction. i.e. when
1317 * destination is half float with an implicit accumulator source,
1318 * destination stride needs to be 2."
1319 *
1320 * FIXME: it is not quite clear what the first sentence actually means
1321 * or its link to the implication described after it, so we only
1322 * validate the explicit implication, which is clearly described.
1323 */
1324 if (dst_type == BRW_TYPE_HF &&
1325 inst_uses_src_acc(isa, inst)) {
1326 ERROR_IF(dst_stride != 2,
1327 "Mixed float mode with implicit/explicit accumulator "
1328 "source and half-float destination requires a stride "
1329 "of 2 on the destination");
1330 }
1331 }
1332
1333 return error_msg;
1334 }
1335
1336 /**
1337 * Creates a \p grf_access_mask for an \p exec_size, \p element_size, and a
1338 * region
1339 *
1340 * A \p grf_access_mask is a 32-element array of uint8_t, where each uint8_t
1341 * is a bitmask of grfs accessed by the region.
1342 *
1343 * For instance the access mask of the source gX.1<4,2,2>F in an exec_size = 4
1344 * instruction would be
1345 *
1346 * access_mask[0] = 0x01 (bytes 7-4 of the 1st grf)
1347 * access_mask[1] = 0x01 (bytes 15-12 of the 1st grf)
1348 * access_mask[2] = 0x01 (bytes 23-20 of the 1st grf)
1349 * access_mask[3] = 0x01 (bytes 31-28 of the 1st grf)
1350 * access_mask[4-31] = 0
1351 *
1352 * Before Xe2, gX<1,1,0>F in an exec_size == 16 would yield:
1353 *
1354 * access_mask[0] = 0x01 (bytes 3-0 of the 1st grf)
1355 * access_mask[1] = 0x01 (bytes 7-4 of the 1st grf)
1356 * ...
1357 * access_mask[7] = 0x01 (bytes 31-28 of the 1st grf)
1358 * access_mask[8] = 0x02 (bytes 3-0 of the 2nd grf)
1359 * ...
1360 * access_mask[15] = 0x02 (bytes 31-28 of the 2nd grf)
1361 * access_mask[16-31] = 0
1362 *
1363 * Whereas on Xe2, gX<1,1,0>F in an exec_size of 16 would yield:
1364 *
1365 * access_mask[0] = 0x01 (bytes 3-0 of the 1st grf)
1366 * access_mask[1] = 0x01 (bytes 7-4 of the 1st grf)
1367 * ...
1368 * access_mask[7] = 0x01 (bytes 31-28 of the 1st grf)
1369 * access_mask[8] = 0x01 (bytes 35-32 of the 1st grf)
1370 * ...
1371 * access_mask[15] = 0x01 (bytes 63-60 of the 1st grf)
1372 * access_mask[4-31] = 0
1373 *
1374 */
1375 static void
grfs_accessed(const struct intel_device_info * devinfo,uint8_t grf_access_mask[static32],unsigned exec_size,unsigned element_size,unsigned subreg,unsigned vstride,unsigned width,unsigned hstride)1376 grfs_accessed(const struct intel_device_info *devinfo,
1377 uint8_t grf_access_mask[static 32],
1378 unsigned exec_size, unsigned element_size, unsigned subreg,
1379 unsigned vstride, unsigned width, unsigned hstride)
1380 {
1381 unsigned rowbase = subreg;
1382 unsigned element = 0;
1383 assert(util_is_power_of_two_nonzero(reg_unit(devinfo)));
1384 unsigned grf_size_shift = (5 - 1) + ffs(reg_unit(devinfo));
1385
1386 for (int y = 0; y < exec_size / width; y++) {
1387 unsigned offset = rowbase;
1388
1389 for (int x = 0; x < width; x++) {
1390 const unsigned start_grf = (offset >> grf_size_shift) % 8;
1391 const unsigned end_byte = offset + (element_size - 1);
1392 const unsigned end_grf = (end_byte >> grf_size_shift) % 8;
1393 grf_access_mask[element++] = (1 << start_grf) | (1 << end_grf);
1394 offset += hstride * element_size;
1395 }
1396
1397 rowbase += vstride * element_size;
1398 }
1399
1400 assert(element == 0 || element == exec_size);
1401 }
1402
1403 /**
1404 * Returns the number of registers accessed according to the \p access_mask
1405 */
1406 static int
registers_read(const uint8_t grfs_accessed[static32])1407 registers_read(const uint8_t grfs_accessed[static 32])
1408 {
1409 uint8_t all_read = 0;
1410
1411 for (unsigned i = 0; i < 32; i++)
1412 all_read |= grfs_accessed[i];
1413
1414 return util_bitcount(all_read);
1415 }
1416
1417 /**
1418 * Checks restrictions listed in "Region Alignment Rules" in the "Register
1419 * Region Restrictions" section.
1420 */
1421 static struct string
region_alignment_rules(const struct brw_isa_info * isa,const brw_inst * inst)1422 region_alignment_rules(const struct brw_isa_info *isa,
1423 const brw_inst *inst)
1424 {
1425 const struct intel_device_info *devinfo = isa->devinfo;
1426 const struct opcode_desc *desc =
1427 brw_opcode_desc(isa, brw_inst_opcode(isa, inst));
1428 unsigned num_sources = brw_num_sources_from_inst(isa, inst);
1429 unsigned exec_size = 1 << brw_inst_exec_size(devinfo, inst);
1430 uint8_t dst_access_mask[32], src0_access_mask[32], src1_access_mask[32];
1431 struct string error_msg = { .str = NULL, .len = 0 };
1432
1433 if (num_sources == 3)
1434 return (struct string){};
1435
1436 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16)
1437 return (struct string){};
1438
1439 if (inst_is_send(isa, inst))
1440 return (struct string){};
1441
1442 memset(dst_access_mask, 0, sizeof(dst_access_mask));
1443 memset(src0_access_mask, 0, sizeof(src0_access_mask));
1444 memset(src1_access_mask, 0, sizeof(src1_access_mask));
1445
1446 for (unsigned i = 0; i < num_sources; i++) {
1447 unsigned vstride, width, hstride, element_size, subreg;
1448 enum brw_reg_type type;
1449
1450 /* In Direct Addressing mode, a source cannot span more than 2 adjacent
1451 * GRF registers.
1452 */
1453
1454 #define DO_SRC(n) \
1455 if (brw_inst_src ## n ## _address_mode(devinfo, inst) != \
1456 BRW_ADDRESS_DIRECT) \
1457 continue; \
1458 \
1459 if (brw_inst_src ## n ## _reg_file(devinfo, inst) == \
1460 IMM) \
1461 continue; \
1462 \
1463 vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst)); \
1464 width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst)); \
1465 hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst)); \
1466 type = brw_inst_src ## n ## _type(devinfo, inst); \
1467 element_size = brw_type_size_bytes(type); \
1468 subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst); \
1469 grfs_accessed(devinfo, src ## n ## _access_mask, \
1470 exec_size, element_size, subreg, \
1471 vstride, width, hstride)
1472
1473 if (i == 0) {
1474 DO_SRC(0);
1475 } else {
1476 DO_SRC(1);
1477 }
1478 #undef DO_SRC
1479
1480 unsigned num_vstride = exec_size / width;
1481 unsigned num_hstride = width;
1482 unsigned vstride_elements = (num_vstride - 1) * vstride;
1483 unsigned hstride_elements = (num_hstride - 1) * hstride;
1484 unsigned offset = (vstride_elements + hstride_elements) * element_size +
1485 subreg;
1486 ERROR_IF(offset >= 64 * reg_unit(devinfo),
1487 "A source cannot span more than 2 adjacent GRF registers");
1488 }
1489
1490 if (desc->ndst == 0 || dst_is_null(devinfo, inst))
1491 return error_msg;
1492
1493 unsigned stride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
1494 enum brw_reg_type dst_type = inst_dst_type(isa, inst);
1495 unsigned element_size = brw_type_size_bytes(dst_type);
1496 unsigned subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
1497 unsigned offset = ((exec_size - 1) * stride * element_size) + subreg;
1498 ERROR_IF(offset >= 64 * reg_unit(devinfo),
1499 "A destination cannot span more than 2 adjacent GRF registers");
1500
1501 if (error_msg.str)
1502 return error_msg;
1503
1504 grfs_accessed(devinfo, dst_access_mask, exec_size, element_size, subreg,
1505 exec_size == 1 ? 0 : exec_size * stride,
1506 exec_size == 1 ? 1 : exec_size,
1507 exec_size == 1 ? 0 : stride);
1508
1509 unsigned dst_regs = registers_read(dst_access_mask);
1510
1511 /* The SKL PRM says:
1512 *
1513 * When destination of MATH instruction spans two registers, the
1514 * destination elements must be evenly split between the two registers.
1515 *
1516 * It is not known whether this restriction applies to KBL other Gens after
1517 * SKL.
1518 */
1519 if (brw_inst_opcode(isa, inst) == BRW_OPCODE_MATH) {
1520 if (dst_regs == 2) {
1521 unsigned upper_reg_writes = 0, lower_reg_writes = 0;
1522
1523 for (unsigned i = 0; i < exec_size; i++) {
1524 if (dst_access_mask[i] == 2) {
1525 upper_reg_writes++;
1526 } else {
1527 assert(dst_access_mask[i] == 1);
1528 lower_reg_writes++;
1529 }
1530 }
1531
1532 ERROR_IF(upper_reg_writes != lower_reg_writes,
1533 "Writes must be evenly split between the two "
1534 "destination registers");
1535 }
1536 }
1537
1538 return error_msg;
1539 }
1540
1541 static struct string
vector_immediate_restrictions(const struct brw_isa_info * isa,const brw_inst * inst)1542 vector_immediate_restrictions(const struct brw_isa_info *isa,
1543 const brw_inst *inst)
1544 {
1545 const struct intel_device_info *devinfo = isa->devinfo;
1546
1547 unsigned num_sources = brw_num_sources_from_inst(isa, inst);
1548 struct string error_msg = { .str = NULL, .len = 0 };
1549
1550 if (num_sources == 3 || num_sources == 0 ||
1551 (devinfo->ver >= 12 && inst_is_send(isa, inst)))
1552 return (struct string){};
1553
1554 unsigned file = num_sources == 1 ?
1555 brw_inst_src0_reg_file(devinfo, inst) :
1556 brw_inst_src1_reg_file(devinfo, inst);
1557 if (file != IMM)
1558 return (struct string){};
1559
1560 enum brw_reg_type dst_type = inst_dst_type(isa, inst);
1561 unsigned dst_type_size = brw_type_size_bytes(dst_type);
1562 unsigned dst_subreg = brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 ?
1563 brw_inst_dst_da1_subreg_nr(devinfo, inst) : 0;
1564 unsigned dst_stride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
1565 enum brw_reg_type type = num_sources == 1 ?
1566 brw_inst_src0_type(devinfo, inst) :
1567 brw_inst_src1_type(devinfo, inst);
1568
1569 /* The PRMs say:
1570 *
1571 * When an immediate vector is used in an instruction, the destination
1572 * must be 128-bit aligned with destination horizontal stride equivalent
1573 * to a word for an immediate integer vector (v) and equivalent to a
1574 * DWord for an immediate float vector (vf).
1575 *
1576 * The text has not been updated for the addition of the immediate unsigned
1577 * integer vector type (uv) on SNB, but presumably the same restriction
1578 * applies.
1579 */
1580 switch (type) {
1581 case BRW_TYPE_V:
1582 case BRW_TYPE_UV:
1583 case BRW_TYPE_VF:
1584 ERROR_IF(dst_subreg % (128 / 8) != 0,
1585 "Destination must be 128-bit aligned in order to use immediate "
1586 "vector types");
1587
1588 if (type == BRW_TYPE_VF) {
1589 ERROR_IF(dst_type_size * dst_stride != 4,
1590 "Destination must have stride equivalent to dword in order "
1591 "to use the VF type");
1592 } else {
1593 ERROR_IF(dst_type_size * dst_stride != 2,
1594 "Destination must have stride equivalent to word in order "
1595 "to use the V or UV type");
1596 }
1597 break;
1598 default:
1599 break;
1600 }
1601
1602 return error_msg;
1603 }
1604
1605 static struct string
special_requirements_for_handling_double_precision_data_types(const struct brw_isa_info * isa,const brw_inst * inst)1606 special_requirements_for_handling_double_precision_data_types(
1607 const struct brw_isa_info *isa,
1608 const brw_inst *inst)
1609 {
1610 const struct intel_device_info *devinfo = isa->devinfo;
1611
1612 unsigned num_sources = brw_num_sources_from_inst(isa, inst);
1613 struct string error_msg = { .str = NULL, .len = 0 };
1614
1615 if (num_sources == 3 || num_sources == 0)
1616 return (struct string){};
1617
1618 /* Split sends don't have types so there's no doubles there. */
1619 if (inst_is_split_send(isa, inst))
1620 return (struct string){};
1621
1622 enum brw_reg_type exec_type = execution_type(isa, inst);
1623 unsigned exec_type_size = brw_type_size_bytes(exec_type);
1624
1625 enum brw_reg_file dst_file = brw_inst_dst_reg_file(devinfo, inst);
1626 enum brw_reg_type dst_type = inst_dst_type(isa, inst);
1627 unsigned dst_type_size = brw_type_size_bytes(dst_type);
1628 unsigned dst_hstride = STRIDE(brw_inst_dst_hstride(devinfo, inst));
1629 unsigned dst_reg = brw_inst_dst_da_reg_nr(devinfo, inst);
1630 unsigned dst_subreg = brw_inst_dst_da1_subreg_nr(devinfo, inst);
1631 unsigned dst_address_mode = brw_inst_dst_address_mode(devinfo, inst);
1632
1633 bool is_integer_dword_multiply =
1634 brw_inst_opcode(isa, inst) == BRW_OPCODE_MUL &&
1635 (brw_inst_src0_type(devinfo, inst) == BRW_TYPE_D ||
1636 brw_inst_src0_type(devinfo, inst) == BRW_TYPE_UD) &&
1637 (brw_inst_src1_type(devinfo, inst) == BRW_TYPE_D ||
1638 brw_inst_src1_type(devinfo, inst) == BRW_TYPE_UD);
1639
1640 const bool is_double_precision =
1641 dst_type_size == 8 || exec_type_size == 8 || is_integer_dword_multiply;
1642
1643 for (unsigned i = 0; i < num_sources; i++) {
1644 unsigned vstride, width, hstride, type_size, reg, subreg, address_mode;
1645 bool is_scalar_region;
1646 enum brw_reg_file file;
1647 enum brw_reg_type type;
1648
1649 #define DO_SRC(n) \
1650 if (brw_inst_src ## n ## _reg_file(devinfo, inst) == \
1651 IMM) \
1652 continue; \
1653 \
1654 is_scalar_region = src ## n ## _has_scalar_region(devinfo, inst); \
1655 vstride = STRIDE(brw_inst_src ## n ## _vstride(devinfo, inst)); \
1656 width = WIDTH(brw_inst_src ## n ## _width(devinfo, inst)); \
1657 hstride = STRIDE(brw_inst_src ## n ## _hstride(devinfo, inst)); \
1658 file = brw_inst_src ## n ## _reg_file(devinfo, inst); \
1659 type = brw_inst_src ## n ## _type(devinfo, inst); \
1660 type_size = brw_type_size_bytes(type); \
1661 reg = brw_inst_src ## n ## _da_reg_nr(devinfo, inst); \
1662 subreg = brw_inst_src ## n ## _da1_subreg_nr(devinfo, inst); \
1663 address_mode = brw_inst_src ## n ## _address_mode(devinfo, inst)
1664
1665 if (i == 0) {
1666 DO_SRC(0);
1667 } else {
1668 DO_SRC(1);
1669 }
1670 #undef DO_SRC
1671
1672 const unsigned src_stride = (hstride ? hstride : vstride) * type_size;
1673 const unsigned dst_stride = dst_hstride * dst_type_size;
1674
1675 /* The PRMs say that for CHV, BXT:
1676 *
1677 * When source or destination datatype is 64b or operation is integer
1678 * DWord multiply, regioning in Align1 must follow these rules:
1679 *
1680 * 1. Source and Destination horizontal stride must be aligned to the
1681 * same qword.
1682 * 2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride.
1683 * 3. Source and Destination offset must be the same, except the case
1684 * of scalar source.
1685 *
1686 * We assume that the restriction applies to GLK as well.
1687 */
1688 if (is_double_precision &&
1689 brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1 &&
1690 intel_device_info_is_9lp(devinfo)) {
1691 ERROR_IF(!is_scalar_region &&
1692 (src_stride % 8 != 0 ||
1693 dst_stride % 8 != 0 ||
1694 src_stride != dst_stride),
1695 "Source and destination horizontal stride must equal and a "
1696 "multiple of a qword when the execution type is 64-bit");
1697
1698 ERROR_IF(vstride != width * hstride,
1699 "Vstride must be Width * Hstride when the execution type is "
1700 "64-bit");
1701
1702 ERROR_IF(!is_scalar_region && dst_subreg != subreg,
1703 "Source and destination offset must be the same when the "
1704 "execution type is 64-bit");
1705 }
1706
1707 /* The PRMs say that for CHV, BXT:
1708 *
1709 * When source or destination datatype is 64b or operation is integer
1710 * DWord multiply, indirect addressing must not be used.
1711 *
1712 * We assume that the restriction applies to GLK as well.
1713 */
1714 if (is_double_precision &&
1715 intel_device_info_is_9lp(devinfo)) {
1716 ERROR_IF(BRW_ADDRESS_REGISTER_INDIRECT_REGISTER == address_mode ||
1717 BRW_ADDRESS_REGISTER_INDIRECT_REGISTER == dst_address_mode,
1718 "Indirect addressing is not allowed when the execution type "
1719 "is 64-bit");
1720 }
1721
1722 /* The PRMs say that for CHV, BXT:
1723 *
1724 * ARF registers must never be used with 64b datatype or when
1725 * operation is integer DWord multiply.
1726 *
1727 * We assume that the restriction applies to GLK as well.
1728 *
1729 * We assume that the restriction does not apply to the null register.
1730 */
1731 if (is_double_precision &&
1732 intel_device_info_is_9lp(devinfo)) {
1733 ERROR_IF(brw_inst_opcode(isa, inst) == BRW_OPCODE_MAC ||
1734 brw_inst_acc_wr_control(devinfo, inst) ||
1735 (ARF == file &&
1736 reg != BRW_ARF_NULL) ||
1737 (ARF == dst_file &&
1738 dst_reg != BRW_ARF_NULL),
1739 "Architecture registers cannot be used when the execution "
1740 "type is 64-bit");
1741 }
1742
1743 /* From the hardware spec section "Register Region Restrictions":
1744 *
1745 * There are two rules:
1746 *
1747 * "In case of all floating point data types used in destination:" and
1748 *
1749 * "In case where source or destination datatype is 64b or operation is
1750 * integer DWord multiply:"
1751 *
1752 * both of which list the same restrictions:
1753 *
1754 * "1. Register Regioning patterns where register data bit location
1755 * of the LSB of the channels are changed between source and
1756 * destination are not supported on Src0 and Src1 except for
1757 * broadcast of a scalar.
1758 *
1759 * 2. Explicit ARF registers except null and accumulator must not be
1760 * used."
1761 */
1762 if (devinfo->verx10 >= 125 &&
1763 (brw_type_is_float(dst_type) ||
1764 is_double_precision)) {
1765 ERROR_IF(!is_scalar_region &&
1766 BRW_ADDRESS_REGISTER_INDIRECT_REGISTER != address_mode &&
1767 (!is_linear(vstride, width, hstride) ||
1768 src_stride != dst_stride ||
1769 subreg != dst_subreg),
1770 "Register Regioning patterns where register data bit "
1771 "location of the LSB of the channels are changed between "
1772 "source and destination are not supported except for "
1773 "broadcast of a scalar.");
1774
1775 ERROR_IF((address_mode == BRW_ADDRESS_DIRECT && file == ARF &&
1776 reg != BRW_ARF_NULL && !(reg >= BRW_ARF_ACCUMULATOR && reg < BRW_ARF_FLAG)) ||
1777 (dst_file == ARF &&
1778 dst_reg != BRW_ARF_NULL && (dst_reg & 0xF0) != BRW_ARF_ACCUMULATOR),
1779 "Explicit ARF registers except null and accumulator must not "
1780 "be used.");
1781 }
1782
1783 /* From the hardware spec section "Register Region Restrictions":
1784 *
1785 * "Vx1 and VxH indirect addressing for Float, Half-Float, Double-Float and
1786 * Quad-Word data must not be used."
1787 */
1788 if (devinfo->verx10 >= 125 &&
1789 (brw_type_is_float(type) || brw_type_size_bytes(type) == 8)) {
1790 ERROR_IF(address_mode == BRW_ADDRESS_REGISTER_INDIRECT_REGISTER &&
1791 vstride == BRW_VERTICAL_STRIDE_ONE_DIMENSIONAL,
1792 "Vx1 and VxH indirect addressing for Float, Half-Float, "
1793 "Double-Float and Quad-Word data must not be used");
1794 }
1795 }
1796
1797 /* The PRMs say that for BDW, SKL:
1798 *
1799 * If Align16 is required for an operation with QW destination and non-QW
1800 * source datatypes, the execution size cannot exceed 2.
1801 *
1802 * We assume that the restriction applies to all Gfx8+ parts.
1803 */
1804 if (is_double_precision) {
1805 enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
1806 enum brw_reg_type src1_type =
1807 num_sources > 1 ? brw_inst_src1_type(devinfo, inst) : src0_type;
1808 unsigned src0_type_size = brw_type_size_bytes(src0_type);
1809 unsigned src1_type_size = brw_type_size_bytes(src1_type);
1810
1811 ERROR_IF(brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_16 &&
1812 dst_type_size == 8 &&
1813 (src0_type_size != 8 || src1_type_size != 8) &&
1814 brw_inst_exec_size(devinfo, inst) > BRW_EXECUTE_2,
1815 "In Align16 exec size cannot exceed 2 with a QWord destination "
1816 "and a non-QWord source");
1817 }
1818
1819 /* The PRMs say that for CHV, BXT:
1820 *
1821 * When source or destination datatype is 64b or operation is integer
1822 * DWord multiply, DepCtrl must not be used.
1823 *
1824 * We assume that the restriction applies to GLK as well.
1825 */
1826 if (is_double_precision &&
1827 intel_device_info_is_9lp(devinfo)) {
1828 ERROR_IF(brw_inst_no_dd_check(devinfo, inst) ||
1829 brw_inst_no_dd_clear(devinfo, inst),
1830 "DepCtrl is not allowed when the execution type is 64-bit");
1831 }
1832
1833 return error_msg;
1834 }
1835
1836 static struct string
instruction_restrictions(const struct brw_isa_info * isa,const brw_inst * inst)1837 instruction_restrictions(const struct brw_isa_info *isa,
1838 const brw_inst *inst)
1839 {
1840 const struct intel_device_info *devinfo = isa->devinfo;
1841 struct string error_msg = { .str = NULL, .len = 0 };
1842
1843 /* From Wa_1604601757:
1844 *
1845 * "When multiplying a DW and any lower precision integer, source modifier
1846 * is not supported."
1847 */
1848 if (devinfo->ver >= 12 &&
1849 brw_inst_opcode(isa, inst) == BRW_OPCODE_MUL) {
1850 enum brw_reg_type exec_type = execution_type(isa, inst);
1851 const bool src0_valid =
1852 brw_type_size_bytes(brw_inst_src0_type(devinfo, inst)) == 4 ||
1853 brw_inst_src0_reg_file(devinfo, inst) == IMM ||
1854 !(brw_inst_src0_negate(devinfo, inst) ||
1855 brw_inst_src0_abs(devinfo, inst));
1856 const bool src1_valid =
1857 brw_type_size_bytes(brw_inst_src1_type(devinfo, inst)) == 4 ||
1858 brw_inst_src1_reg_file(devinfo, inst) == IMM ||
1859 !(brw_inst_src1_negate(devinfo, inst) ||
1860 brw_inst_src1_abs(devinfo, inst));
1861
1862 ERROR_IF(!brw_type_is_float(exec_type) &&
1863 brw_type_size_bytes(exec_type) == 4 &&
1864 !(src0_valid && src1_valid),
1865 "When multiplying a DW and any lower precision integer, source "
1866 "modifier is not supported.");
1867 }
1868
1869 if (brw_inst_opcode(isa, inst) == BRW_OPCODE_CMP ||
1870 brw_inst_opcode(isa, inst) == BRW_OPCODE_CMPN) {
1871 ERROR_IF(brw_inst_cond_modifier(devinfo, inst) == BRW_CONDITIONAL_NONE,
1872 "CMP (or CMPN) must have a condition.");
1873 }
1874
1875 if (brw_inst_opcode(isa, inst) == BRW_OPCODE_SEL) {
1876 ERROR_IF((brw_inst_cond_modifier(devinfo, inst) != BRW_CONDITIONAL_NONE) ==
1877 (brw_inst_pred_control(devinfo, inst) != BRW_PREDICATE_NONE),
1878 "SEL must either be predicated or have a condition modifiers");
1879 }
1880
1881 if (brw_inst_opcode(isa, inst) == BRW_OPCODE_MUL) {
1882 const enum brw_reg_type src0_type = brw_inst_src0_type(devinfo, inst);
1883 const enum brw_reg_type src1_type = brw_inst_src1_type(devinfo, inst);
1884 const enum brw_reg_type dst_type = inst_dst_type(isa, inst);
1885
1886 /* Page 966 (page 982 of the PDF) of Broadwell PRM volume 2a says:
1887 *
1888 * When multiplying a DW and any lower precision integer, the DW
1889 * operand must on src0.
1890 *
1891 * Ivy Bridge, Haswell, Skylake, and Ice Lake PRMs contain the same
1892 * text.
1893 */
1894 ERROR_IF(brw_type_is_int(src1_type) &&
1895 brw_type_size_bytes(src0_type) < 4 &&
1896 brw_type_size_bytes(src1_type) == 4,
1897 "When multiplying a DW and any lower precision integer, the "
1898 "DW operand must be src0.");
1899
1900 /* Page 971 (page 987 of the PDF), section "Accumulator
1901 * Restrictions," of the Broadwell PRM volume 7 says:
1902 *
1903 * Integer source operands cannot be accumulators.
1904 *
1905 * The Skylake and Ice Lake PRMs contain the same text.
1906 */
1907 ERROR_IF((src0_is_acc(devinfo, inst) &&
1908 brw_type_is_int(src0_type)) ||
1909 (src1_is_acc(devinfo, inst) &&
1910 brw_type_is_int(src1_type)),
1911 "Integer source operands cannot be accumulators.");
1912
1913 /* Page 935 (page 951 of the PDF) of the Ice Lake PRM volume 2a says:
1914 *
1915 * When multiplying integer data types, if one of the sources is a
1916 * DW, the resulting full precision data is stored in the
1917 * accumulator. However, if the destination data type is either W or
1918 * DW, the low bits of the result are written to the destination
1919 * register and the remaining high bits are discarded. This results
1920 * in undefined Overflow and Sign flags. Therefore, conditional
1921 * modifiers and saturation (.sat) cannot be used in this case.
1922 *
1923 * Similar text appears in every version of the PRM.
1924 *
1925 * The wording of the last sentence is not very clear. It could either
1926 * be interpreted as "conditional modifiers combined with saturation
1927 * cannot be used" or "neither conditional modifiers nor saturation can
1928 * be used." I have interpreted it as the latter primarily because that
1929 * is the more restrictive interpretation.
1930 */
1931 ERROR_IF((src0_type == BRW_TYPE_UD ||
1932 src0_type == BRW_TYPE_D ||
1933 src1_type == BRW_TYPE_UD ||
1934 src1_type == BRW_TYPE_D) &&
1935 (dst_type == BRW_TYPE_UD ||
1936 dst_type == BRW_TYPE_D ||
1937 dst_type == BRW_TYPE_UW ||
1938 dst_type == BRW_TYPE_W) &&
1939 (brw_inst_saturate(devinfo, inst) != 0 ||
1940 brw_inst_cond_modifier(devinfo, inst) != BRW_CONDITIONAL_NONE),
1941 "Neither Saturate nor conditional modifier allowed with DW "
1942 "integer multiply.");
1943 }
1944
1945 if (brw_inst_opcode(isa, inst) == BRW_OPCODE_MATH) {
1946 unsigned math_function = brw_inst_math_function(devinfo, inst);
1947 switch (math_function) {
1948 case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT_AND_REMAINDER:
1949 case BRW_MATH_FUNCTION_INT_DIV_QUOTIENT:
1950 case BRW_MATH_FUNCTION_INT_DIV_REMAINDER: {
1951 /* Page 442 of the Broadwell PRM Volume 2a "Extended Math Function" says:
1952 * INT DIV function does not support source modifiers.
1953 * Bspec 6647 extends it back to Ivy Bridge.
1954 */
1955 bool src0_valid = !brw_inst_src0_negate(devinfo, inst) &&
1956 !brw_inst_src0_abs(devinfo, inst);
1957 bool src1_valid = !brw_inst_src1_negate(devinfo, inst) &&
1958 !brw_inst_src1_abs(devinfo, inst);
1959 ERROR_IF(!src0_valid || !src1_valid,
1960 "INT DIV function does not support source modifiers.");
1961 break;
1962 }
1963 default:
1964 break;
1965 }
1966 }
1967
1968 if (brw_inst_opcode(isa, inst) == BRW_OPCODE_DP4A) {
1969 /* Page 396 (page 412 of the PDF) of the DG1 PRM volume 2a says:
1970 *
1971 * Only one of src0 or src1 operand may be an the (sic) accumulator
1972 * register (acc#).
1973 */
1974 ERROR_IF(src0_is_acc(devinfo, inst) && src1_is_acc(devinfo, inst),
1975 "Only one of src0 or src1 operand may be an accumulator "
1976 "register (acc#).");
1977
1978 }
1979
1980 if (brw_inst_opcode(isa, inst) == BRW_OPCODE_ADD3) {
1981 const enum brw_reg_type dst_type = inst_dst_type(isa, inst);
1982
1983 ERROR_IF(dst_type != BRW_TYPE_D &&
1984 dst_type != BRW_TYPE_UD &&
1985 dst_type != BRW_TYPE_W &&
1986 dst_type != BRW_TYPE_UW,
1987 "Destination must be integer D, UD, W, or UW type.");
1988
1989 for (unsigned i = 0; i < 3; i++) {
1990 enum brw_reg_type src_type;
1991
1992 switch (i) {
1993 case 0: src_type = brw_inst_3src_a1_src0_type(devinfo, inst); break;
1994 case 1: src_type = brw_inst_3src_a1_src1_type(devinfo, inst); break;
1995 case 2: src_type = brw_inst_3src_a1_src2_type(devinfo, inst); break;
1996 default: unreachable("invalid src");
1997 }
1998
1999 ERROR_IF(src_type != BRW_TYPE_D &&
2000 src_type != BRW_TYPE_UD &&
2001 src_type != BRW_TYPE_W &&
2002 src_type != BRW_TYPE_UW,
2003 "Source must be integer D, UD, W, or UW type.");
2004
2005 if (i == 0) {
2006 if (brw_inst_3src_a1_src0_is_imm(devinfo, inst)) {
2007 ERROR_IF(src_type != BRW_TYPE_W &&
2008 src_type != BRW_TYPE_UW,
2009 "Immediate source must be integer W or UW type.");
2010 }
2011 } else if (i == 2) {
2012 if (brw_inst_3src_a1_src2_is_imm(devinfo, inst)) {
2013 ERROR_IF(src_type != BRW_TYPE_W &&
2014 src_type != BRW_TYPE_UW,
2015 "Immediate source must be integer W or UW type.");
2016 }
2017 }
2018 }
2019 }
2020
2021 if (brw_inst_opcode(isa, inst) == BRW_OPCODE_OR ||
2022 brw_inst_opcode(isa, inst) == BRW_OPCODE_AND ||
2023 brw_inst_opcode(isa, inst) == BRW_OPCODE_XOR ||
2024 brw_inst_opcode(isa, inst) == BRW_OPCODE_NOT) {
2025 /* While the behavior of the negate source modifier is defined as
2026 * logical not, the behavior of abs source modifier is not
2027 * defined. Disallow it to be safe.
2028 */
2029 ERROR_IF(brw_inst_src0_abs(devinfo, inst),
2030 "Behavior of abs source modifier in logic ops is undefined.");
2031 ERROR_IF(brw_inst_opcode(isa, inst) != BRW_OPCODE_NOT &&
2032 brw_inst_src1_reg_file(devinfo, inst) != IMM &&
2033 brw_inst_src1_abs(devinfo, inst),
2034 "Behavior of abs source modifier in logic ops is undefined.");
2035
2036 /* Page 479 (page 495 of the PDF) of the Broadwell PRM volume 2a says:
2037 *
2038 * Source modifier is not allowed if source is an accumulator.
2039 *
2040 * The same text also appears for OR, NOT, and XOR instructions.
2041 */
2042 ERROR_IF((brw_inst_src0_abs(devinfo, inst) ||
2043 brw_inst_src0_negate(devinfo, inst)) &&
2044 src0_is_acc(devinfo, inst),
2045 "Source modifier is not allowed if source is an accumulator.");
2046 ERROR_IF(brw_num_sources_from_inst(isa, inst) > 1 &&
2047 (brw_inst_src1_abs(devinfo, inst) ||
2048 brw_inst_src1_negate(devinfo, inst)) &&
2049 src1_is_acc(devinfo, inst),
2050 "Source modifier is not allowed if source is an accumulator.");
2051
2052 /* Page 479 (page 495 of the PDF) of the Broadwell PRM volume 2a says:
2053 *
2054 * This operation does not produce sign or overflow conditions. Only
2055 * the .e/.z or .ne/.nz conditional modifiers should be used.
2056 *
2057 * The same text also appears for OR, NOT, and XOR instructions.
2058 *
2059 * Per the comment around nir_op_imod in brw_fs_nir.cpp, we have
2060 * determined this to not be true. The only conditions that seem
2061 * absolutely sketchy are O, R, and U. Some OpenGL shaders from Doom
2062 * 2016 have been observed to generate and.g and operate correctly.
2063 */
2064 const enum brw_conditional_mod cmod =
2065 brw_inst_cond_modifier(devinfo, inst);
2066 ERROR_IF(cmod == BRW_CONDITIONAL_O ||
2067 cmod == BRW_CONDITIONAL_R ||
2068 cmod == BRW_CONDITIONAL_U,
2069 "O, R, and U conditional modifiers should not be used.");
2070 }
2071
2072 if (brw_inst_opcode(isa, inst) == BRW_OPCODE_BFI2) {
2073 ERROR_IF(brw_inst_cond_modifier(devinfo, inst) != BRW_CONDITIONAL_NONE,
2074 "BFI2 cannot have conditional modifier");
2075
2076 ERROR_IF(brw_inst_saturate(devinfo, inst),
2077 "BFI2 cannot have saturate modifier");
2078
2079 enum brw_reg_type dst_type;
2080
2081 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1)
2082 dst_type = brw_inst_3src_a1_dst_type(devinfo, inst);
2083 else
2084 dst_type = brw_inst_3src_a16_dst_type(devinfo, inst);
2085
2086 ERROR_IF(dst_type != BRW_TYPE_D &&
2087 dst_type != BRW_TYPE_UD,
2088 "BFI2 destination type must be D or UD");
2089
2090 for (unsigned s = 0; s < 3; s++) {
2091 enum brw_reg_type src_type;
2092
2093 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1) {
2094 switch (s) {
2095 case 0: src_type = brw_inst_3src_a1_src0_type(devinfo, inst); break;
2096 case 1: src_type = brw_inst_3src_a1_src1_type(devinfo, inst); break;
2097 case 2: src_type = brw_inst_3src_a1_src2_type(devinfo, inst); break;
2098 default: unreachable("invalid src");
2099 }
2100 } else {
2101 src_type = brw_inst_3src_a16_src_type(devinfo, inst);
2102 }
2103
2104 ERROR_IF(src_type != dst_type,
2105 "BFI2 source type must match destination type");
2106 }
2107 }
2108
2109 if (brw_inst_opcode(isa, inst) == BRW_OPCODE_CSEL) {
2110 ERROR_IF(brw_inst_pred_control(devinfo, inst) != BRW_PREDICATE_NONE,
2111 "CSEL cannot be predicated");
2112
2113 /* CSEL is CMP and SEL fused into one. The condition modifier, which
2114 * does not actually modify the flags, controls the built-in comparison.
2115 */
2116 ERROR_IF(brw_inst_cond_modifier(devinfo, inst) == BRW_CONDITIONAL_NONE,
2117 "CSEL must have a condition.");
2118
2119 enum brw_reg_type dst_type;
2120
2121 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1)
2122 dst_type = brw_inst_3src_a1_dst_type(devinfo, inst);
2123 else
2124 dst_type = brw_inst_3src_a16_dst_type(devinfo, inst);
2125
2126 if (devinfo->ver == 9) {
2127 ERROR_IF(dst_type != BRW_TYPE_F,
2128 "CSEL destination type must be F");
2129 } else {
2130 ERROR_IF(dst_type != BRW_TYPE_F &&
2131 dst_type != BRW_TYPE_HF &&
2132 dst_type != BRW_TYPE_D &&
2133 dst_type != BRW_TYPE_W &&
2134 dst_type != BRW_TYPE_UD &&
2135 dst_type != BRW_TYPE_UW,
2136 "CSEL destination type must be F, HF, *D, or *W");
2137 }
2138
2139 for (unsigned s = 0; s < 3; s++) {
2140 enum brw_reg_type src_type;
2141
2142 if (brw_inst_access_mode(devinfo, inst) == BRW_ALIGN_1) {
2143 switch (s) {
2144 case 0: src_type = brw_inst_3src_a1_src0_type(devinfo, inst); break;
2145 case 1: src_type = brw_inst_3src_a1_src1_type(devinfo, inst); break;
2146 case 2: src_type = brw_inst_3src_a1_src2_type(devinfo, inst); break;
2147 default: unreachable("invalid src");
2148 }
2149 } else {
2150 src_type = brw_inst_3src_a16_src_type(devinfo, inst);
2151 }
2152
2153 if (devinfo->ver == 9) {
2154 ERROR_IF(src_type != BRW_TYPE_F,
2155 "CSEL source type must be F");
2156 } else {
2157 ERROR_IF(src_type != BRW_TYPE_F && src_type != BRW_TYPE_HF &&
2158 src_type != BRW_TYPE_D && src_type != BRW_TYPE_UD &&
2159 src_type != BRW_TYPE_W && src_type != BRW_TYPE_UW,
2160 "CSEL source type must be F, HF, *D, or *W");
2161
2162 ERROR_IF(brw_type_is_float(src_type) != brw_type_is_float(dst_type),
2163 "CSEL cannot mix float and integer types.");
2164
2165 ERROR_IF(brw_type_size_bytes(src_type) !=
2166 brw_type_size_bytes(dst_type),
2167 "CSEL cannot mix different type sizes.");
2168 }
2169 }
2170 }
2171
2172 if (brw_inst_opcode(isa, inst) == BRW_OPCODE_DPAS) {
2173 ERROR_IF(brw_inst_dpas_3src_sdepth(devinfo, inst) != BRW_SYSTOLIC_DEPTH_8,
2174 "Systolic depth must be 8.");
2175
2176 const unsigned sdepth = 8;
2177
2178 const enum brw_reg_type dst_type =
2179 brw_inst_dpas_3src_dst_type(devinfo, inst);
2180 const enum brw_reg_type src0_type =
2181 brw_inst_dpas_3src_src0_type(devinfo, inst);
2182 const enum brw_reg_type src1_type =
2183 brw_inst_dpas_3src_src1_type(devinfo, inst);
2184 const enum brw_reg_type src2_type =
2185 brw_inst_dpas_3src_src2_type(devinfo, inst);
2186
2187 const enum gfx12_sub_byte_precision src1_sub_byte =
2188 brw_inst_dpas_3src_src1_subbyte(devinfo, inst);
2189
2190 if (src1_type != BRW_TYPE_B && src1_type != BRW_TYPE_UB) {
2191 ERROR_IF(src1_sub_byte != BRW_SUB_BYTE_PRECISION_NONE,
2192 "Sub-byte precision must be None for source type larger than Byte.");
2193 } else {
2194 ERROR_IF(src1_sub_byte != BRW_SUB_BYTE_PRECISION_NONE &&
2195 src1_sub_byte != BRW_SUB_BYTE_PRECISION_4BIT &&
2196 src1_sub_byte != BRW_SUB_BYTE_PRECISION_2BIT,
2197 "Invalid sub-byte precision.");
2198 }
2199
2200 const enum gfx12_sub_byte_precision src2_sub_byte =
2201 brw_inst_dpas_3src_src2_subbyte(devinfo, inst);
2202
2203 if (src2_type != BRW_TYPE_B && src2_type != BRW_TYPE_UB) {
2204 ERROR_IF(src2_sub_byte != BRW_SUB_BYTE_PRECISION_NONE,
2205 "Sub-byte precision must be None.");
2206 } else {
2207 ERROR_IF(src2_sub_byte != BRW_SUB_BYTE_PRECISION_NONE &&
2208 src2_sub_byte != BRW_SUB_BYTE_PRECISION_4BIT &&
2209 src2_sub_byte != BRW_SUB_BYTE_PRECISION_2BIT,
2210 "Invalid sub-byte precision.");
2211 }
2212
2213 const unsigned src1_bits_per_element =
2214 brw_type_size_bits(src1_type) >>
2215 brw_inst_dpas_3src_src1_subbyte(devinfo, inst);
2216
2217 const unsigned src2_bits_per_element =
2218 brw_type_size_bits(src2_type) >>
2219 brw_inst_dpas_3src_src2_subbyte(devinfo, inst);
2220
2221 /* The MAX2(1, ...) is just to prevent possible division by 0 later. */
2222 const unsigned ops_per_chan =
2223 MAX2(1, 32 / MAX2(src1_bits_per_element, src2_bits_per_element));
2224
2225 if (devinfo->ver < 20) {
2226 ERROR_IF(brw_inst_exec_size(devinfo, inst) != BRW_EXECUTE_8,
2227 "DPAS execution size must be 8.");
2228 } else {
2229 ERROR_IF(brw_inst_exec_size(devinfo, inst) != BRW_EXECUTE_16,
2230 "DPAS execution size must be 16.");
2231 }
2232
2233 const unsigned exec_size = devinfo->ver < 20 ? 8 : 16;
2234
2235 const unsigned dst_subnr = brw_inst_dpas_3src_dst_subreg_nr(devinfo, inst);
2236 const unsigned src0_subnr = brw_inst_dpas_3src_src0_subreg_nr(devinfo, inst);
2237 const unsigned src1_subnr = brw_inst_dpas_3src_src1_subreg_nr(devinfo, inst);
2238 const unsigned src2_subnr = brw_inst_dpas_3src_src2_subreg_nr(devinfo, inst);
2239
2240 /* Until HF is supported as dst type, this is effectively subnr == 0. */
2241 ERROR_IF(dst_subnr % exec_size != 0,
2242 "Destination subregister offset must be a multiple of ExecSize.");
2243
2244 /* Until HF is supported as src0 type, this is effectively subnr == 0. */
2245 ERROR_IF(src0_subnr % exec_size != 0,
2246 "Src0 subregister offset must be a multiple of ExecSize.");
2247
2248 ERROR_IF(src1_subnr != 0,
2249 "Src1 subregister offsets must be 0.");
2250
2251 /* In nearly all cases, this effectively requires that src2.subnr be
2252 * 0. It is only when src1 is 8 bits and src2 is 2 or 4 bits that the
2253 * ops_per_chan value can allow non-zero src2.subnr.
2254 */
2255 ERROR_IF(src2_subnr % (sdepth * ops_per_chan) != 0,
2256 "Src2 subregister offset must be a multiple of SystolicDepth "
2257 "times OPS_PER_CHAN.");
2258
2259 ERROR_IF(dst_subnr * brw_type_size_bytes(dst_type) >= REG_SIZE,
2260 "Destination subregister specifies next register.");
2261
2262 ERROR_IF(src0_subnr * brw_type_size_bytes(src0_type) >= REG_SIZE,
2263 "Src0 subregister specifies next register.");
2264
2265 ERROR_IF((src1_subnr * brw_type_size_bytes(src1_type) * src1_bits_per_element) / 8 >= REG_SIZE,
2266 "Src1 subregister specifies next register.");
2267
2268 ERROR_IF((src2_subnr * brw_type_size_bytes(src2_type) * src2_bits_per_element) / 8 >= REG_SIZE,
2269 "Src2 subregister specifies next register.");
2270
2271 if (brw_inst_3src_atomic_control(devinfo, inst)) {
2272 /* FINISHME: When we start emitting DPAS with Atomic set, figure out
2273 * a way to validate it. Also add a test in test_eu_validate.cpp.
2274 */
2275 ERROR_IF(true,
2276 "When instruction option Atomic is used it must be follwed by a "
2277 "DPAS instruction.");
2278 }
2279
2280 if (brw_inst_dpas_3src_exec_type(devinfo, inst) ==
2281 BRW_ALIGN1_3SRC_EXEC_TYPE_FLOAT) {
2282 ERROR_IF(dst_type != BRW_TYPE_F,
2283 "DPAS destination type must be F.");
2284 ERROR_IF(src0_type != BRW_TYPE_F,
2285 "DPAS src0 type must be F.");
2286 ERROR_IF(src1_type != BRW_TYPE_HF,
2287 "DPAS src1 type must be HF.");
2288 ERROR_IF(src2_type != BRW_TYPE_HF,
2289 "DPAS src2 type must be HF.");
2290 } else {
2291 ERROR_IF(dst_type != BRW_TYPE_D &&
2292 dst_type != BRW_TYPE_UD,
2293 "DPAS destination type must be D or UD.");
2294 ERROR_IF(src0_type != BRW_TYPE_D &&
2295 src0_type != BRW_TYPE_UD,
2296 "DPAS src0 type must be D or UD.");
2297 ERROR_IF(src1_type != BRW_TYPE_B &&
2298 src1_type != BRW_TYPE_UB,
2299 "DPAS src1 base type must be B or UB.");
2300 ERROR_IF(src2_type != BRW_TYPE_B &&
2301 src2_type != BRW_TYPE_UB,
2302 "DPAS src2 base type must be B or UB.");
2303
2304 if (brw_type_is_uint(dst_type)) {
2305 ERROR_IF(!brw_type_is_uint(src0_type) ||
2306 !brw_type_is_uint(src1_type) ||
2307 !brw_type_is_uint(src2_type),
2308 "If any source datatype is signed, destination datatype "
2309 "must be signed.");
2310 }
2311 }
2312
2313 /* FINISHME: Additional restrictions mentioned in the Bspec that are not
2314 * yet enforced here:
2315 *
2316 * - General Accumulator registers access is not supported. This is
2317 * currently enforced in brw_dpas_three_src (brw_eu_emit.c).
2318 *
2319 * - Given any combination of datatypes in the sources of a DPAS
2320 * instructions, the boundaries of a register should not be crossed.
2321 */
2322 }
2323
2324 return error_msg;
2325 }
2326
2327 static struct string
send_descriptor_restrictions(const struct brw_isa_info * isa,const brw_inst * inst)2328 send_descriptor_restrictions(const struct brw_isa_info *isa,
2329 const brw_inst *inst)
2330 {
2331 const struct intel_device_info *devinfo = isa->devinfo;
2332 struct string error_msg = { .str = NULL, .len = 0 };
2333
2334 if (inst_is_split_send(isa, inst)) {
2335 /* We can only validate immediate descriptors */
2336 if (brw_inst_send_sel_reg32_desc(devinfo, inst))
2337 return error_msg;
2338 } else if (inst_is_send(isa, inst)) {
2339 /* We can only validate immediate descriptors */
2340 if (brw_inst_src1_reg_file(devinfo, inst) != IMM)
2341 return error_msg;
2342 } else {
2343 return error_msg;
2344 }
2345
2346 const uint32_t desc = brw_inst_send_desc(devinfo, inst);
2347
2348 switch (brw_inst_sfid(devinfo, inst)) {
2349 case BRW_SFID_URB:
2350 if (devinfo->ver < 20)
2351 break;
2352 FALLTHROUGH;
2353 case GFX12_SFID_TGM:
2354 case GFX12_SFID_SLM:
2355 case GFX12_SFID_UGM:
2356 ERROR_IF(!devinfo->has_lsc, "Platform does not support LSC");
2357
2358 ERROR_IF(lsc_opcode_has_transpose(lsc_msg_desc_opcode(devinfo, desc)) &&
2359 lsc_msg_desc_transpose(devinfo, desc) &&
2360 brw_inst_exec_size(devinfo, inst) != BRW_EXECUTE_1,
2361 "Transposed vectors are restricted to Exec_Mask = 1.");
2362 break;
2363
2364 default:
2365 break;
2366 }
2367
2368 if (brw_inst_sfid(devinfo, inst) == BRW_SFID_URB && devinfo->ver < 20) {
2369 ERROR_IF(!brw_inst_header_present(devinfo, inst),
2370 "Header must be present for all URB messages.");
2371
2372 switch (brw_inst_urb_opcode(devinfo, inst)) {
2373 case GFX7_URB_OPCODE_ATOMIC_INC:
2374 case GFX7_URB_OPCODE_ATOMIC_MOV:
2375 case GFX8_URB_OPCODE_ATOMIC_ADD:
2376 case GFX8_URB_OPCODE_SIMD8_WRITE:
2377 break;
2378
2379 case GFX8_URB_OPCODE_SIMD8_READ:
2380 ERROR_IF(brw_inst_rlen(devinfo, inst) == 0,
2381 "URB SIMD8 read message must read some data.");
2382 break;
2383
2384 case GFX125_URB_OPCODE_FENCE:
2385 ERROR_IF(devinfo->verx10 < 125,
2386 "URB fence message only valid on gfx >= 12.5");
2387 break;
2388
2389 default:
2390 ERROR_IF(true, "Invalid URB message");
2391 break;
2392 }
2393 }
2394
2395 return error_msg;
2396 }
2397
2398 bool
brw_validate_instruction(const struct brw_isa_info * isa,const brw_inst * inst,int offset,unsigned inst_size,struct disasm_info * disasm)2399 brw_validate_instruction(const struct brw_isa_info *isa,
2400 const brw_inst *inst, int offset,
2401 unsigned inst_size,
2402 struct disasm_info *disasm)
2403 {
2404 struct string error_msg = { .str = NULL, .len = 0 };
2405
2406 if (is_unsupported_inst(isa, inst)) {
2407 ERROR("Instruction not supported on this Gen");
2408 } else {
2409 CHECK(invalid_values);
2410
2411 if (error_msg.str == NULL) {
2412 CHECK(sources_not_null);
2413 CHECK(send_restrictions);
2414 CHECK(alignment_supported);
2415 CHECK(general_restrictions_based_on_operand_types);
2416 CHECK(general_restrictions_on_region_parameters);
2417 CHECK(special_restrictions_for_mixed_float_mode);
2418 CHECK(region_alignment_rules);
2419 CHECK(vector_immediate_restrictions);
2420 CHECK(special_requirements_for_handling_double_precision_data_types);
2421 CHECK(instruction_restrictions);
2422 CHECK(send_descriptor_restrictions);
2423 }
2424 }
2425
2426 if (error_msg.str && disasm) {
2427 disasm_insert_error(disasm, offset, inst_size, error_msg.str);
2428 }
2429 free(error_msg.str);
2430
2431 return error_msg.len == 0;
2432 }
2433
2434 bool
brw_validate_instructions(const struct brw_isa_info * isa,const void * assembly,int start_offset,int end_offset,struct disasm_info * disasm)2435 brw_validate_instructions(const struct brw_isa_info *isa,
2436 const void *assembly, int start_offset, int end_offset,
2437 struct disasm_info *disasm)
2438 {
2439 const struct intel_device_info *devinfo = isa->devinfo;
2440 bool valid = true;
2441
2442 for (int src_offset = start_offset; src_offset < end_offset;) {
2443 const brw_inst *inst = assembly + src_offset;
2444 bool is_compact = brw_inst_cmpt_control(devinfo, inst);
2445 unsigned inst_size = is_compact ? sizeof(brw_compact_inst)
2446 : sizeof(brw_inst);
2447 brw_inst uncompacted;
2448
2449 if (is_compact) {
2450 brw_compact_inst *compacted = (void *)inst;
2451 brw_uncompact_instruction(isa, &uncompacted, compacted);
2452 inst = &uncompacted;
2453 }
2454
2455 bool v = brw_validate_instruction(isa, inst, src_offset,
2456 inst_size, disasm);
2457 valid = valid && v;
2458
2459 src_offset += inst_size;
2460 }
2461
2462 return valid;
2463 }
2464