xref: /aosp_15_r20/external/mesa3d/src/gallium/drivers/freedreno/freedreno_gmem.c (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /*
2  * Copyright © 2012 Rob Clark <[email protected]>
3  * SPDX-License-Identifier: MIT
4  *
5  * Authors:
6  *    Rob Clark <[email protected]>
7  */
8 
9 #include "pipe/p_state.h"
10 #include "util/format/u_format.h"
11 #include "util/hash_table.h"
12 #include "util/macros.h"
13 #include "util/u_debug.h"
14 #include "util/u_dump.h"
15 #include "util/u_inlines.h"
16 #include "util/u_memory.h"
17 #include "util/u_string.h"
18 #include "util/u_trace_gallium.h"
19 #include "u_tracepoints.h"
20 
21 #include "freedreno_context.h"
22 #include "freedreno_fence.h"
23 #include "freedreno_gmem.h"
24 #include "freedreno_query_hw.h"
25 #include "freedreno_resource.h"
26 #include "freedreno_tracepoints.h"
27 #include "freedreno_util.h"
28 
29 /*
30  * GMEM is the small (ie. 256KiB for a200, 512KiB for a220, etc) tile buffer
31  * inside the GPU.  All rendering happens to GMEM.  Larger render targets
32  * are split into tiles that are small enough for the color (and depth and/or
33  * stencil, if enabled) buffers to fit within GMEM.  Before rendering a tile,
34  * if there was not a clear invalidating the previous tile contents, we need
35  * to restore the previous tiles contents (system mem -> GMEM), and after all
36  * the draw calls, before moving to the next tile, we need to save the tile
37  * contents (GMEM -> system mem).
38  *
39  * The code in this file handles dealing with GMEM and tiling.
40  *
41  * The structure of the ringbuffer ends up being:
42  *
43  *     +--<---<-- IB ---<---+---<---+---<---<---<--+
44  *     |                    |       |              |
45  *     v                    ^       ^              ^
46  *   ------------------------------------------------------
47  *     | clear/draw cmds | Tile0 | Tile1 | .... | TileN |
48  *   ------------------------------------------------------
49  *                       ^
50  *                       |
51  *                       address submitted in issueibcmds
52  *
53  * Where the per-tile section handles scissor setup, mem2gmem restore (if
54  * needed), IB to draw cmds earlier in the ringbuffer, and then gmem2mem
55  * resolve.
56  */
57 
58 #ifndef BIN_DEBUG
59 #define BIN_DEBUG 0
60 #endif
61 
62 /*
63  * GMEM Cache:
64  *
65  * Caches GMEM state based on a given framebuffer state.  The key is
66  * meant to be the minimal set of data that results in a unique gmem
67  * configuration, avoiding multiple keys arriving at the same gmem
68  * state.  For example, the render target format is not part of the
69  * key, only the size per pixel.  And the max_scissor bounds is not
70  * part of they key, only the minx/miny (after clamping to tile
71  * alignment) and width/height.  This ensures that slightly different
72  * max_scissor which would result in the same gmem state, do not
73  * become different keys that map to the same state.
74  */
75 
76 struct gmem_key {
77    uint16_t minx, miny;
78    uint16_t width, height;
79    uint8_t gmem_page_align; /* alignment in multiples of 0x1000 to reduce key size */
80    uint8_t nr_cbufs;
81    uint8_t cbuf_cpp[MAX_RENDER_TARGETS];
82    uint8_t zsbuf_cpp[2];
83 };
84 
85 static uint32_t
gmem_key_hash(const void * _key)86 gmem_key_hash(const void *_key)
87 {
88    const struct gmem_key *key = _key;
89    return _mesa_hash_data(key, sizeof(*key));
90 }
91 
92 static bool
gmem_key_equals(const void * _a,const void * _b)93 gmem_key_equals(const void *_a, const void *_b)
94 {
95    const struct gmem_key *a = _a;
96    const struct gmem_key *b = _b;
97    return memcmp(a, b, sizeof(*a)) == 0;
98 }
99 
100 static void
dump_gmem_key(const struct gmem_key * key)101 dump_gmem_key(const struct gmem_key *key)
102 {
103    printf("{ .minx=%u, .miny=%u, .width=%u, .height=%u", key->minx, key->miny,
104           key->width, key->height);
105    printf(", .gmem_page_align=%u, .nr_cbufs=%u", key->gmem_page_align,
106           key->nr_cbufs);
107    printf(", .cbuf_cpp = {");
108    for (unsigned i = 0; i < ARRAY_SIZE(key->cbuf_cpp); i++)
109       printf("%u,", key->cbuf_cpp[i]);
110    printf("}, .zsbuf_cpp = {");
111    for (unsigned i = 0; i < ARRAY_SIZE(key->zsbuf_cpp); i++)
112       printf("%u,", key->zsbuf_cpp[i]);
113    printf("}},\n");
114 }
115 
116 static void
dump_gmem_state(const struct fd_gmem_stateobj * gmem)117 dump_gmem_state(const struct fd_gmem_stateobj *gmem)
118 {
119    unsigned total = 0;
120    printf("GMEM LAYOUT: bin=%ux%u, nbins=%ux%u\n", gmem->bin_w, gmem->bin_h,
121           gmem->nbins_x, gmem->nbins_y);
122    for (int i = 0; i < ARRAY_SIZE(gmem->cbuf_base); i++) {
123       if (!gmem->cbuf_cpp[i])
124          continue;
125 
126       unsigned size = gmem->cbuf_cpp[i] * gmem->bin_w * gmem->bin_h;
127       printf("  cbuf[%d]: base=0x%06x, size=0x%x, cpp=%u\n", i,
128              gmem->cbuf_base[i], size, gmem->cbuf_cpp[i]);
129 
130       total = gmem->cbuf_base[i] + size;
131    }
132 
133    for (int i = 0; i < ARRAY_SIZE(gmem->zsbuf_base); i++) {
134       if (!gmem->zsbuf_cpp[i])
135          continue;
136 
137       unsigned size = gmem->zsbuf_cpp[i] * gmem->bin_w * gmem->bin_h;
138       printf("  zsbuf[%d]: base=0x%06x, size=0x%x, cpp=%u\n", i,
139              gmem->zsbuf_base[i], size, gmem->zsbuf_cpp[i]);
140 
141       total = gmem->zsbuf_base[i] + size;
142    }
143 
144    printf("total: 0x%06x (of 0x%06x)\n", total, gmem->screen->gmemsize_bytes);
145 }
146 
147 static unsigned
div_align(unsigned num,unsigned denom,unsigned al)148 div_align(unsigned num, unsigned denom, unsigned al)
149 {
150    return util_align_npot(DIV_ROUND_UP(num, denom), al);
151 }
152 
153 static bool
layout_gmem(struct gmem_key * key,uint32_t nbins_x,uint32_t nbins_y,struct fd_gmem_stateobj * gmem)154 layout_gmem(struct gmem_key *key, uint32_t nbins_x, uint32_t nbins_y,
155             struct fd_gmem_stateobj *gmem)
156 {
157    struct fd_screen *screen = gmem->screen;
158    uint32_t gmem_align = key->gmem_page_align * 0x1000;
159    uint32_t total = 0, i;
160 
161    if ((nbins_x == 0) || (nbins_y == 0))
162       return false;
163 
164    uint32_t bin_w, bin_h;
165    bin_w = div_align(key->width, nbins_x, screen->info->tile_align_w);
166    bin_h = div_align(key->height, nbins_y, screen->info->tile_align_h);
167 
168    if (bin_w > screen->info->tile_max_w)
169       return false;
170 
171    if (bin_h > screen->info->tile_max_h)
172       return false;
173 
174    gmem->bin_w = bin_w;
175    gmem->bin_h = bin_h;
176 
177    /* due to aligning bin_w/h, we could end up with one too
178     * many bins in either dimension, so recalculate:
179     */
180    gmem->nbins_x = DIV_ROUND_UP(key->width, bin_w);
181    gmem->nbins_y = DIV_ROUND_UP(key->height, bin_h);
182 
183    for (i = 0; i < MAX_RENDER_TARGETS; i++) {
184       if (key->cbuf_cpp[i]) {
185          gmem->cbuf_base[i] = util_align_npot(total, gmem_align);
186          total = gmem->cbuf_base[i] + key->cbuf_cpp[i] * bin_w * bin_h;
187       }
188    }
189 
190    if (key->zsbuf_cpp[0]) {
191       gmem->zsbuf_base[0] = util_align_npot(total, gmem_align);
192       total = gmem->zsbuf_base[0] + key->zsbuf_cpp[0] * bin_w * bin_h;
193    }
194 
195    if (key->zsbuf_cpp[1]) {
196       gmem->zsbuf_base[1] = util_align_npot(total, gmem_align);
197       total = gmem->zsbuf_base[1] + key->zsbuf_cpp[1] * bin_w * bin_h;
198    }
199 
200    return total <= screen->gmemsize_bytes;
201 }
202 
203 static void
calc_nbins(struct gmem_key * key,struct fd_gmem_stateobj * gmem)204 calc_nbins(struct gmem_key *key, struct fd_gmem_stateobj *gmem)
205 {
206    struct fd_screen *screen = gmem->screen;
207    uint32_t nbins_x = 1, nbins_y = 1;
208    uint32_t max_width = screen->info->tile_max_w;
209    uint32_t max_height = screen->info->tile_max_h;
210 
211    if (FD_DBG(MSGS)) {
212       debug_printf("binning input: cbuf cpp:");
213       for (unsigned i = 0; i < key->nr_cbufs; i++)
214          debug_printf(" %d", key->cbuf_cpp[i]);
215       debug_printf(", zsbuf cpp: %d; %dx%d\n", key->zsbuf_cpp[0], key->width,
216                    key->height);
217    }
218 
219    /* first, find a bin size that satisfies the maximum width/
220     * height restrictions:
221     */
222    while (div_align(key->width, nbins_x, screen->info->tile_align_w) >
223           max_width) {
224       nbins_x++;
225    }
226 
227    while (div_align(key->height, nbins_y, screen->info->tile_align_h) >
228           max_height) {
229       nbins_y++;
230    }
231 
232    /* then find a bin width/height that satisfies the memory
233     * constraints:
234     */
235    while (!layout_gmem(key, nbins_x, nbins_y, gmem)) {
236       if (nbins_y > nbins_x) {
237          nbins_x++;
238       } else {
239          nbins_y++;
240       }
241    }
242 
243    /* Lets see if we can tweak the layout a bit and come up with
244     * something better:
245     */
246    if ((((nbins_x - 1) * (nbins_y + 1)) < (nbins_x * nbins_y)) &&
247        layout_gmem(key, nbins_x - 1, nbins_y + 1, gmem)) {
248       nbins_x--;
249       nbins_y++;
250    } else if ((((nbins_x + 1) * (nbins_y - 1)) < (nbins_x * nbins_y)) &&
251               layout_gmem(key, nbins_x + 1, nbins_y - 1, gmem)) {
252       nbins_x++;
253       nbins_y--;
254    }
255 
256    layout_gmem(key, nbins_x, nbins_y, gmem);
257 }
258 
259 static struct fd_gmem_stateobj *
gmem_stateobj_init(struct fd_screen * screen,struct gmem_key * key)260 gmem_stateobj_init(struct fd_screen *screen, struct gmem_key *key)
261 {
262    struct fd_gmem_stateobj *gmem =
263       rzalloc(screen->gmem_cache.ht, struct fd_gmem_stateobj);
264    pipe_reference_init(&gmem->reference, 1);
265    gmem->screen = screen;
266    gmem->key = key;
267    list_inithead(&gmem->node);
268 
269    const unsigned npipes = screen->info->num_vsc_pipes;
270    uint32_t i, j, t, xoff, yoff;
271    uint32_t tpp_x, tpp_y;
272    int tile_n[npipes];
273 
274    calc_nbins(key, gmem);
275 
276    DBG("using %d bins of size %dx%d", gmem->nbins_x * gmem->nbins_y,
277        gmem->bin_w, gmem->bin_h);
278 
279    memcpy(gmem->cbuf_cpp, key->cbuf_cpp, sizeof(key->cbuf_cpp));
280    memcpy(gmem->zsbuf_cpp, key->zsbuf_cpp, sizeof(key->zsbuf_cpp));
281    gmem->minx = key->minx;
282    gmem->miny = key->miny;
283    gmem->width = key->width;
284    gmem->height = key->height;
285 
286    gmem->tile = rzalloc_array(gmem, struct fd_tile, gmem->nbins_x * gmem->nbins_y);
287 
288    if (BIN_DEBUG) {
289       dump_gmem_state(gmem);
290       dump_gmem_key(key);
291    }
292 
293    /*
294     * Assign tiles and pipes:
295     *
296     * At some point it might be worth playing with different
297     * strategies and seeing if that makes much impact on
298     * performance.
299     */
300 
301    /* figure out number of tiles per pipe: */
302    if (is_a20x(screen)) {
303       /* for a20x we want to minimize the number of "pipes"
304        * binning data has 3 bits for x/y (8x8) but the edges are used to
305        * cull off-screen vertices with hw binning, so we have 6x6 pipes
306        */
307       tpp_x = 6;
308       tpp_y = 6;
309    } else {
310       tpp_x = tpp_y = 1;
311       while (DIV_ROUND_UP(gmem->nbins_y, tpp_y) > npipes)
312          tpp_y += 2;
313       while ((DIV_ROUND_UP(gmem->nbins_y, tpp_y) *
314               DIV_ROUND_UP(gmem->nbins_x, tpp_x)) > npipes)
315          tpp_x += 1;
316    }
317 
318 #if MESA_DEBUG
319    tpp_x = debug_get_num_option("TPP_X", tpp_x);
320    tpp_y = debug_get_num_option("TPP_Y", tpp_x);
321 #endif
322 
323    gmem->maxpw = tpp_x;
324    gmem->maxph = tpp_y;
325 
326    /* configure pipes: */
327    xoff = yoff = 0;
328    for (i = 0; i < npipes; i++) {
329       struct fd_vsc_pipe *pipe = &gmem->vsc_pipe[i];
330 
331       if (xoff >= gmem->nbins_x) {
332          xoff = 0;
333          yoff += tpp_y;
334       }
335 
336       if (yoff >= gmem->nbins_y) {
337          break;
338       }
339 
340       pipe->x = xoff;
341       pipe->y = yoff;
342       pipe->w = MIN2(tpp_x, gmem->nbins_x - xoff);
343       pipe->h = MIN2(tpp_y, gmem->nbins_y - yoff);
344 
345       xoff += tpp_x;
346    }
347 
348    /* number of pipes to use for a20x */
349    gmem->num_vsc_pipes = MAX2(1, i);
350 
351    for (; i < npipes; i++) {
352       struct fd_vsc_pipe *pipe = &gmem->vsc_pipe[i];
353       pipe->x = pipe->y = pipe->w = pipe->h = 0;
354    }
355 
356    if (BIN_DEBUG) {
357       printf("%dx%d ... tpp=%dx%d\n", gmem->nbins_x, gmem->nbins_y, tpp_x,
358              tpp_y);
359       for (i = 0; i < ARRAY_SIZE(gmem->vsc_pipe); i++) {
360          struct fd_vsc_pipe *pipe = &gmem->vsc_pipe[i];
361          printf("pipe[%d]: %ux%u @ %u,%u\n", i, pipe->w, pipe->h, pipe->x,
362                 pipe->y);
363       }
364    }
365 
366    /* configure tiles: */
367    t = 0;
368    yoff = key->miny;
369    memset(tile_n, 0, sizeof(tile_n));
370    for (i = 0; i < gmem->nbins_y; i++) {
371       int bw, bh;
372 
373       xoff = key->minx;
374 
375       /* clip bin height: */
376       bh = MIN2(gmem->bin_h, key->miny + key->height - yoff);
377       assert(bh > 0);
378 
379       for (j = 0; j < gmem->nbins_x; j++) {
380          struct fd_tile *tile = &gmem->tile[t];
381          uint32_t p;
382 
383          /* pipe number: */
384          p = ((i / tpp_y) * DIV_ROUND_UP(gmem->nbins_x, tpp_x)) + (j / tpp_x);
385          assert(p < gmem->num_vsc_pipes);
386 
387          /* clip bin width: */
388          bw = MIN2(gmem->bin_w, key->minx + key->width - xoff);
389          assert(bw > 0);
390 
391          tile->n = !is_a20x(screen) ? tile_n[p]++
392                                     : ((i % tpp_y + 1) << 3 | (j % tpp_x + 1));
393          tile->p = p;
394          tile->bin_w = bw;
395          tile->bin_h = bh;
396          tile->xoff = xoff;
397          tile->yoff = yoff;
398 
399          if (BIN_DEBUG) {
400             printf("tile[%d]: p=%u, bin=%ux%u+%u+%u\n", t, p, bw, bh, xoff,
401                    yoff);
402          }
403 
404          t++;
405 
406          xoff += bw;
407       }
408 
409       yoff += bh;
410    }
411 
412    /* Swap the order of alternating rows to form an 'S' pattern, to improve
413     * cache access patterns (ie. adjacent bins are likely to access adjacent
414     * portions of textures)
415     */
416    if (!FD_DBG(NOSBIN)) {
417       for (i = 0; i < gmem->nbins_y; i+=2) {
418          unsigned col0 = gmem->nbins_x * i;
419          for (j = 0; j < gmem->nbins_x/2; j++) {
420             SWAP(gmem->tile[col0 + j], gmem->tile[col0 + gmem->nbins_x - j - 1]);
421          }
422       }
423    }
424 
425    if (BIN_DEBUG) {
426       t = 0;
427       for (i = 0; i < gmem->nbins_y; i++) {
428          for (j = 0; j < gmem->nbins_x; j++) {
429             struct fd_tile *tile = &gmem->tile[t++];
430             printf("|p:%u n:%u|", tile->p, tile->n);
431          }
432          printf("\n");
433       }
434    }
435 
436    return gmem;
437 }
438 
439 void
__fd_gmem_destroy(struct fd_gmem_stateobj * gmem)440 __fd_gmem_destroy(struct fd_gmem_stateobj *gmem)
441 {
442    struct fd_gmem_cache *cache = &gmem->screen->gmem_cache;
443 
444    fd_screen_assert_locked(gmem->screen);
445 
446    _mesa_hash_table_remove_key(cache->ht, gmem->key);
447    list_del(&gmem->node);
448 
449    ralloc_free(gmem->key);
450    ralloc_free(gmem);
451 }
452 
453 static struct gmem_key *
gmem_key_init(struct fd_batch * batch,bool assume_zs,bool no_scis_opt)454 gmem_key_init(struct fd_batch *batch, bool assume_zs, bool no_scis_opt)
455 {
456    struct fd_screen *screen = batch->ctx->screen;
457    struct pipe_framebuffer_state *pfb = &batch->framebuffer;
458    bool has_zs = pfb->zsbuf &&
459       !!(batch->gmem_reason & (FD_GMEM_DEPTH_ENABLED | FD_GMEM_STENCIL_ENABLED |
460                                FD_GMEM_CLEARS_DEPTH_STENCIL));
461    struct gmem_key *key = rzalloc(screen->gmem_cache.ht, struct gmem_key);
462 
463    if (has_zs || assume_zs) {
464       struct fd_resource *rsc = fd_resource(pfb->zsbuf->texture);
465       key->zsbuf_cpp[0] = rsc->layout.cpp * pfb->samples;
466       if (rsc->stencil)
467          key->zsbuf_cpp[1] = rsc->stencil->layout.cpp * pfb->samples;
468 
469       /* If we clear z or s but not both, and we are using z24s8 (ie.
470        * !separate_stencil) then we need to restore the other, even if
471        * batch_draw_tracking_for_dirty_bits() never saw a draw with
472        * depth or stencil enabled.
473        *
474        * This only applies to the fast-clear path, clears done with
475        * u_blitter will show up as a normal draw with depth and/or
476        * stencil enabled.
477        */
478       unsigned zsclear = batch->cleared & (FD_BUFFER_DEPTH | FD_BUFFER_STENCIL);
479       if (zsclear) {
480          const struct util_format_description *desc =
481                util_format_description(pfb->zsbuf->format);
482          if (util_format_has_depth(desc) && !(zsclear & FD_BUFFER_DEPTH))
483             batch->restore |= FD_BUFFER_DEPTH;
484          if (util_format_has_stencil(desc) && !(zsclear & FD_BUFFER_STENCIL))
485             batch->restore |= FD_BUFFER_STENCIL;
486       }
487    } else {
488       /* we might have a zsbuf, but it isn't used */
489       batch->restore &= ~(FD_BUFFER_DEPTH | FD_BUFFER_STENCIL);
490       batch->resolve &= ~(FD_BUFFER_DEPTH | FD_BUFFER_STENCIL);
491    }
492 
493    key->nr_cbufs = pfb->nr_cbufs;
494    for (unsigned i = 0; i < pfb->nr_cbufs; i++) {
495       if (pfb->cbufs[i])
496          key->cbuf_cpp[i] = util_format_get_blocksize(pfb->cbufs[i]->format);
497       else
498          key->cbuf_cpp[i] = 4;
499       /* if MSAA, color buffers are super-sampled in GMEM: */
500       key->cbuf_cpp[i] *= pfb->samples;
501    }
502 
503    /* NOTE: on a6xx, the max-scissor-rect is handled in fd6_gmem, and
504     * we just rely on CP_COND_EXEC to skip bins with no geometry.
505     */
506    if (no_scis_opt || is_a6xx(screen)) {
507       key->minx = 0;
508       key->miny = 0;
509       key->width = pfb->width;
510       key->height = pfb->height;
511    } else {
512       struct pipe_scissor_state *scissor = &batch->max_scissor;
513 
514       if (FD_DBG(NOSCIS)) {
515          scissor->minx = 0;
516          scissor->miny = 0;
517          scissor->maxx = pfb->width - 1;
518          scissor->maxy = pfb->height - 1;
519       }
520 
521       /* round down to multiple of alignment: */
522       key->minx = scissor->minx & ~(screen->info->gmem_align_w - 1);
523       key->miny = scissor->miny & ~(screen->info->gmem_align_h - 1);
524       key->width = scissor->maxx + 1 - key->minx;
525       key->height = scissor->maxy + 1 - key->miny;
526    }
527 
528    if (is_a20x(screen) && batch->cleared) {
529       /* under normal circumstances the requirement would be 4K
530        * but the fast clear path requires an alignment of 32K
531        */
532       key->gmem_page_align = 8;
533    } else if (is_a6xx(screen)) {
534       key->gmem_page_align = screen->info->num_ccu;
535    } else {
536       // TODO re-check this across gens.. maybe it should only
537       // be a single page in some cases:
538       key->gmem_page_align = 4;
539    }
540 
541    return key;
542 }
543 
544 static struct fd_gmem_stateobj *
lookup_gmem_state(struct fd_batch * batch,bool assume_zs,bool no_scis_opt)545 lookup_gmem_state(struct fd_batch *batch, bool assume_zs, bool no_scis_opt)
546 {
547    struct fd_screen *screen = batch->ctx->screen;
548    struct fd_gmem_cache *cache = &screen->gmem_cache;
549    struct fd_gmem_stateobj *gmem = NULL;
550 
551    /* Lock before allocating gmem_key, since that a screen-wide
552     * ralloc pool and ralloc itself is not thread-safe.
553     */
554    fd_screen_lock(screen);
555 
556    struct gmem_key *key = gmem_key_init(batch, assume_zs, no_scis_opt);
557    uint32_t hash = gmem_key_hash(key);
558 
559    struct hash_entry *entry =
560       _mesa_hash_table_search_pre_hashed(cache->ht, hash, key);
561    if (entry) {
562       ralloc_free(key);
563       goto found;
564    }
565 
566    /* limit the # of cached gmem states, discarding the least
567     * recently used state if needed:
568     */
569    if (cache->ht->entries >= 20) {
570       struct fd_gmem_stateobj *last =
571          list_last_entry(&cache->lru, struct fd_gmem_stateobj, node);
572       fd_gmem_reference(&last, NULL);
573    }
574 
575    entry = _mesa_hash_table_insert_pre_hashed(cache->ht, hash, key,
576                                               gmem_stateobj_init(screen, key));
577 
578 found:
579    fd_gmem_reference(&gmem, entry->data);
580    /* Move to the head of the LRU: */
581    list_delinit(&gmem->node);
582    list_add(&gmem->node, &cache->lru);
583 
584    fd_screen_unlock(screen);
585 
586    return gmem;
587 }
588 
589 /*
590  * GMEM render pass
591  */
592 
593 static void
render_tiles(struct fd_batch * batch,struct fd_gmem_stateobj * gmem)594 render_tiles(struct fd_batch *batch, struct fd_gmem_stateobj *gmem) assert_dt
595 {
596    struct fd_context *ctx = batch->ctx;
597    int i;
598 
599    simple_mtx_lock(&ctx->gmem_lock);
600 
601    ctx->emit_tile_init(batch);
602 
603    if (batch->restore)
604       ctx->stats.batch_restore++;
605 
606    for (i = 0; i < (gmem->nbins_x * gmem->nbins_y); i++) {
607       struct fd_tile *tile = &gmem->tile[i];
608 
609       trace_start_tile(&batch->trace, batch->gmem, tile->bin_h, tile->yoff, tile->bin_w,
610                        tile->xoff);
611 
612       ctx->emit_tile_prep(batch, tile);
613 
614       if (batch->restore) {
615          ctx->emit_tile_mem2gmem(batch, tile);
616       }
617 
618       ctx->emit_tile_renderprep(batch, tile);
619 
620       if (ctx->query_prepare_tile)
621          ctx->query_prepare_tile(batch, i, batch->gmem);
622 
623       /* emit IB to drawcmds: */
624       trace_start_draw_ib(&batch->trace, batch->gmem);
625       if (ctx->emit_tile) {
626          ctx->emit_tile(batch, tile);
627       } else {
628          ctx->screen->emit_ib(batch->gmem, batch->draw);
629       }
630       trace_end_draw_ib(&batch->trace, batch->gmem);
631       fd_reset_wfi(batch);
632 
633       /* emit gmem2mem to transfer tile back to system memory: */
634       ctx->emit_tile_gmem2mem(batch, tile);
635    }
636 
637    if (ctx->emit_tile_fini)
638       ctx->emit_tile_fini(batch);
639 
640    simple_mtx_unlock(&ctx->gmem_lock);
641 }
642 
643 static void
render_sysmem(struct fd_batch * batch)644 render_sysmem(struct fd_batch *batch) assert_dt
645 {
646    struct fd_context *ctx = batch->ctx;
647 
648    ctx->emit_sysmem_prep(batch);
649 
650    if (ctx->query_prepare_tile)
651       ctx->query_prepare_tile(batch, 0, batch->gmem);
652 
653    if (!batch->nondraw) {
654       trace_start_draw_ib(&batch->trace, batch->gmem);
655    }
656    /* emit IB to drawcmds: */
657    if (ctx->emit_sysmem) {
658       ctx->emit_sysmem(batch);
659    } else {
660       ctx->screen->emit_ib(batch->gmem, batch->draw);
661    }
662 
663    if (!batch->nondraw) {
664       trace_end_draw_ib(&batch->trace, batch->gmem);
665    }
666 
667    fd_reset_wfi(batch);
668 
669    if (ctx->emit_sysmem_fini)
670       ctx->emit_sysmem_fini(batch);
671 }
672 
673 static void
flush_ring(struct fd_batch * batch)674 flush_ring(struct fd_batch *batch)
675 {
676    bool use_fence_fd = false;
677    if (batch->fence)
678       use_fence_fd = batch->fence->use_fence_fd;
679 
680    struct fd_fence *fence;
681 
682    if (FD_DBG(NOHW)) {
683       /* construct a dummy fence: */
684       fence = fd_fence_new(batch->ctx->pipe, use_fence_fd);
685    } else {
686       fence = fd_submit_flush(batch->submit, batch->in_fence_fd, use_fence_fd);
687    }
688 
689    if (batch->fence) {
690       fd_pipe_fence_set_submit_fence(batch->fence, fence);
691    } else {
692       fd_fence_del(fence);
693    }
694 }
695 
696 void
fd_gmem_render_tiles(struct fd_batch * batch)697 fd_gmem_render_tiles(struct fd_batch *batch)
698 {
699    struct fd_context *ctx = batch->ctx;
700    struct pipe_framebuffer_state *pfb = &batch->framebuffer;
701    bool sysmem = false;
702 
703    ctx->submit_count++;
704 
705    /* Sometimes we need to flush a batch just to get a fence, with no
706     * clears or draws.. in this case promote to nondraw:
707     */
708    if (!(batch->cleared || batch->num_draws))
709       sysmem = true;
710 
711    if (!batch->nondraw) {
712 #if HAVE_PERFETTO
713       /* For non-draw batches, we don't really have a good place to
714        * match up the api event submit-id to the on-gpu rendering,
715        * so skip this for non-draw batches.
716        */
717       fd_perfetto_submit(ctx);
718 #endif
719       trace_flush_batch(&batch->trace, batch->gmem, batch, batch->cleared,
720                         batch->gmem_reason, batch->num_draws);
721       trace_framebuffer_state(&batch->trace, batch->gmem, pfb);
722    }
723 
724    if (ctx->emit_sysmem_prep && !batch->nondraw) {
725       if (fd_autotune_use_bypass(&ctx->autotune, batch) && !FD_DBG(GMEM)) {
726          sysmem = true;
727       }
728 
729       /* For ARB_framebuffer_no_attachments: */
730       if ((pfb->nr_cbufs == 0) && !pfb->zsbuf) {
731          sysmem = true;
732       }
733    }
734 
735    if (FD_DBG(SYSMEM))
736       sysmem = true;
737 
738    /* Layered rendering always needs bypass. */
739    for (unsigned i = 0; i < pfb->nr_cbufs; i++) {
740       struct pipe_surface *psurf = pfb->cbufs[i];
741       if (!psurf)
742          continue;
743       if (psurf->u.tex.first_layer < psurf->u.tex.last_layer)
744          sysmem = true;
745    }
746    if (pfb->zsbuf && pfb->zsbuf->u.tex.first_layer < pfb->zsbuf->u.tex.last_layer)
747       sysmem = true;
748 
749    /* Tessellation doesn't seem to support tiled rendering so fall back to
750     * bypass.
751     */
752    if (batch->tessellation) {
753       assert(ctx->emit_sysmem_prep);
754       sysmem = true;
755    }
756 
757    fd_reset_wfi(batch);
758 
759    ctx->stats.batch_total++;
760 
761    if (batch->nondraw) {
762       DBG("%p: rendering non-draw", batch);
763       if (!fd_ringbuffer_empty(batch->draw))
764          render_sysmem(batch);
765       ctx->stats.batch_nondraw++;
766    } else if (sysmem) {
767       trace_render_sysmem(&batch->trace, batch->gmem);
768       trace_start_render_pass(&batch->trace, batch->gmem,
769          ctx->submit_count, pipe_surface_format(pfb->cbufs[0]),
770          pipe_surface_format(pfb->zsbuf), pfb->width, pfb->height,
771          pfb->nr_cbufs, pfb->samples, 0, 0, 0);
772       if (ctx->query_prepare)
773          ctx->query_prepare(batch, 1);
774       render_sysmem(batch);
775       trace_end_render_pass(&batch->trace, batch->gmem);
776       ctx->stats.batch_sysmem++;
777    } else {
778       struct fd_gmem_stateobj *gmem = lookup_gmem_state(batch, false, false);
779       batch->gmem_state = gmem;
780       trace_render_gmem(&batch->trace, batch->gmem, gmem->nbins_x, gmem->nbins_y,
781                         gmem->bin_w, gmem->bin_h);
782       trace_start_render_pass(&batch->trace, batch->gmem,
783          ctx->submit_count, pipe_surface_format(pfb->cbufs[0]),
784          pipe_surface_format(pfb->zsbuf), pfb->width, pfb->height,
785          pfb->nr_cbufs, pfb->samples, gmem->nbins_x * gmem->nbins_y,
786          gmem->bin_w, gmem->bin_h);
787       if (ctx->query_prepare)
788          ctx->query_prepare(batch, gmem->nbins_x * gmem->nbins_y);
789       render_tiles(batch, gmem);
790       trace_end_render_pass(&batch->trace, batch->gmem);
791       batch->gmem_state = NULL;
792 
793       fd_screen_lock(ctx->screen);
794       fd_gmem_reference(&gmem, NULL);
795       fd_screen_unlock(ctx->screen);
796 
797       ctx->stats.batch_gmem++;
798    }
799 
800    flush_ring(batch);
801 
802    u_trace_flush(&batch->trace, NULL, U_TRACE_FRAME_UNKNOWN, false);
803 }
804 
805 /* Determine a worst-case estimate (ie. assuming we don't eliminate an
806  * unused depth/stencil) number of bins per vsc pipe.
807  */
808 unsigned
fd_gmem_estimate_bins_per_pipe(struct fd_batch * batch)809 fd_gmem_estimate_bins_per_pipe(struct fd_batch *batch)
810 {
811    struct pipe_framebuffer_state *pfb = &batch->framebuffer;
812    struct fd_screen *screen = batch->ctx->screen;
813    struct fd_gmem_stateobj *gmem = lookup_gmem_state(batch, !!pfb->zsbuf, true);
814    unsigned nbins = gmem->maxpw * gmem->maxph;
815 
816    fd_screen_lock(screen);
817    fd_gmem_reference(&gmem, NULL);
818    fd_screen_unlock(screen);
819 
820    return nbins;
821 }
822 
823 /* When deciding whether a tile needs mem2gmem, we need to take into
824  * account the scissor rect(s) that were cleared.  To simplify we only
825  * consider the last scissor rect for each buffer, since the common
826  * case would be a single clear.
827  */
828 bool
fd_gmem_needs_restore(struct fd_batch * batch,const struct fd_tile * tile,uint32_t buffers)829 fd_gmem_needs_restore(struct fd_batch *batch, const struct fd_tile *tile,
830                       uint32_t buffers)
831 {
832    if (!(batch->restore & buffers))
833       return false;
834 
835    return true;
836 }
837 
838 void
fd_gmem_screen_init(struct pipe_screen * pscreen)839 fd_gmem_screen_init(struct pipe_screen *pscreen)
840 {
841    struct fd_gmem_cache *cache = &fd_screen(pscreen)->gmem_cache;
842 
843    cache->ht = _mesa_hash_table_create(NULL, gmem_key_hash, gmem_key_equals);
844    list_inithead(&cache->lru);
845 }
846 
847 void
fd_gmem_screen_fini(struct pipe_screen * pscreen)848 fd_gmem_screen_fini(struct pipe_screen *pscreen)
849 {
850    struct fd_gmem_cache *cache = &fd_screen(pscreen)->gmem_cache;
851 
852    _mesa_hash_table_destroy(cache->ht, NULL);
853 }
854