xref: /aosp_15_r20/external/mesa3d/src/freedreno/decode/crashdec-prefetch.c (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /*
2  * Copyright © 2022 Google, Inc.
3  * Copyright © 2022 Valve Corporation
4  * SPDX-License-Identifier: MIT
5  */
6 
7 #include "util/macros.h"
8 #include "crashdec.h"
9 #include "cffdec.h"
10 
11 #define MAX_PREFETCH_IBS 4
12 
13 /* CP_INDIRECT_BUFFER contains an optimization to read ahead and start
14  * fetching up to 3 subsequent CP_INDIRECT_BUFFER contents into the ROQ before
15  * starting to execute the current IB. This effectively combines them into one
16  * CP_INDIRECT_BUFFER. The result is that if the ROQ is fast enough and
17  * prefetches some of the extra IBs before the first IB finishes, the ROQ may
18  * be in a different IB than the CP is processing. That is, normally we'd have
19  * a situation like this:
20  *
21  *    CP_INDIRECT_BUFFER
22  *       ...
23  *       CP_FOO <- PFP/SQE is reading from here
24  *       ...
25  *       CP_BAR <- ROQ has prefetched up to here
26  *
27  * where CP_IB*_BASE and CP_IB*_REM_SIZE point to CP_BAR and the difference
28  * between CP_FOO and CP_BAR is given by CP_ROQ_AVAIL_IBn::REM, but instead we
29  * may get a situation like this:
30  *
31  *   CP_INDIRECT_BUFFER
32  *      ...
33  *      CP_FOO <- PFP/SQE is reading here
34  *      ...
35  *   CP_INDIRECT_BUFFER
36  *      ...
37  *      CP_BAR <- ROQ has prefetched up to here
38  *
39  * in this case, the "rem" we get with CP_ROQ_AVAIL_IBn::REM added will be
40  * larger than the size of the second IB, indicating that we need to back up
41  * to the IB before it. This can theoretically even happen recursively with
42  * IB2:
43  *
44  * CP_INDIRECT_BUFFER:
45  *    ...
46  *    CP_INDIRECT_BUFFER:
47  *       ...
48  *       CP_FOO <- PFP/SQE IB2 is reading here
49  *       ...
50  * CP_INDIRECT_BUFFER:
51  *    CP_INDIRECT_BUFFER:
52  *       ...
53  *       CP_BAR <- ROQ IB2 has prefetched up to here
54  *       ...
55  * CP_BAZ <- PFP/SQE IB1 is reading here
56  *
57  * Here the ROQ has prefetched the second IB1, then when processing the IB2 at
58  * the end of the first IB1 it peeks ahead in ROQ and sees another IB2 right
59  * afterward in the second IB1 and starts prefetching that too, so that the
60  * ROQ is in a different IB1 *and* IB2 from the CP.
61  *
62  * To account for this when locating the position that the SQE was at in the
63  * cmdstream at the time of the crash, we do a pre-pass scanning the
64  * CP_INDIRECT_BUFFER packets, keeping a history of previous IB's so that we
65  * can backtrack (because CP_IBn_BASE can be several IB's ahead of SQE).  Once
66  * we find the IB1 position that is being read into ROQ, we backtrack until
67  * we find the IB1 position that SQE is at, and (roughly) repeat the process
68  * in IB2.  This has one calculation in that we need to start scanning for the
69  * CP_INDIRECT_BUFFER to IB2 from before the detected IB1 position.
70  */
71 
72 struct ib {
73    uint64_t ibaddr;
74    uint32_t ibsize;
75 };
76 
77 struct prefetch_state {
78    struct ib history[MAX_PREFETCH_IBS];
79    unsigned num, next;
80 };
81 
82 static void
push_ib(struct prefetch_state * s,struct ib * ib)83 push_ib(struct prefetch_state *s, struct ib *ib)
84 {
85    s->history[s->next++ % ARRAY_SIZE(s->history)] = *ib;
86    s->num = MIN2(s->num + 1, ARRAY_SIZE(s->history));
87 }
88 
89 static struct ib *
get_ib(struct prefetch_state * s,int n)90 get_ib(struct prefetch_state *s, int n)
91 {
92    if ((n >= s->num) || (n < 0))
93       return NULL;
94    int idx = s->next - (s->num - n);
95    return &s->history[idx % ARRAY_SIZE(s->history)];
96 }
97 
98 static void
reset_state(struct prefetch_state * s)99 reset_state(struct prefetch_state *s)
100 {
101    s->num = s->next = 0;
102 }
103 
104 /**
105  * Once we find the ROQ prefetch position, work backwards to find the SQE
106  * position.
107  */
108 static struct ib *
reverse_prefetch(struct prefetch_state * s,int lvl)109 reverse_prefetch(struct prefetch_state *s, int lvl)
110 {
111    unsigned rem = options.ibs[lvl].rem;
112 
113    for (int n = s->num - 1; n >= 0; n--) {
114       struct ib *ib = get_ib(s, n);
115       if (ib->ibsize > rem) {
116          options.ibs[lvl].crash_found = 1;
117          options.ibs[lvl].base = ib->ibaddr;
118          options.ibs[lvl].rem = rem;
119 
120          return ib;
121       }
122       rem -= ib->ibsize;
123    }
124 
125    return NULL;
126 }
127 
128 /**
129  * Scan cmdstream looking for CP_INDIRECT_BUFFER packets, tracking history
130  * of consecutive CP_INDIRECT_BUFFER packets, until we find the one that
131  * matches CP_IBn_BASE.
132  */
133 static struct ib *
scan_cmdstream(struct prefetch_state * s,int lvl,uint32_t * dwords,uint32_t sizedwords)134 scan_cmdstream(struct prefetch_state *s, int lvl, uint32_t *dwords, uint32_t sizedwords)
135 {
136    int dwords_left = sizedwords;
137    uint32_t count = 0; /* dword count including packet header */
138    uint32_t val;
139 
140    while (dwords_left > 0) {
141       if (pkt_is_opcode(dwords[0], &val, &count)) {
142          if (!strcmp(pktname(val), "CP_INDIRECT_BUFFER")) {
143             uint64_t ibaddr;
144             uint32_t ibsize;
145 
146             parse_cp_indirect(&dwords[1], count - 1, &ibaddr, &ibsize);
147             push_ib(s, &(struct ib){ ibaddr, ibsize });
148 
149             /* If we've found the IB indicated by CP_IBn_BASE, then we can
150              * search backwards from here to find the SQE position:
151              */
152             if (ibaddr == options.ibs[lvl].base)
153                return reverse_prefetch(s, lvl);
154 
155             goto next_pkt;
156          }
157       } else if (pkt_is_regwrite(dwords[0], &val, &count)) {
158       } else {
159          count = find_next_packet(dwords, dwords_left);
160       }
161 
162       /* prefetch only happens across consecutive CP_INDIRECT_BUFFER, so
163        * any other packet resets the state:
164        */
165       reset_state(s);
166 
167 next_pkt:
168       dwords += count;
169       dwords_left -= count;
170    }
171 
172    return NULL;
173 }
174 
175 void
handle_prefetch(uint32_t * dwords,uint32_t sizedwords)176 handle_prefetch(uint32_t *dwords, uint32_t sizedwords)
177 {
178    struct prefetch_state rb_state = {};
179    struct ib *ib1 = scan_cmdstream(&rb_state, 1, dwords, sizedwords);
180 
181    if (!ib1)
182       return;
183 
184    /* If the gpu crashed in IB1, we can skip the rest: */
185    if (!options.ibs[2].rem)
186       return;
187 
188    struct prefetch_state ib1_state = {};
189 
190    /* Once we find the actual IB1 position, we need to find the IB2 position.
191     * But because IB2 prefetch can span IB1 CP_INDIRECT_BUFFER targets.  But
192     * there are a limited # of buffers that can be prefetched, and we already
193     * have a history of enough  RB->IB1 IB's, so we can simply scan forward
194     * from our oldest history entry until we find the IB2 match..
195     */
196    for (int n = 0; n < rb_state.num; n++) {
197       struct ib *ib = get_ib(&rb_state, n);
198       uint32_t *ibaddr = hostptr(ib->ibaddr);
199       if (!ibaddr)
200          break;
201       struct ib *ib2 = scan_cmdstream(&ib1_state, 2, ibaddr, ib->ibsize);
202 
203       /* If the crash happens in IB2, but IB1 has a sequence of CP_INDIRECT_BUFFER's
204        * then IB1 could actually be further ahead than IB2, ie:
205        *
206        *    IB1:CP_INDIRECT_BUFFER
207        *        IB2: .. crash somewhere in here ..
208        *    IB1:CP_INDIRECT_BUFFER
209        *    IB1:CP_INDIRECT_BUFFER  <-- detected IB1 position
210        *
211        * Our logic for detecting the correct IB1 position is not incorrect.
212        * It is just that SQE has already consumed some additional IB's.  So
213        * reset the IB1 crash position back to the oldest RB->IB1 IB that we
214        * remember.
215        *
216        * This isn't *quite* correct, but cffdec will only mark the crash when
217        * it finds the location in IB2 if we've determined that the crash is
218        * in IB2, but will only consider the address in IB2 if it has seen the
219        * IB1 base.
220        *
221        * The main case we are trying to account for here is GMEM mode crash in
222        * IB2 which *isn't* the first bin/tile.  Ie. the crash happens later
223        * than the first time we encounter the IB2 crash address.
224        *
225        * This approach works in practice because there will be some other pkts
226        * in IB1 to setup for the next tile, breaking up prefetch.
227        */
228       if (ib2) {
229          assert(options.ibs[2].crash_found);
230          struct ib *first_rb_ib = get_ib(&rb_state, 0);
231 
232          options.ibs[1].base = first_rb_ib->ibaddr;
233          options.ibs[1].rem = first_rb_ib->ibsize;
234 
235          break;
236       }
237 
238       if (ib == ib1)
239          break;
240    }
241 }
242