xref: /aosp_15_r20/external/mesa3d/src/compiler/nir/nir.h (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /*
2  * Copyright © 2014 Connor Abbott
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Connor Abbott ([email protected])
25  *
26  */
27 
28 #ifndef NIR_H
29 #define NIR_H
30 
31 #include <stdint.h>
32 #include "compiler/glsl_types.h"
33 #include "compiler/glsl/list.h"
34 #include "compiler/shader_enums.h"
35 #include "compiler/shader_info.h"
36 #include "util/bitscan.h"
37 #include "util/bitset.h"
38 #include "util/compiler.h"
39 #include "util/enum_operators.h"
40 #include "util/format/u_format.h"
41 #include "util/hash_table.h"
42 #include "util/list.h"
43 #include "util/log.h"
44 #include "util/macros.h"
45 #include "util/ralloc.h"
46 #include "util/set.h"
47 #include "util/u_printf.h"
48 #define XXH_INLINE_ALL
49 #include <stdio.h>
50 #include "util/xxhash.h"
51 
52 #ifndef NDEBUG
53 #include "util/u_debug.h"
54 #endif /* NDEBUG */
55 
56 #include "nir_opcodes.h"
57 
58 #ifdef __cplusplus
59 extern "C" {
60 #endif
61 
62 extern uint32_t nir_debug;
63 extern bool nir_debug_print_shader[MESA_SHADER_KERNEL + 1];
64 
65 #ifndef NDEBUG
66 #define NIR_DEBUG(flag) unlikely(nir_debug &(NIR_DEBUG_##flag))
67 #else
68 #define NIR_DEBUG(flag) false
69 #endif
70 
71 #define NIR_DEBUG_CLONE                  (1u << 0)
72 #define NIR_DEBUG_SERIALIZE              (1u << 1)
73 #define NIR_DEBUG_NOVALIDATE             (1u << 2)
74 #define NIR_DEBUG_VALIDATE_SSA_DOMINANCE (1u << 3)
75 #define NIR_DEBUG_TGSI                   (1u << 4)
76 #define NIR_DEBUG_PRINT_VS               (1u << 5)
77 #define NIR_DEBUG_PRINT_TCS              (1u << 6)
78 #define NIR_DEBUG_PRINT_TES              (1u << 7)
79 #define NIR_DEBUG_PRINT_GS               (1u << 8)
80 #define NIR_DEBUG_PRINT_FS               (1u << 9)
81 #define NIR_DEBUG_PRINT_CS               (1u << 10)
82 #define NIR_DEBUG_PRINT_TS               (1u << 11)
83 #define NIR_DEBUG_PRINT_MS               (1u << 12)
84 #define NIR_DEBUG_PRINT_RGS              (1u << 13)
85 #define NIR_DEBUG_PRINT_AHS              (1u << 14)
86 #define NIR_DEBUG_PRINT_CHS              (1u << 15)
87 #define NIR_DEBUG_PRINT_MHS              (1u << 16)
88 #define NIR_DEBUG_PRINT_IS               (1u << 17)
89 #define NIR_DEBUG_PRINT_CBS              (1u << 18)
90 #define NIR_DEBUG_PRINT_KS               (1u << 19)
91 #define NIR_DEBUG_PRINT_NO_INLINE_CONSTS (1u << 20)
92 #define NIR_DEBUG_PRINT_INTERNAL         (1u << 21)
93 #define NIR_DEBUG_PRINT_PASS_FLAGS       (1u << 22)
94 
95 #define NIR_DEBUG_PRINT (NIR_DEBUG_PRINT_VS |  \
96                          NIR_DEBUG_PRINT_TCS | \
97                          NIR_DEBUG_PRINT_TES | \
98                          NIR_DEBUG_PRINT_GS |  \
99                          NIR_DEBUG_PRINT_FS |  \
100                          NIR_DEBUG_PRINT_CS |  \
101                          NIR_DEBUG_PRINT_TS |  \
102                          NIR_DEBUG_PRINT_MS |  \
103                          NIR_DEBUG_PRINT_RGS | \
104                          NIR_DEBUG_PRINT_AHS | \
105                          NIR_DEBUG_PRINT_CHS | \
106                          NIR_DEBUG_PRINT_MHS | \
107                          NIR_DEBUG_PRINT_IS |  \
108                          NIR_DEBUG_PRINT_CBS | \
109                          NIR_DEBUG_PRINT_KS)
110 
111 #define NIR_FALSE              0u
112 #define NIR_TRUE               (~0u)
113 #define NIR_MAX_VEC_COMPONENTS 16
114 #define NIR_MAX_MATRIX_COLUMNS 4
115 #define NIR_STREAM_PACKED      (1 << 8)
116 typedef uint16_t nir_component_mask_t;
117 
118 static inline bool
nir_num_components_valid(unsigned num_components)119 nir_num_components_valid(unsigned num_components)
120 {
121    return (num_components >= 1 &&
122            num_components <= 5) ||
123           num_components == 8 ||
124           num_components == 16;
125 }
126 
127 static inline nir_component_mask_t
nir_component_mask(unsigned num_components)128 nir_component_mask(unsigned num_components)
129 {
130    assert(nir_num_components_valid(num_components));
131    return (1u << num_components) - 1;
132 }
133 
134 void
135 nir_process_debug_variable(void);
136 
137 bool nir_component_mask_can_reinterpret(nir_component_mask_t mask,
138                                         unsigned old_bit_size,
139                                         unsigned new_bit_size);
140 nir_component_mask_t
141 nir_component_mask_reinterpret(nir_component_mask_t mask,
142                                unsigned old_bit_size,
143                                unsigned new_bit_size);
144 
145 /** Defines a cast function
146  *
147  * This macro defines a cast function from in_type to out_type where
148  * out_type is some structure type that contains a field of type out_type.
149  *
150  * Note that you have to be a bit careful as the generated cast function
151  * destroys constness.
152  */
153 #define NIR_DEFINE_CAST(name, in_type, out_type, field,   \
154                         type_field, type_value)           \
155    static inline out_type *                               \
156    name(const in_type *parent)                            \
157    {                                                      \
158       assert(parent && parent->type_field == type_value); \
159       return exec_node_data(out_type, parent, field);     \
160    }
161 
162 struct nir_function;
163 struct nir_shader;
164 struct nir_instr;
165 struct nir_builder;
166 struct nir_xfb_info;
167 
168 /**
169  * Description of built-in state associated with a uniform
170  *
171  * :c:member:`nir_variable.state_slots`
172  */
173 typedef struct {
174    gl_state_index16 tokens[STATE_LENGTH];
175 } nir_state_slot;
176 
177 /* clang-format off */
178 typedef enum {
179    nir_var_system_value          = (1 << 0),
180    nir_var_uniform               = (1 << 1),
181    nir_var_shader_in             = (1 << 2),
182    nir_var_shader_out            = (1 << 3),
183    nir_var_image                 = (1 << 4),
184    /** Incoming call or ray payload data for ray-tracing shaders */
185    nir_var_shader_call_data      = (1 << 5),
186    /** Ray hit attributes */
187    nir_var_ray_hit_attrib        = (1 << 6),
188 
189    /* Modes named nir_var_mem_* have explicit data layout */
190    nir_var_mem_ubo               = (1 << 7),
191    nir_var_mem_push_const        = (1 << 8),
192    nir_var_mem_ssbo              = (1 << 9),
193    nir_var_mem_constant          = (1 << 10),
194    nir_var_mem_task_payload      = (1 << 11),
195    nir_var_mem_node_payload      = (1 << 12),
196    nir_var_mem_node_payload_in   = (1 << 13),
197 
198    /* Generic modes intentionally come last. See encode_dref_modes() in
199     * nir_serialize.c for more details.
200     */
201    nir_var_shader_temp           = (1 << 14),
202    nir_var_function_temp         = (1 << 15),
203    nir_var_mem_shared            = (1 << 16),
204    nir_var_mem_global            = (1 << 17),
205 
206    nir_var_mem_generic           = (nir_var_shader_temp |
207                                     nir_var_function_temp |
208                                     nir_var_mem_shared |
209                                     nir_var_mem_global),
210 
211    nir_var_read_only_modes       = nir_var_shader_in | nir_var_uniform |
212                                    nir_var_system_value | nir_var_mem_constant |
213                                    nir_var_mem_ubo,
214    /* Modes where vector derefs can be indexed as arrays. nir_var_shader_out
215     * is only for mesh stages. nir_var_system_value is only for kernel stages.
216     */
217    nir_var_vec_indexable_modes   = nir_var_shader_temp | nir_var_function_temp |
218                                  nir_var_mem_ubo | nir_var_mem_ssbo |
219                                  nir_var_mem_shared | nir_var_mem_global |
220                                  nir_var_mem_push_const | nir_var_mem_task_payload |
221                                  nir_var_shader_out | nir_var_system_value,
222    nir_num_variable_modes        = 18,
223    nir_var_all                   = (1 << nir_num_variable_modes) - 1,
224 } nir_variable_mode;
225 MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(nir_variable_mode)
226 /* clang-format on */
227 
228 /**
229  * Rounding modes.
230  */
231 typedef enum {
232    nir_rounding_mode_undef = 0,
233    nir_rounding_mode_rtne = 1, /* round to nearest even */
234    nir_rounding_mode_ru = 2,   /* round up */
235    nir_rounding_mode_rd = 3,   /* round down */
236    nir_rounding_mode_rtz = 4,  /* round towards zero */
237 } nir_rounding_mode;
238 
239 /**
240  * Ray query values that can read from a RayQueryKHR object.
241  */
242 typedef enum {
243    nir_ray_query_value_intersection_type,
244    nir_ray_query_value_intersection_t,
245    nir_ray_query_value_intersection_instance_custom_index,
246    nir_ray_query_value_intersection_instance_id,
247    nir_ray_query_value_intersection_instance_sbt_index,
248    nir_ray_query_value_intersection_geometry_index,
249    nir_ray_query_value_intersection_primitive_index,
250    nir_ray_query_value_intersection_barycentrics,
251    nir_ray_query_value_intersection_front_face,
252    nir_ray_query_value_intersection_object_ray_direction,
253    nir_ray_query_value_intersection_object_ray_origin,
254    nir_ray_query_value_intersection_object_to_world,
255    nir_ray_query_value_intersection_world_to_object,
256    nir_ray_query_value_intersection_candidate_aabb_opaque,
257    nir_ray_query_value_tmin,
258    nir_ray_query_value_flags,
259    nir_ray_query_value_world_ray_direction,
260    nir_ray_query_value_world_ray_origin,
261    nir_ray_query_value_intersection_triangle_vertex_positions
262 } nir_ray_query_value;
263 
264 /**
265  * Intel resource flags
266  */
267 typedef enum {
268    nir_resource_intel_bindless = 1u << 0,
269    nir_resource_intel_pushable = 1u << 1,
270    nir_resource_intel_sampler = 1u << 2,
271    nir_resource_intel_non_uniform = 1u << 3,
272    nir_resource_intel_sampler_embedded = 1u << 4,
273 } nir_resource_data_intel;
274 
275 /**
276  * Which components to interpret as signed in cmat_muladd.
277  * See 'Cooperative Matrix Operands' in SPV_KHR_cooperative_matrix.
278  */
279 typedef enum {
280    NIR_CMAT_A_SIGNED = 1u << 0,
281    NIR_CMAT_B_SIGNED = 1u << 1,
282    NIR_CMAT_C_SIGNED = 1u << 2,
283    NIR_CMAT_RESULT_SIGNED = 1u << 3,
284 } nir_cmat_signed;
285 
286 typedef union {
287    bool b;
288    float f32;
289    double f64;
290    int8_t i8;
291    uint8_t u8;
292    int16_t i16;
293    uint16_t u16;
294    int32_t i32;
295    uint32_t u32;
296    int64_t i64;
297    uint64_t u64;
298 } nir_const_value;
299 
300 #define nir_const_value_to_array(arr, c, components, m) \
301    do {                                                 \
302       for (unsigned i = 0; i < components; ++i)         \
303          arr[i] = c[i].m;                               \
304    } while (false)
305 
306 static inline nir_const_value
nir_const_value_for_raw_uint(uint64_t x,unsigned bit_size)307 nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size)
308 {
309    nir_const_value v;
310    memset(&v, 0, sizeof(v));
311 
312    /* clang-format off */
313    switch (bit_size) {
314    case 1:  v.b   = x;  break;
315    case 8:  v.u8  = x;  break;
316    case 16: v.u16 = x;  break;
317    case 32: v.u32 = x;  break;
318    case 64: v.u64 = x;  break;
319    default:
320       unreachable("Invalid bit size");
321    }
322    /* clang-format on */
323 
324    return v;
325 }
326 
327 static inline nir_const_value
nir_const_value_for_int(int64_t i,unsigned bit_size)328 nir_const_value_for_int(int64_t i, unsigned bit_size)
329 {
330    assert(bit_size <= 64);
331    if (bit_size < 64) {
332       assert(i >= (-(1ll << (bit_size - 1))));
333       assert(i < (1ll << (bit_size - 1)));
334    }
335 
336    return nir_const_value_for_raw_uint(i, bit_size);
337 }
338 
339 static inline nir_const_value
nir_const_value_for_uint(uint64_t u,unsigned bit_size)340 nir_const_value_for_uint(uint64_t u, unsigned bit_size)
341 {
342    assert(bit_size <= 64);
343    if (bit_size < 64)
344       assert(u < (1ull << bit_size));
345 
346    return nir_const_value_for_raw_uint(u, bit_size);
347 }
348 
349 static inline nir_const_value
nir_const_value_for_bool(bool b,unsigned bit_size)350 nir_const_value_for_bool(bool b, unsigned bit_size)
351 {
352    /* Booleans use a 0/-1 convention */
353    return nir_const_value_for_int(-(int)b, bit_size);
354 }
355 
356 /* This one isn't inline because it requires half-float conversion */
357 nir_const_value nir_const_value_for_float(double b, unsigned bit_size);
358 
359 static inline int64_t
nir_const_value_as_int(nir_const_value value,unsigned bit_size)360 nir_const_value_as_int(nir_const_value value, unsigned bit_size)
361 {
362    /* clang-format off */
363    switch (bit_size) {
364    /* int1_t uses 0/-1 convention */
365    case 1:  return -(int)value.b;
366    case 8:  return value.i8;
367    case 16: return value.i16;
368    case 32: return value.i32;
369    case 64: return value.i64;
370    default:
371       unreachable("Invalid bit size");
372    }
373    /* clang-format on */
374 }
375 
376 static inline uint64_t
nir_const_value_as_uint(nir_const_value value,unsigned bit_size)377 nir_const_value_as_uint(nir_const_value value, unsigned bit_size)
378 {
379    /* clang-format off */
380    switch (bit_size) {
381    case 1:  return value.b;
382    case 8:  return value.u8;
383    case 16: return value.u16;
384    case 32: return value.u32;
385    case 64: return value.u64;
386    default:
387       unreachable("Invalid bit size");
388    }
389    /* clang-format on */
390 }
391 
392 static inline bool
nir_const_value_as_bool(nir_const_value value,unsigned bit_size)393 nir_const_value_as_bool(nir_const_value value, unsigned bit_size)
394 {
395    int64_t i = nir_const_value_as_int(value, bit_size);
396 
397    /* Booleans of any size use 0/-1 convention */
398    assert(i == 0 || i == -1);
399 
400    return i;
401 }
402 
403 /* This one isn't inline because it requires half-float conversion */
404 double nir_const_value_as_float(nir_const_value value, unsigned bit_size);
405 
406 typedef struct nir_constant {
407    /**
408     * Value of the constant.
409     *
410     * The field used to back the values supplied by the constant is determined
411     * by the type associated with the ``nir_variable``.  Constants may be
412     * scalars, vectors, or matrices.
413     */
414    nir_const_value values[NIR_MAX_VEC_COMPONENTS];
415 
416    /* Indicates all the values are 0s which can enable some optimizations */
417    bool is_null_constant;
418 
419    /* we could get this from the var->type but makes clone *much* easier to
420     * not have to care about the type.
421     */
422    unsigned num_elements;
423 
424    /* Array elements / Structure Fields */
425    struct nir_constant **elements;
426 } nir_constant;
427 
428 /**
429  * Layout qualifiers for gl_FragDepth.
430  *
431  * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
432  * with a layout qualifier.
433  */
434 typedef enum {
435    /** No depth layout is specified. */
436    nir_depth_layout_none,
437    nir_depth_layout_any,
438    nir_depth_layout_greater,
439    nir_depth_layout_less,
440    nir_depth_layout_unchanged
441 } nir_depth_layout;
442 
443 /**
444  * Enum keeping track of how a variable was declared.
445  */
446 typedef enum {
447    /**
448     * Normal declaration.
449     */
450    nir_var_declared_normally = 0,
451 
452    /**
453     * Variable is an implicitly declared built-in that has not been explicitly
454     * re-declared by the shader.
455     */
456    nir_var_declared_implicitly,
457 
458    /**
459     * Variable is implicitly generated by the compiler and should not be
460     * visible via the API.
461     */
462    nir_var_hidden,
463 } nir_var_declaration_type;
464 
465 /**
466  * Either a uniform, global variable, shader input, or shader output. Based on
467  * ir_variable - it should be easy to translate between the two.
468  */
469 
470 typedef struct nir_variable {
471    struct exec_node node;
472 
473    /**
474     * Declared type of the variable
475     */
476    const struct glsl_type *type;
477 
478    /**
479     * Declared name of the variable
480     */
481    char *name;
482 
483    struct nir_variable_data {
484       /**
485        * Storage class of the variable.
486        *
487        * :c:struct:`nir_variable_mode`
488        */
489       unsigned mode : 18;
490 
491       /**
492        * Is the variable read-only?
493        *
494        * This is set for variables declared as ``const``, shader inputs,
495        * and uniforms.
496        */
497       unsigned read_only : 1;
498       unsigned centroid : 1;
499       unsigned sample : 1;
500       unsigned patch : 1;
501       unsigned invariant : 1;
502 
503       /**
504        * Was an 'invariant' qualifier explicitly set in the shader?
505        *
506        * This is used to cross validate glsl qualifiers.
507        */
508       unsigned explicit_invariant:1;
509 
510       /**
511        * Is the variable a ray query?
512        */
513       unsigned ray_query : 1;
514 
515       /**
516        * Precision qualifier.
517        *
518        * In desktop GLSL we do not care about precision qualifiers at all, in
519        * fact, the spec says that precision qualifiers are ignored.
520        *
521        * To make things easy, we make it so that this field is always
522        * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
523        * have the same precision value and the checks we add in the compiler
524        * for this field will never break a desktop shader compile.
525        */
526       unsigned precision : 2;
527 
528       /**
529        * Has this variable been statically assigned?
530        *
531        * This answers whether the variable was assigned in any path of
532        * the shader during ast_to_hir.  This doesn't answer whether it is
533        * still written after dead code removal, nor is it maintained in
534        * non-ast_to_hir.cpp (GLSL parsing) paths.
535        */
536       unsigned assigned : 1;
537 
538       /**
539        * Can this variable be coalesced with another?
540        *
541        * This is set by nir_lower_io_to_temporaries to say that any
542        * copies involving this variable should stay put. Propagating it can
543        * duplicate the resulting load/store, which is not wanted, and may
544        * result in a load/store of the variable with an indirect offset which
545        * the backend may not be able to handle.
546        */
547       unsigned cannot_coalesce : 1;
548 
549       /**
550        * When separate shader programs are enabled, only input/outputs between
551        * the stages of a multi-stage separate program can be safely removed
552        * from the shader interface. Other input/outputs must remains active.
553        *
554        * This is also used to make sure xfb varyings that are unused by the
555        * fragment shader are not removed.
556        */
557       unsigned always_active_io : 1;
558 
559       /**
560        * Interpolation mode for shader inputs / outputs
561        *
562        * :c:enum:`glsl_interp_mode`
563        */
564       unsigned interpolation : 3;
565 
566       /**
567        * If non-zero, then this variable may be packed along with other variables
568        * into a single varying slot, so this offset should be applied when
569        * accessing components.  For example, an offset of 1 means that the x
570        * component of this variable is actually stored in component y of the
571        * location specified by ``location``.
572        */
573       unsigned location_frac : 2;
574 
575       /**
576        * If true, this variable represents an array of scalars that should
577        * be tightly packed.  In other words, consecutive array elements
578        * should be stored one component apart, rather than one slot apart.
579        */
580       unsigned compact : 1;
581 
582       /**
583        * Whether this is a fragment shader output implicitly initialized with
584        * the previous contents of the specified render target at the
585        * framebuffer location corresponding to this shader invocation.
586        */
587       unsigned fb_fetch_output : 1;
588 
589       /**
590        * Non-zero if this variable is considered bindless as defined by
591        * ARB_bindless_texture.
592        */
593       unsigned bindless : 1;
594 
595       /**
596        * Was an explicit binding set in the shader?
597        */
598       unsigned explicit_binding : 1;
599 
600       /**
601        * Was the location explicitly set in the shader?
602        *
603        * If the location is explicitly set in the shader, it **cannot** be changed
604        * by the linker or by the API (e.g., calls to ``glBindAttribLocation`` have
605        * no effect).
606        */
607       unsigned explicit_location : 1;
608 
609       /* Was the array implicitly sized during linking */
610       unsigned implicit_sized_array : 1;
611 
612       /**
613        * Highest element accessed with a constant array index
614        *
615        * Not used for non-array variables. -1 is never accessed.
616        */
617       int max_array_access;
618 
619       /**
620        * Does this variable have an initializer?
621        *
622        * This is used by the linker to cross-validiate initializers of global
623        * variables.
624        */
625       unsigned has_initializer:1;
626 
627       /**
628        * Is the initializer created by the compiler (glsl_zero_init)
629        */
630       unsigned is_implicit_initializer:1;
631 
632       /**
633        * Is this varying used by transform feedback?
634        *
635        * This is used by the linker to decide if it's safe to pack the varying.
636        */
637       unsigned is_xfb : 1;
638 
639       /**
640        * Is this varying used only by transform feedback?
641        *
642        * This is used by the linker to decide if its safe to pack the varying.
643        */
644       unsigned is_xfb_only : 1;
645 
646       /**
647        * Was a transfer feedback buffer set in the shader?
648        */
649       unsigned explicit_xfb_buffer : 1;
650 
651       /**
652        * Was a transfer feedback stride set in the shader?
653        */
654       unsigned explicit_xfb_stride : 1;
655 
656       /**
657        * Was an explicit offset set in the shader?
658        */
659       unsigned explicit_offset : 1;
660 
661       /**
662        * Layout of the matrix.  Uses glsl_matrix_layout values.
663        */
664       unsigned matrix_layout : 2;
665 
666       /**
667        * Non-zero if this variable was created by lowering a named interface
668        * block.
669        */
670       unsigned from_named_ifc_block : 1;
671 
672       /**
673        * Unsized array buffer variable.
674        */
675       unsigned from_ssbo_unsized_array : 1;
676 
677       /**
678        * Non-zero if the variable must be a shader input. This is useful for
679        * constraints on function parameters.
680        */
681       unsigned must_be_shader_input : 1;
682 
683       /**
684        * Has this variable been used for reading or writing?
685        *
686        * Several GLSL semantic checks require knowledge of whether or not a
687        * variable has been used.  For example, it is an error to redeclare a
688        * variable as invariant after it has been used.
689        */
690       unsigned used:1;
691 
692       /**
693        * How the variable was declared.  See nir_var_declaration_type.
694        *
695        * This is used to detect variables generated by the compiler, so should
696        * not be visible via the API.
697        */
698       unsigned how_declared : 2;
699 
700       /**
701        * Is this variable per-view?  If so, we know it must be an array with
702        * size corresponding to the number of views.
703        */
704       unsigned per_view : 1;
705 
706       /**
707        * Whether the variable is per-primitive.
708        * Can be use by Mesh Shader outputs and corresponding Fragment Shader inputs.
709        */
710       unsigned per_primitive : 1;
711 
712       /**
713        * Whether the variable is declared to indicate that a fragment shader
714        * input will not have interpolated values.
715        */
716       unsigned per_vertex : 1;
717 
718       /**
719        * Layout qualifier for gl_FragDepth. See nir_depth_layout.
720        *
721        * This is not equal to ``ir_depth_layout_none`` if and only if this
722        * variable is ``gl_FragDepth`` and a layout qualifier is specified.
723        */
724       unsigned depth_layout : 3;
725 
726       /**
727        * Vertex stream output identifier.
728        *
729        * For packed outputs, NIR_STREAM_PACKED is set and bits [2*i+1,2*i]
730        * indicate the stream of the i-th component.
731        */
732       unsigned stream : 9;
733 
734       /**
735        * See gl_access_qualifier.
736        *
737        * Access flags for memory variables (SSBO/global), image uniforms, and
738        * bindless images in uniforms/inputs/outputs.
739        */
740       unsigned access : 9;
741 
742       /**
743        * Descriptor set binding for sampler or UBO.
744        */
745       unsigned descriptor_set : 5;
746 
747       /**
748        * output index for dual source blending.
749        */
750       unsigned index;
751 
752       /**
753        * Initial binding point for a sampler or UBO.
754        *
755        * For array types, this represents the binding point for the first element.
756        */
757       unsigned binding;
758 
759       /**
760        * Storage location of the base of this variable
761        *
762        * The precise meaning of this field depends on the nature of the variable.
763        *
764        *   - Vertex shader input: one of the values from ``gl_vert_attrib``.
765        *   - Vertex shader output: one of the values from ``gl_varying_slot``.
766        *   - Geometry shader input: one of the values from ``gl_varying_slot``.
767        *   - Geometry shader output: one of the values from ``gl_varying_slot``.
768        *   - Fragment shader input: one of the values from ``gl_varying_slot``.
769        *   - Fragment shader output: one of the values from ``gl_frag_result``.
770        *   - Task shader output: one of the values from ``gl_varying_slot``.
771        *   - Mesh shader input: one of the values from ``gl_varying_slot``.
772        *   - Mesh shader output: one of the values from ``gl_varying_slot``.
773        *   - Uniforms: Per-stage uniform slot number for default uniform block.
774        *   - Uniforms: Index within the uniform block definition for UBO members.
775        *   - Non-UBO Uniforms: uniform slot number.
776        *   - Other: This field is not currently used.
777        *
778        * If the variable is a uniform, shader input, or shader output, and the
779        * slot has not been assigned, the value will be -1.
780        */
781       int location;
782 
783       /** Required alignment of this variable */
784       unsigned alignment;
785 
786       /**
787        * The actual location of the variable in the IR. Only valid for inputs,
788        * outputs, uniforms (including samplers and images), and for UBO and SSBO
789        * variables in GLSL.
790        */
791       unsigned driver_location;
792 
793       /**
794        * Location an atomic counter or transform feedback is stored at.
795        */
796       unsigned offset;
797 
798       union {
799          struct {
800             /** Image internal format if specified explicitly, otherwise PIPE_FORMAT_NONE. */
801             enum pipe_format format;
802          } image;
803 
804          struct {
805             /**
806              * For OpenCL inline samplers. See cl_sampler_addressing_mode and cl_sampler_filter_mode
807              */
808             unsigned is_inline_sampler : 1;
809             unsigned addressing_mode : 3;
810             unsigned normalized_coordinates : 1;
811             unsigned filter_mode : 1;
812          } sampler;
813 
814          struct {
815             /**
816              * Transform feedback buffer.
817              */
818             uint16_t buffer : 2;
819 
820             /**
821              * Transform feedback stride.
822              */
823             uint16_t stride;
824          } xfb;
825       };
826 
827       /** Name of the node this payload will be enqueued to. */
828       const char *node_name;
829    } data;
830 
831    /**
832     * Identifier for this variable generated by nir_index_vars() that is unique
833     * among other variables in the same exec_list.
834     */
835    unsigned index;
836 
837    /* Number of nir_variable_data members */
838    uint16_t num_members;
839 
840    /**
841     * Built-in state that backs this uniform
842     *
843     * Once set at variable creation, ``state_slots`` must remain invariant.
844     * This is because, ideally, this array would be shared by all clones of
845     * this variable in the IR tree.  In other words, we'd really like for it
846     * to be a fly-weight.
847     *
848     * If the variable is not a uniform, ``num_state_slots`` will be zero and
849     * ``state_slots`` will be ``NULL``.
850     *
851     * Number of state slots used.
852     */
853    uint16_t num_state_slots;
854    /** State descriptors. */
855    nir_state_slot *state_slots;
856 
857    /**
858     * Constant expression assigned in the initializer of the variable
859     *
860     * This field should only be used temporarily by creators of NIR shaders
861     * and then nir_lower_variable_initializers can be used to get rid of them.
862     * Most of the rest of NIR ignores this field or asserts that it's NULL.
863     */
864    nir_constant *constant_initializer;
865 
866    /**
867     * Global variable assigned in the initializer of the variable
868     * This field should only be used temporarily by creators of NIR shaders
869     * and then nir_lower_variable_initializers can be used to get rid of them.
870     * Most of the rest of NIR ignores this field or asserts that it's NULL.
871     */
872    struct nir_variable *pointer_initializer;
873 
874    /**
875     * For variables that are in an interface block or are an instance of an
876     * interface block, this is the ``GLSL_TYPE_INTERFACE`` type for that block.
877     *
878     * ``ir_variable.location``
879     */
880    const struct glsl_type *interface_type;
881 
882    /**
883     * Description of per-member data for per-member struct variables
884     *
885     * This is used for variables which are actually an amalgamation of
886     * multiple entities such as a struct of built-in values or a struct of
887     * inputs each with their own layout specifier.  This is only allowed on
888     * variables with a struct or array of array of struct type.
889     */
890    struct nir_variable_data *members;
891 } nir_variable;
892 
893 static inline bool
_nir_shader_variable_has_mode(nir_variable * var,unsigned modes)894 _nir_shader_variable_has_mode(nir_variable *var, unsigned modes)
895 {
896    /* This isn't a shader variable */
897    assert(!(modes & nir_var_function_temp));
898    return var->data.mode & modes;
899 }
900 
901 #define nir_foreach_variable_in_list(var, var_list) \
902    foreach_list_typed(nir_variable, var, node, var_list)
903 
904 #define nir_foreach_variable_in_list_safe(var, var_list) \
905    foreach_list_typed_safe(nir_variable, var, node, var_list)
906 
907 #define nir_foreach_variable_in_shader(var, shader) \
908    nir_foreach_variable_in_list(var, &(shader)->variables)
909 
910 #define nir_foreach_variable_in_shader_safe(var, shader) \
911    nir_foreach_variable_in_list_safe(var, &(shader)->variables)
912 
913 #define nir_foreach_variable_with_modes(var, shader, modes) \
914    nir_foreach_variable_in_shader(var, shader)              \
915       if (_nir_shader_variable_has_mode(var, modes))
916 
917 #define nir_foreach_variable_with_modes_safe(var, shader, modes) \
918    nir_foreach_variable_in_shader_safe(var, shader)              \
919       if (_nir_shader_variable_has_mode(var, modes))
920 
921 #define nir_foreach_shader_in_variable(var, shader) \
922    nir_foreach_variable_with_modes(var, shader, nir_var_shader_in)
923 
924 #define nir_foreach_shader_in_variable_safe(var, shader) \
925    nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_in)
926 
927 #define nir_foreach_shader_out_variable(var, shader) \
928    nir_foreach_variable_with_modes(var, shader, nir_var_shader_out)
929 
930 #define nir_foreach_shader_out_variable_safe(var, shader) \
931    nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_out)
932 
933 #define nir_foreach_uniform_variable(var, shader) \
934    nir_foreach_variable_with_modes(var, shader, nir_var_uniform)
935 
936 #define nir_foreach_uniform_variable_safe(var, shader) \
937    nir_foreach_variable_with_modes_safe(var, shader, nir_var_uniform)
938 
939 #define nir_foreach_image_variable(var, shader) \
940    nir_foreach_variable_with_modes(var, shader, nir_var_image)
941 
942 #define nir_foreach_image_variable_safe(var, shader) \
943    nir_foreach_variable_with_modes_safe(var, shader, nir_var_image)
944 
945 static inline bool
nir_variable_is_global(const nir_variable * var)946 nir_variable_is_global(const nir_variable *var)
947 {
948    return var->data.mode != nir_var_function_temp;
949 }
950 
951 typedef enum ENUM_PACKED {
952    nir_instr_type_alu,
953    nir_instr_type_deref,
954    nir_instr_type_call,
955    nir_instr_type_tex,
956    nir_instr_type_intrinsic,
957    nir_instr_type_load_const,
958    nir_instr_type_jump,
959    nir_instr_type_undef,
960    nir_instr_type_phi,
961    nir_instr_type_parallel_copy,
962    nir_instr_type_debug_info,
963 } nir_instr_type;
964 
965 typedef struct nir_instr {
966    struct exec_node node;
967    struct nir_block *block;
968    nir_instr_type type;
969 
970    /* A temporary for optimization and analysis passes to use for storing
971     * flags.  For instance, DCE uses this to store the "dead/live" info.
972     */
973    uint8_t pass_flags;
974 
975    /** generic instruction index. */
976    uint32_t index;
977 } nir_instr;
978 
979 static inline nir_instr *
nir_instr_next(nir_instr * instr)980 nir_instr_next(nir_instr *instr)
981 {
982    struct exec_node *next = exec_node_get_next(&instr->node);
983    if (exec_node_is_tail_sentinel(next))
984       return NULL;
985    else
986       return exec_node_data(nir_instr, next, node);
987 }
988 
989 static inline nir_instr *
nir_instr_prev(nir_instr * instr)990 nir_instr_prev(nir_instr *instr)
991 {
992    struct exec_node *prev = exec_node_get_prev(&instr->node);
993    if (exec_node_is_head_sentinel(prev))
994       return NULL;
995    else
996       return exec_node_data(nir_instr, prev, node);
997 }
998 
999 static inline bool
nir_instr_is_first(const nir_instr * instr)1000 nir_instr_is_first(const nir_instr *instr)
1001 {
1002    return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
1003 }
1004 
1005 static inline bool
nir_instr_is_last(const nir_instr * instr)1006 nir_instr_is_last(const nir_instr *instr)
1007 {
1008    return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
1009 }
1010 
1011 typedef struct nir_def {
1012    /** Instruction which produces this SSA value. */
1013    nir_instr *parent_instr;
1014 
1015    /** set of nir_instrs where this register is used (read from) */
1016    struct list_head uses;
1017 
1018    /** generic SSA definition index. */
1019    unsigned index;
1020 
1021    uint8_t num_components;
1022 
1023    /* The bit-size of each channel; must be one of 1, 8, 16, 32, or 64 */
1024    uint8_t bit_size;
1025 
1026    /**
1027     * True if this SSA value may have different values in different SIMD
1028     * invocations of the shader.  This is set by nir_divergence_analysis.
1029     */
1030    bool divergent;
1031 } nir_def;
1032 
1033 struct nir_src;
1034 struct nir_if;
1035 
1036 typedef struct nir_src {
1037    /* Instruction or if-statement that consumes this value as a source. This
1038     * should only be accessed through nir_src_* helpers.
1039     *
1040     * Internally, it is a tagged pointer to a nir_instr or nir_if.
1041     */
1042    uintptr_t _parent;
1043 
1044    struct list_head use_link;
1045    nir_def *ssa;
1046 } nir_src;
1047 
1048 /* Layout of the _parent pointer. Bottom bit is set for nir_if parents (clear
1049  * for nir_instr parents). Remaining bits are the pointer.
1050  */
1051 #define NIR_SRC_PARENT_IS_IF (0x1)
1052 #define NIR_SRC_PARENT_MASK (~((uintptr_t) NIR_SRC_PARENT_IS_IF))
1053 
1054 static inline bool
nir_src_is_if(const nir_src * src)1055 nir_src_is_if(const nir_src *src)
1056 {
1057    return src->_parent & NIR_SRC_PARENT_IS_IF;
1058 }
1059 
1060 static inline nir_instr *
nir_src_parent_instr(const nir_src * src)1061 nir_src_parent_instr(const nir_src *src)
1062 {
1063    assert(!nir_src_is_if(src));
1064 
1065    /* Because it is not an if, the tag is 0, therefore we do not need to mask */
1066    return (nir_instr *)(src->_parent);
1067 }
1068 
1069 static inline struct nir_if *
nir_src_parent_if(const nir_src * src)1070 nir_src_parent_if(const nir_src *src)
1071 {
1072    assert(nir_src_is_if(src));
1073 
1074    /* Because it is an if, the tag is 1, so we need to mask */
1075    return (struct nir_if *)(src->_parent & NIR_SRC_PARENT_MASK);
1076 }
1077 
1078 static inline void
_nir_src_set_parent(nir_src * src,void * parent,bool is_if)1079 _nir_src_set_parent(nir_src *src, void *parent, bool is_if)
1080 {
1081     uintptr_t ptr = (uintptr_t) parent;
1082     assert((ptr & ~NIR_SRC_PARENT_MASK) == 0 && "pointer must be aligned");
1083 
1084     if (is_if)
1085        ptr |= NIR_SRC_PARENT_IS_IF;
1086 
1087     src->_parent = ptr;
1088 }
1089 
1090 static inline void
nir_src_set_parent_instr(nir_src * src,nir_instr * parent_instr)1091 nir_src_set_parent_instr(nir_src *src, nir_instr *parent_instr)
1092 {
1093    _nir_src_set_parent(src, parent_instr, false);
1094 }
1095 
1096 static inline void
nir_src_set_parent_if(nir_src * src,struct nir_if * parent_if)1097 nir_src_set_parent_if(nir_src *src, struct nir_if *parent_if)
1098 {
1099    _nir_src_set_parent(src, parent_if, true);
1100 }
1101 
1102 static inline nir_src
nir_src_init(void)1103 nir_src_init(void)
1104 {
1105    nir_src src = { 0 };
1106    return src;
1107 }
1108 
1109 #define NIR_SRC_INIT nir_src_init()
1110 
1111 #define nir_foreach_use_including_if(src, reg_or_ssa_def) \
1112    list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
1113 
1114 #define nir_foreach_use_including_if_safe(src, reg_or_ssa_def) \
1115    list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
1116 
1117 #define nir_foreach_use(src, reg_or_ssa_def)         \
1118    nir_foreach_use_including_if(src, reg_or_ssa_def) \
1119       if (!nir_src_is_if(src))
1120 
1121 #define nir_foreach_use_safe(src, reg_or_ssa_def)         \
1122    nir_foreach_use_including_if_safe(src, reg_or_ssa_def) \
1123       if (!nir_src_is_if(src))
1124 
1125 #define nir_foreach_if_use(src, reg_or_ssa_def)      \
1126    nir_foreach_use_including_if(src, reg_or_ssa_def) \
1127       if (nir_src_is_if(src))
1128 
1129 #define nir_foreach_if_use_safe(src, reg_or_ssa_def)      \
1130    nir_foreach_use_including_if_safe(src, reg_or_ssa_def) \
1131       if (nir_src_is_if(src))
1132 
1133 static inline bool
nir_def_used_by_if(const nir_def * def)1134 nir_def_used_by_if(const nir_def *def)
1135 {
1136    nir_foreach_if_use(_, def)
1137       return true;
1138 
1139    return false;
1140 }
1141 
1142 static inline bool
nir_def_only_used_by_if(const nir_def * def)1143 nir_def_only_used_by_if(const nir_def *def)
1144 {
1145    nir_foreach_use(_, def)
1146       return false;
1147 
1148    return true;
1149 }
1150 
1151 static inline nir_src
nir_src_for_ssa(nir_def * def)1152 nir_src_for_ssa(nir_def *def)
1153 {
1154    nir_src src = NIR_SRC_INIT;
1155 
1156    src.ssa = def;
1157 
1158    return src;
1159 }
1160 
1161 static inline unsigned
nir_src_bit_size(nir_src src)1162 nir_src_bit_size(nir_src src)
1163 {
1164    return src.ssa->bit_size;
1165 }
1166 
1167 static inline unsigned
nir_src_num_components(nir_src src)1168 nir_src_num_components(nir_src src)
1169 {
1170    return src.ssa->num_components;
1171 }
1172 
1173 static inline bool
nir_src_is_const(nir_src src)1174 nir_src_is_const(nir_src src)
1175 {
1176    return src.ssa->parent_instr->type == nir_instr_type_load_const;
1177 }
1178 
1179 static inline bool
nir_src_is_undef(nir_src src)1180 nir_src_is_undef(nir_src src)
1181 {
1182    return src.ssa->parent_instr->type == nir_instr_type_undef;
1183 }
1184 
1185 static inline bool
nir_src_is_divergent(nir_src src)1186 nir_src_is_divergent(nir_src src)
1187 {
1188    return src.ssa->divergent;
1189 }
1190 
1191 /* Are all components the same, ie. .xxxx */
1192 static inline bool
nir_is_same_comp_swizzle(uint8_t * swiz,unsigned nr_comp)1193 nir_is_same_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
1194 {
1195    for (unsigned i = 1; i < nr_comp; i++)
1196       if (swiz[i] != swiz[0])
1197          return false;
1198    return true;
1199 }
1200 
1201 /* Are all components sequential, ie. .yzw */
1202 static inline bool
nir_is_sequential_comp_swizzle(uint8_t * swiz,unsigned nr_comp)1203 nir_is_sequential_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
1204 {
1205    for (unsigned i = 1; i < nr_comp; i++)
1206       if (swiz[i] != (swiz[0] + i))
1207          return false;
1208    return true;
1209 }
1210 
1211 /***/
1212 typedef struct nir_alu_src {
1213    /** Base source */
1214    nir_src src;
1215 
1216    /**
1217     * For each input component, says which component of the register it is
1218     * chosen from.
1219     *
1220     * Note that which elements of the swizzle are used and which are ignored
1221     * are based on the write mask for most opcodes - for example, a statement
1222     * like "foo.xzw = bar.zyx" would have a writemask of 1101b and a swizzle
1223     * of {2, 1, x, 0} where x means "don't care."
1224     */
1225    uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
1226 } nir_alu_src;
1227 
1228 /** NIR sized and unsized types
1229  *
1230  * The values in this enum are carefully chosen so that the sized type is
1231  * just the unsized type OR the number of bits.
1232  */
1233 /* clang-format off */
1234 typedef enum ENUM_PACKED {
1235    nir_type_invalid =   0, /* Not a valid type */
1236    nir_type_int =       2,
1237    nir_type_uint =      4,
1238    nir_type_bool =      6,
1239    nir_type_float =     128,
1240    nir_type_bool1 =     1  | nir_type_bool,
1241    nir_type_bool8 =     8  | nir_type_bool,
1242    nir_type_bool16 =    16 | nir_type_bool,
1243    nir_type_bool32 =    32 | nir_type_bool,
1244    nir_type_int1 =      1  | nir_type_int,
1245    nir_type_int8 =      8  | nir_type_int,
1246    nir_type_int16 =     16 | nir_type_int,
1247    nir_type_int32 =     32 | nir_type_int,
1248    nir_type_int64 =     64 | nir_type_int,
1249    nir_type_uint1 =     1  | nir_type_uint,
1250    nir_type_uint8 =     8  | nir_type_uint,
1251    nir_type_uint16 =    16 | nir_type_uint,
1252    nir_type_uint32 =    32 | nir_type_uint,
1253    nir_type_uint64 =    64 | nir_type_uint,
1254    nir_type_float16 =   16 | nir_type_float,
1255    nir_type_float32 =   32 | nir_type_float,
1256    nir_type_float64 =   64 | nir_type_float,
1257 } nir_alu_type;
1258 /* clang-format on */
1259 
1260 #define NIR_ALU_TYPE_SIZE_MASK      0x79
1261 #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
1262 
1263 static inline unsigned
nir_alu_type_get_type_size(nir_alu_type type)1264 nir_alu_type_get_type_size(nir_alu_type type)
1265 {
1266    return type & NIR_ALU_TYPE_SIZE_MASK;
1267 }
1268 
1269 static inline nir_alu_type
nir_alu_type_get_base_type(nir_alu_type type)1270 nir_alu_type_get_base_type(nir_alu_type type)
1271 {
1272    return (nir_alu_type)(type & NIR_ALU_TYPE_BASE_TYPE_MASK);
1273 }
1274 
1275 nir_alu_type
1276 nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type);
1277 
1278 static inline nir_alu_type
nir_get_nir_type_for_glsl_type(const struct glsl_type * type)1279 nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
1280 {
1281    return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
1282 }
1283 
1284 enum glsl_base_type
1285 nir_get_glsl_base_type_for_nir_type(nir_alu_type base_type);
1286 
1287 nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
1288                               nir_rounding_mode rnd);
1289 
1290 /**
1291  * Atomic intrinsics perform different operations depending on the value of
1292  * their atomic_op constant index. nir_atomic_op defines the operations.
1293  */
1294 typedef enum {
1295    nir_atomic_op_iadd,
1296    nir_atomic_op_imin,
1297    nir_atomic_op_umin,
1298    nir_atomic_op_imax,
1299    nir_atomic_op_umax,
1300    nir_atomic_op_iand,
1301    nir_atomic_op_ior,
1302    nir_atomic_op_ixor,
1303    nir_atomic_op_xchg,
1304    nir_atomic_op_fadd,
1305    nir_atomic_op_fmin,
1306    nir_atomic_op_fmax,
1307    nir_atomic_op_cmpxchg,
1308    nir_atomic_op_fcmpxchg,
1309    nir_atomic_op_inc_wrap,
1310    nir_atomic_op_dec_wrap,
1311    nir_atomic_op_ordered_add_gfx12_amd,
1312 } nir_atomic_op;
1313 
1314 static inline nir_alu_type
nir_atomic_op_type(nir_atomic_op op)1315 nir_atomic_op_type(nir_atomic_op op)
1316 {
1317    switch (op) {
1318    case nir_atomic_op_imin:
1319    case nir_atomic_op_imax:
1320       return nir_type_int;
1321 
1322    case nir_atomic_op_fadd:
1323    case nir_atomic_op_fmin:
1324    case nir_atomic_op_fmax:
1325    case nir_atomic_op_fcmpxchg:
1326       return nir_type_float;
1327 
1328    case nir_atomic_op_iadd:
1329    case nir_atomic_op_iand:
1330    case nir_atomic_op_ior:
1331    case nir_atomic_op_ixor:
1332    case nir_atomic_op_xchg:
1333    case nir_atomic_op_cmpxchg:
1334    case nir_atomic_op_umin:
1335    case nir_atomic_op_umax:
1336    case nir_atomic_op_inc_wrap:
1337    case nir_atomic_op_dec_wrap:
1338    case nir_atomic_op_ordered_add_gfx12_amd:
1339       return nir_type_uint;
1340    }
1341 
1342    unreachable("Invalid nir_atomic_op");
1343 }
1344 
1345 /** Returns nir_op_vec<num_components> or nir_op_mov if num_components == 1
1346  *
1347  * This is subtly different from nir_op_is_vec() which returns false for
1348  * nir_op_mov.  Returning nir_op_mov from nir_op_vec() when num_components == 1
1349  * makes sense under the assumption that the num_components of the resulting
1350  * nir_def will same as what is passed in here because a single-component mov
1351  * is effectively a vec1.  However, if alu->def.num_components > 1, nir_op_mov
1352  * has different semantics from nir_op_vec* so so code which detects "is this
1353  * a vec?" typically needs to handle nir_op_mov separate from nir_op_vecN.
1354  *
1355  * In the unlikely case where you can handle nir_op_vecN and nir_op_mov
1356  * together, use nir_op_is_vec_or_mov().
1357  */
1358 nir_op
1359 nir_op_vec(unsigned num_components);
1360 
1361 /** Returns true if this op is one of nir_op_vec*
1362  *
1363  * Returns false for nir_op_mov.  See nir_op_vec() for more details.
1364  */
1365 bool
1366 nir_op_is_vec(nir_op op);
1367 
1368 static inline bool
nir_op_is_vec_or_mov(nir_op op)1369 nir_op_is_vec_or_mov(nir_op op)
1370 {
1371    return op == nir_op_mov || nir_op_is_vec(op);
1372 }
1373 
1374 static inline bool
nir_is_float_control_signed_zero_preserve(unsigned execution_mode,unsigned bit_size)1375 nir_is_float_control_signed_zero_preserve(unsigned execution_mode, unsigned bit_size)
1376 {
1377    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_PRESERVE_FP16) ||
1378           (32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_PRESERVE_FP32) ||
1379           (64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_PRESERVE_FP64);
1380 }
1381 
1382 static inline bool
nir_is_float_control_inf_preserve(unsigned execution_mode,unsigned bit_size)1383 nir_is_float_control_inf_preserve(unsigned execution_mode, unsigned bit_size)
1384 {
1385    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_INF_PRESERVE_FP16) ||
1386           (32 == bit_size && execution_mode & FLOAT_CONTROLS_INF_PRESERVE_FP32) ||
1387           (64 == bit_size && execution_mode & FLOAT_CONTROLS_INF_PRESERVE_FP64);
1388 }
1389 
1390 static inline bool
nir_is_float_control_nan_preserve(unsigned execution_mode,unsigned bit_size)1391 nir_is_float_control_nan_preserve(unsigned execution_mode, unsigned bit_size)
1392 {
1393    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_NAN_PRESERVE_FP16) ||
1394           (32 == bit_size && execution_mode & FLOAT_CONTROLS_NAN_PRESERVE_FP32) ||
1395           (64 == bit_size && execution_mode & FLOAT_CONTROLS_NAN_PRESERVE_FP64);
1396 }
1397 
1398 static inline bool
nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode,unsigned bit_size)1399 nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode, unsigned bit_size)
1400 {
1401    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16) ||
1402           (32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32) ||
1403           (64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
1404 }
1405 
1406 static inline bool
nir_is_denorm_flush_to_zero(unsigned execution_mode,unsigned bit_size)1407 nir_is_denorm_flush_to_zero(unsigned execution_mode, unsigned bit_size)
1408 {
1409    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16) ||
1410           (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32) ||
1411           (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
1412 }
1413 
1414 static inline bool
nir_is_denorm_preserve(unsigned execution_mode,unsigned bit_size)1415 nir_is_denorm_preserve(unsigned execution_mode, unsigned bit_size)
1416 {
1417    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) ||
1418           (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) ||
1419           (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64);
1420 }
1421 
1422 static inline bool
nir_is_rounding_mode_rtne(unsigned execution_mode,unsigned bit_size)1423 nir_is_rounding_mode_rtne(unsigned execution_mode, unsigned bit_size)
1424 {
1425    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1426           (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1427           (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1428 }
1429 
1430 static inline bool
nir_is_rounding_mode_rtz(unsigned execution_mode,unsigned bit_size)1431 nir_is_rounding_mode_rtz(unsigned execution_mode, unsigned bit_size)
1432 {
1433    return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1434           (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1435           (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1436 }
1437 
1438 static inline bool
nir_has_any_rounding_mode_rtz(unsigned execution_mode)1439 nir_has_any_rounding_mode_rtz(unsigned execution_mode)
1440 {
1441    return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1442           (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1443           (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1444 }
1445 
1446 static inline bool
nir_has_any_rounding_mode_rtne(unsigned execution_mode)1447 nir_has_any_rounding_mode_rtne(unsigned execution_mode)
1448 {
1449    return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1450           (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1451           (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1452 }
1453 
1454 static inline nir_rounding_mode
nir_get_rounding_mode_from_float_controls(unsigned execution_mode,nir_alu_type type)1455 nir_get_rounding_mode_from_float_controls(unsigned execution_mode,
1456                                           nir_alu_type type)
1457 {
1458    if (nir_alu_type_get_base_type(type) != nir_type_float)
1459       return nir_rounding_mode_undef;
1460 
1461    unsigned bit_size = nir_alu_type_get_type_size(type);
1462 
1463    if (nir_is_rounding_mode_rtz(execution_mode, bit_size))
1464       return nir_rounding_mode_rtz;
1465    if (nir_is_rounding_mode_rtne(execution_mode, bit_size))
1466       return nir_rounding_mode_rtne;
1467    return nir_rounding_mode_undef;
1468 }
1469 
1470 static inline bool
nir_has_any_rounding_mode_enabled(unsigned execution_mode)1471 nir_has_any_rounding_mode_enabled(unsigned execution_mode)
1472 {
1473    bool result =
1474       nir_has_any_rounding_mode_rtne(execution_mode) ||
1475       nir_has_any_rounding_mode_rtz(execution_mode);
1476    return result;
1477 }
1478 
1479 typedef enum {
1480    /**
1481     * Operation where the first two sources are commutative.
1482     *
1483     * For 2-source operations, this just mathematical commutativity.  Some
1484     * 3-source operations, like ffma, are only commutative in the first two
1485     * sources.
1486     */
1487    NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
1488 
1489    /**
1490     * Operation is associative
1491     */
1492    NIR_OP_IS_ASSOCIATIVE = (1 << 1),
1493 
1494    /**
1495     * Operation where src[0] is used to select src[1] on true or src[2] false.
1496     * src[0] may be Boolean, or it may be another type used in an implicit
1497     * comparison.
1498     */
1499    NIR_OP_IS_SELECTION = (1 << 2),
1500 
1501    /**
1502     * Operation where a screen-space derivative is taken of src[0]. Must not be
1503     * moved into non-uniform control flow.
1504     */
1505    NIR_OP_IS_DERIVATIVE = (1 << 3),
1506 } nir_op_algebraic_property;
1507 
1508 /* vec16 is the widest ALU op in NIR, making the max number of input of ALU
1509  * instructions to be the same as NIR_MAX_VEC_COMPONENTS.
1510  */
1511 #define NIR_ALU_MAX_INPUTS NIR_MAX_VEC_COMPONENTS
1512 
1513 /***/
1514 typedef struct nir_op_info {
1515    /** Name of the NIR ALU opcode */
1516    const char *name;
1517 
1518    /** Number of inputs (sources) */
1519    uint8_t num_inputs;
1520 
1521    /**
1522     * The number of components in the output
1523     *
1524     * If non-zero, this is the size of the output and input sizes are
1525     * explicitly given; swizzle and writemask are still in effect, but if
1526     * the output component is masked out, then the input component may
1527     * still be in use.
1528     *
1529     * If zero, the opcode acts in the standard, per-component manner; the
1530     * operation is performed on each component (except the ones that are
1531     * masked out) with the input being taken from the input swizzle for
1532     * that component.
1533     *
1534     * The size of some of the inputs may be given (i.e. non-zero) even
1535     * though output_size is zero; in that case, the inputs with a zero
1536     * size act per-component, while the inputs with non-zero size don't.
1537     */
1538    uint8_t output_size;
1539 
1540    /**
1541     * The type of vector that the instruction outputs. Note that the
1542     * staurate modifier is only allowed on outputs with the float type.
1543     */
1544    nir_alu_type output_type;
1545 
1546    /**
1547     * The number of components in each input
1548     *
1549     * See nir_op_infos::output_size for more detail about the relationship
1550     * between input and output sizes.
1551     */
1552    uint8_t input_sizes[NIR_ALU_MAX_INPUTS];
1553 
1554    /**
1555     * The type of vector that each input takes.
1556     */
1557    nir_alu_type input_types[NIR_ALU_MAX_INPUTS];
1558 
1559    /** Algebraic properties of this opcode */
1560    nir_op_algebraic_property algebraic_properties;
1561 
1562    /** Whether this represents a numeric conversion opcode */
1563    bool is_conversion;
1564 } nir_op_info;
1565 
1566 /** Metadata for each nir_op, indexed by opcode */
1567 extern const nir_op_info nir_op_infos[nir_num_opcodes];
1568 
1569 static inline bool
nir_op_is_selection(nir_op op)1570 nir_op_is_selection(nir_op op)
1571 {
1572    return (nir_op_infos[op].algebraic_properties & NIR_OP_IS_SELECTION) != 0;
1573 }
1574 
1575 static inline bool
nir_op_is_derivative(nir_op op)1576 nir_op_is_derivative(nir_op op)
1577 {
1578    return (nir_op_infos[op].algebraic_properties & NIR_OP_IS_DERIVATIVE) != 0;
1579 }
1580 
1581 /***/
1582 typedef struct nir_alu_instr {
1583    /** Base instruction */
1584    nir_instr instr;
1585 
1586    /** Opcode */
1587    nir_op op;
1588 
1589    /** Indicates that this ALU instruction generates an exact value
1590     *
1591     * This is kind of a mixture of GLSL "precise" and "invariant" and not
1592     * really equivalent to either.  This indicates that the value generated by
1593     * this operation is high-precision and any code transformations that touch
1594     * it must ensure that the resulting value is bit-for-bit identical to the
1595     * original.
1596     */
1597    bool exact : 1;
1598 
1599    /**
1600     * Indicates that this instruction doese not cause signed integer wrapping
1601     * to occur, in the form of overflow or underflow.
1602     */
1603    bool no_signed_wrap : 1;
1604 
1605    /**
1606     * Indicates that this instruction does not cause unsigned integer wrapping
1607     * to occur, in the form of overflow or underflow.
1608     */
1609    bool no_unsigned_wrap : 1;
1610 
1611    /**
1612     * The float controls bit float_controls2 cares about. That is,
1613     * NAN/INF/SIGNED_ZERO_PRESERVE only. Allow{Contract,Reassoc,Transform} are
1614     * still handled through the exact bit, and the other float controls bits
1615     * (rounding mode and denorm handling) remain in the execution mode only.
1616     */
1617    uint32_t fp_fast_math : 9;
1618 
1619    /** Destination */
1620    nir_def def;
1621 
1622    /** Sources
1623     *
1624     * The size of the array is given by :c:member:`nir_op_info.num_inputs`.
1625     */
1626    nir_alu_src src[];
1627 } nir_alu_instr;
1628 
1629 static inline bool
nir_alu_instr_is_signed_zero_preserve(nir_alu_instr * alu)1630 nir_alu_instr_is_signed_zero_preserve(nir_alu_instr *alu)
1631 {
1632    return nir_is_float_control_signed_zero_preserve(alu->fp_fast_math, alu->def.bit_size);
1633 }
1634 
1635 static inline bool
nir_alu_instr_is_inf_preserve(nir_alu_instr * alu)1636 nir_alu_instr_is_inf_preserve(nir_alu_instr *alu)
1637 {
1638    return nir_is_float_control_inf_preserve(alu->fp_fast_math, alu->def.bit_size);
1639 }
1640 
1641 static inline bool
nir_alu_instr_is_nan_preserve(nir_alu_instr * alu)1642 nir_alu_instr_is_nan_preserve(nir_alu_instr *alu)
1643 {
1644    return nir_is_float_control_nan_preserve(alu->fp_fast_math, alu->def.bit_size);
1645 }
1646 
1647 static inline bool
nir_alu_instr_is_signed_zero_inf_nan_preserve(nir_alu_instr * alu)1648 nir_alu_instr_is_signed_zero_inf_nan_preserve(nir_alu_instr *alu)
1649 {
1650    return nir_is_float_control_signed_zero_inf_nan_preserve(alu->fp_fast_math, alu->def.bit_size);
1651 }
1652 
1653 void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src);
1654 
1655 nir_component_mask_t
1656 nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src);
1657 /**
1658  * Get the number of channels used for a source
1659  */
1660 unsigned
1661 nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src);
1662 
1663 /* is this source channel used? */
1664 static inline bool
nir_alu_instr_channel_used(const nir_alu_instr * instr,unsigned src,unsigned channel)1665 nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
1666                            unsigned channel)
1667 {
1668    return channel < nir_ssa_alu_instr_src_components(instr, src);
1669 }
1670 
1671 bool
1672 nir_alu_instr_is_comparison(const nir_alu_instr *instr);
1673 
1674 bool nir_const_value_negative_equal(nir_const_value c1, nir_const_value c2,
1675                                     nir_alu_type full_type);
1676 
1677 bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1678                         unsigned src1, unsigned src2);
1679 
1680 bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1681                                  const nir_alu_instr *alu2,
1682                                  unsigned src1, unsigned src2);
1683 
1684 bool nir_alu_src_is_trivial_ssa(const nir_alu_instr *alu, unsigned srcn);
1685 
1686 typedef enum {
1687    nir_deref_type_var,
1688    nir_deref_type_array,
1689    nir_deref_type_array_wildcard,
1690    nir_deref_type_ptr_as_array,
1691    nir_deref_type_struct,
1692    nir_deref_type_cast,
1693 } nir_deref_type;
1694 
1695 typedef struct {
1696    nir_instr instr;
1697 
1698    /** The type of this deref instruction */
1699    nir_deref_type deref_type;
1700 
1701    /** Bitmask what modes the underlying variable might be
1702     *
1703     * For OpenCL-style generic pointers, we may not know exactly what mode it
1704     * is at any given point in time in the compile process.  This bitfield
1705     * contains the set of modes which it MAY be.
1706     *
1707     * Generally, this field should not be accessed directly.  Use one of the
1708     * nir_deref_mode_ helpers instead.
1709     */
1710    nir_variable_mode modes;
1711 
1712    /** The dereferenced type of the resulting pointer value */
1713    const struct glsl_type *type;
1714 
1715    union {
1716       /** Variable being dereferenced if deref_type is a deref_var */
1717       nir_variable *var;
1718 
1719       /** Parent deref if deref_type is not deref_var */
1720       nir_src parent;
1721    };
1722 
1723    /** Additional deref parameters */
1724    union {
1725       struct {
1726          nir_src index;
1727          bool in_bounds;
1728       } arr;
1729 
1730       struct {
1731          unsigned index;
1732       } strct;
1733 
1734       struct {
1735          unsigned ptr_stride;
1736          unsigned align_mul;
1737          unsigned align_offset;
1738       } cast;
1739    };
1740 
1741    /** Destination to store the resulting "pointer" */
1742    nir_def def;
1743 } nir_deref_instr;
1744 
1745 /**
1746  * Returns true if the cast is trivial, i.e. the source and destination type is
1747  * the same.
1748  */
1749 bool nir_deref_cast_is_trivial(nir_deref_instr *cast);
1750 
1751 /** Returns true if deref might have one of the given modes
1752  *
1753  * For multi-mode derefs, this returns true if any of the possible modes for
1754  * the deref to have any of the specified modes.  This function returning true
1755  * does NOT mean that the deref definitely has one of those modes.  It simply
1756  * means that, with the best information we have at the time, it might.
1757  */
1758 static inline bool
nir_deref_mode_may_be(const nir_deref_instr * deref,nir_variable_mode modes)1759 nir_deref_mode_may_be(const nir_deref_instr *deref, nir_variable_mode modes)
1760 {
1761    assert(!(modes & ~nir_var_all));
1762    assert(deref->modes != 0);
1763    return deref->modes & modes;
1764 }
1765 
1766 /** Returns true if deref must have one of the given modes
1767  *
1768  * For multi-mode derefs, this returns true if NIR can prove that the given
1769  * deref has one of the specified modes.  This function returning false does
1770  * NOT mean that deref doesn't have one of the given mode.  It very well may
1771  * have one of those modes, we just don't have enough information to prove
1772  * that it does for sure.
1773  */
1774 static inline bool
nir_deref_mode_must_be(const nir_deref_instr * deref,nir_variable_mode modes)1775 nir_deref_mode_must_be(const nir_deref_instr *deref, nir_variable_mode modes)
1776 {
1777    assert(!(modes & ~nir_var_all));
1778    assert(deref->modes != 0);
1779    return !(deref->modes & ~modes);
1780 }
1781 
1782 /** Returns true if deref has the given mode
1783  *
1784  * This returns true if the deref has exactly the mode specified.  If the
1785  * deref may have that mode but may also have a different mode (i.e. modes has
1786  * multiple bits set), this will assert-fail.
1787  *
1788  * If you're confused about which nir_deref_mode_ helper to use, use this one
1789  * or nir_deref_mode_is_one_of below.
1790  */
1791 static inline bool
nir_deref_mode_is(const nir_deref_instr * deref,nir_variable_mode mode)1792 nir_deref_mode_is(const nir_deref_instr *deref, nir_variable_mode mode)
1793 {
1794    assert(util_bitcount(mode) == 1 && (mode & nir_var_all));
1795    assert(deref->modes != 0);
1796 
1797    /* This is only for "simple" cases so, if modes might interact with this
1798     * deref then the deref has to have a single mode.
1799     */
1800    if (nir_deref_mode_may_be(deref, mode)) {
1801       assert(util_bitcount(deref->modes) == 1);
1802       assert(deref->modes == mode);
1803    }
1804 
1805    return deref->modes == mode;
1806 }
1807 
1808 /** Returns true if deref has one of the given modes
1809  *
1810  * This returns true if the deref has exactly one possible mode and that mode
1811  * is one of the modes specified.  If the deref may have one of those modes
1812  * but may also have a different mode (i.e. modes has multiple bits set), this
1813  * will assert-fail.
1814  */
1815 static inline bool
nir_deref_mode_is_one_of(const nir_deref_instr * deref,nir_variable_mode modes)1816 nir_deref_mode_is_one_of(const nir_deref_instr *deref, nir_variable_mode modes)
1817 {
1818    /* This is only for "simple" cases so, if modes might interact with this
1819     * deref then the deref has to have a single mode.
1820     */
1821    if (nir_deref_mode_may_be(deref, modes)) {
1822       assert(util_bitcount(deref->modes) == 1);
1823       assert(nir_deref_mode_must_be(deref, modes));
1824    }
1825 
1826    return nir_deref_mode_may_be(deref, modes);
1827 }
1828 
1829 /** Returns true if deref's possible modes lie in the given set of modes
1830  *
1831  * This returns true if the deref's modes lie in the given set of modes.  If
1832  * the deref's modes overlap with the specified modes but aren't entirely
1833  * contained in the specified set of modes, this will assert-fail.  In
1834  * particular, if this is used in a generic pointers scenario, the specified
1835  * modes has to contain all or none of the possible generic pointer modes.
1836  *
1837  * This is intended mostly for mass-lowering of derefs which might have
1838  * generic pointers.
1839  */
1840 static inline bool
nir_deref_mode_is_in_set(const nir_deref_instr * deref,nir_variable_mode modes)1841 nir_deref_mode_is_in_set(const nir_deref_instr *deref, nir_variable_mode modes)
1842 {
1843    if (nir_deref_mode_may_be(deref, modes))
1844       assert(nir_deref_mode_must_be(deref, modes));
1845 
1846    return nir_deref_mode_may_be(deref, modes);
1847 }
1848 
1849 static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1850 
1851 static inline nir_deref_instr *
nir_deref_instr_parent(const nir_deref_instr * instr)1852 nir_deref_instr_parent(const nir_deref_instr *instr)
1853 {
1854    if (instr->deref_type == nir_deref_type_var)
1855       return NULL;
1856    else
1857       return nir_src_as_deref(instr->parent);
1858 }
1859 
1860 static inline nir_variable *
nir_deref_instr_get_variable(const nir_deref_instr * instr)1861 nir_deref_instr_get_variable(const nir_deref_instr *instr)
1862 {
1863    while (instr->deref_type != nir_deref_type_var) {
1864       if (instr->deref_type == nir_deref_type_cast)
1865          return NULL;
1866 
1867       instr = nir_deref_instr_parent(instr);
1868    }
1869 
1870    return instr->var;
1871 }
1872 
1873 bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1874 bool nir_deref_instr_is_known_out_of_bounds(nir_deref_instr *instr);
1875 
1876 typedef enum {
1877    nir_deref_instr_has_complex_use_allow_memcpy_src = (1 << 0),
1878    nir_deref_instr_has_complex_use_allow_memcpy_dst = (1 << 1),
1879    nir_deref_instr_has_complex_use_allow_atomics = (1 << 2),
1880 } nir_deref_instr_has_complex_use_options;
1881 
1882 bool nir_deref_instr_has_complex_use(nir_deref_instr *instr,
1883                                      nir_deref_instr_has_complex_use_options opts);
1884 
1885 bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1886 
1887 unsigned nir_deref_instr_array_stride(nir_deref_instr *instr);
1888 
1889 typedef struct {
1890    nir_instr instr;
1891 
1892    struct nir_function *callee;
1893 
1894    unsigned num_params;
1895    nir_src params[];
1896 } nir_call_instr;
1897 
1898 #include "nir_intrinsics.h"
1899 
1900 #define NIR_INTRINSIC_MAX_CONST_INDEX 8
1901 
1902 /** Represents an intrinsic
1903  *
1904  * An intrinsic is an instruction type for handling things that are
1905  * more-or-less regular operations but don't just consume and produce SSA
1906  * values like ALU operations do.  Intrinsics are not for things that have
1907  * special semantic meaning such as phi nodes and parallel copies.
1908  * Examples of intrinsics include variable load/store operations, system
1909  * value loads, and the like.  Even though texturing more-or-less falls
1910  * under this category, texturing is its own instruction type because
1911  * trying to represent texturing with intrinsics would lead to a
1912  * combinatorial explosion of intrinsic opcodes.
1913  *
1914  * By having a single instruction type for handling a lot of different
1915  * cases, optimization passes can look for intrinsics and, for the most
1916  * part, completely ignore them.  Each intrinsic type also has a few
1917  * possible flags that govern whether or not they can be reordered or
1918  * eliminated.  That way passes like dead code elimination can still work
1919  * on intrisics without understanding the meaning of each.
1920  *
1921  * Each intrinsic has some number of constant indices, some number of
1922  * variables, and some number of sources.  What these sources, variables,
1923  * and indices mean depends on the intrinsic and is documented with the
1924  * intrinsic declaration in nir_intrinsics.h.  Intrinsics and texture
1925  * instructions are the only types of instruction that can operate on
1926  * variables.
1927  */
1928 typedef struct {
1929    nir_instr instr;
1930 
1931    nir_intrinsic_op intrinsic;
1932 
1933    nir_def def;
1934 
1935    /** number of components if this is a vectorized intrinsic
1936     *
1937     * Similarly to ALU operations, some intrinsics are vectorized.
1938     * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1939     * For vectorized intrinsics, the num_components field specifies the
1940     * number of destination components and the number of source components
1941     * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1942     */
1943    uint8_t num_components;
1944 
1945    int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1946 
1947    /* a variable name associated with this instr; cannot be modified or freed */
1948    const char *name;
1949 
1950    nir_src src[];
1951 } nir_intrinsic_instr;
1952 
1953 static inline nir_variable *
nir_intrinsic_get_var(const nir_intrinsic_instr * intrin,unsigned i)1954 nir_intrinsic_get_var(const nir_intrinsic_instr *intrin, unsigned i)
1955 {
1956    return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1957 }
1958 
1959 typedef enum {
1960    /* Memory ordering. */
1961    NIR_MEMORY_ACQUIRE = 1 << 0,
1962    NIR_MEMORY_RELEASE = 1 << 1,
1963    NIR_MEMORY_ACQ_REL = NIR_MEMORY_ACQUIRE | NIR_MEMORY_RELEASE,
1964 
1965    /* Memory visibility operations. */
1966    NIR_MEMORY_MAKE_AVAILABLE = 1 << 2,
1967    NIR_MEMORY_MAKE_VISIBLE = 1 << 3,
1968 } nir_memory_semantics;
1969 
1970 /**
1971  * NIR intrinsics semantic flags
1972  *
1973  * information about what the compiler can do with the intrinsics.
1974  *
1975  * :c:member:`nir_intrinsic_info.flags`
1976  */
1977 typedef enum {
1978    /**
1979     * whether the intrinsic can be safely eliminated if none of its output
1980     * value is not being used.
1981     */
1982    NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1983 
1984    /**
1985     * Whether the intrinsic can be reordered with respect to any other
1986     * intrinsic, i.e. whether the only reordering dependencies of the
1987     * intrinsic are due to the register reads/writes.
1988     */
1989    NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1990 } nir_intrinsic_semantic_flag;
1991 
1992 /**
1993  * Maximum valid value for a nir align_mul value (in intrinsics or derefs).
1994  *
1995  * Offsets can be signed, so this is the largest power of two in int32_t.
1996  */
1997 #define NIR_ALIGN_MUL_MAX 0x40000000
1998 
1999 typedef struct nir_io_semantics {
2000    unsigned location : 7;  /* gl_vert_attrib, gl_varying_slot, or gl_frag_result */
2001    unsigned num_slots : 6; /* max 32, may be pessimistic with const indexing */
2002    unsigned dual_source_blend_index : 1;
2003    unsigned fb_fetch_output : 1;  /* for GL_KHR_blend_equation_advanced */
2004    unsigned gs_streams : 8;       /* xxyyzzww: 2-bit stream index for each component */
2005    unsigned medium_precision : 1; /* GLSL mediump qualifier */
2006    unsigned per_view : 1;
2007    unsigned high_16bits : 1; /* whether accessing low or high half of the slot */
2008    unsigned invariant : 1;   /* The variable has the invariant flag set */
2009    unsigned high_dvec2 : 1; /* whether accessing the high half of dvec3/dvec4 */
2010    /* CLIP_DISTn, LAYER, VIEWPORT, and TESS_LEVEL_* have up to 3 uses:
2011     * - an output consumed by the next stage
2012     * - a system value output affecting fixed-func hardware, e.g. the clipper
2013     * - a transform feedback output written to memory
2014     * The following fields disable the first two. Transform feedback is disabled
2015     * by transform feedback info.
2016     */
2017    unsigned no_varying : 1;       /* whether this output isn't consumed by the next stage */
2018    unsigned no_sysval_output : 1; /* whether this system value output has no
2019                                      effect due to current pipeline states */
2020    unsigned interp_explicit_strict : 1; /* preserve original vertex order */
2021    unsigned _pad : 1;
2022 } nir_io_semantics;
2023 
2024 /* Transform feedback info for 2 outputs. nir_intrinsic_store_output contains
2025  * this structure twice to support up to 4 outputs. The structure is limited
2026  * to 32 bits because it's stored in nir_intrinsic_instr::const_index[].
2027  */
2028 typedef struct nir_io_xfb {
2029    struct {
2030       /* start_component is equal to the index of out[]; add 2 for io_xfb2 */
2031       /* start_component is not relative to nir_intrinsic_component */
2032       /* get the stream index from nir_io_semantics */
2033       uint8_t num_components : 4; /* max 4; if this is 0, xfb is disabled */
2034       uint8_t buffer : 4;         /* buffer index, max 3 */
2035       uint8_t offset;             /* transform feedback buffer offset in dwords,
2036                                      max (1K - 4) bytes */
2037    } out[2];
2038 } nir_io_xfb;
2039 
2040 unsigned
2041 nir_instr_xfb_write_mask(nir_intrinsic_instr *instr);
2042 
2043 #define NIR_INTRINSIC_MAX_INPUTS 11
2044 
2045 typedef struct {
2046    const char *name;
2047 
2048    /** number of register/SSA inputs */
2049    uint8_t num_srcs;
2050 
2051    /** number of components of each input register
2052     *
2053     * If this value is 0, the number of components is given by the
2054     * num_components field of nir_intrinsic_instr.  If this value is -1, the
2055     * intrinsic consumes however many components are provided and it is not
2056     * validated at all.
2057     */
2058    int8_t src_components[NIR_INTRINSIC_MAX_INPUTS];
2059 
2060    bool has_dest;
2061 
2062    /** number of components of the output register
2063     *
2064     * If this value is 0, the number of components is given by the
2065     * num_components field of nir_intrinsic_instr.
2066     */
2067    uint8_t dest_components;
2068 
2069    /** bitfield of legal bit sizes */
2070    uint8_t dest_bit_sizes;
2071 
2072    /** source which the destination bit size must match
2073     *
2074     * Some intrinsics, such as subgroup intrinsics, are data manipulation
2075     * intrinsics and they have similar bit-size rules to ALU ops. This enables
2076     * validation to validate a bit more and enables auto-generated builder code
2077     * to properly determine destination bit sizes automatically.
2078     */
2079    int8_t bit_size_src;
2080 
2081    /** the number of constant indices used by the intrinsic */
2082    uint8_t num_indices;
2083 
2084    /** list of indices */
2085    uint8_t indices[NIR_INTRINSIC_MAX_CONST_INDEX];
2086 
2087    /** indicates the usage of intr->const_index[n] */
2088    uint8_t index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
2089 
2090    /** semantic flags for calls to this intrinsic */
2091    nir_intrinsic_semantic_flag flags;
2092 } nir_intrinsic_info;
2093 
2094 extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
2095 
2096 unsigned
2097 nir_intrinsic_src_components(const nir_intrinsic_instr *intr, unsigned srcn);
2098 
2099 unsigned
2100 nir_intrinsic_dest_components(nir_intrinsic_instr *intr);
2101 
2102 nir_alu_type
2103 nir_intrinsic_instr_src_type(const nir_intrinsic_instr *intrin, unsigned src);
2104 
2105 nir_alu_type
2106 nir_intrinsic_instr_dest_type(const nir_intrinsic_instr *intrin);
2107 
2108 /**
2109  * Helper to copy const_index[] from src to dst, without assuming they
2110  * match in order.
2111  */
2112 void nir_intrinsic_copy_const_indices(nir_intrinsic_instr *dst, nir_intrinsic_instr *src);
2113 
2114 #include "nir_intrinsics_indices.h"
2115 
2116 static inline void
nir_intrinsic_set_align(nir_intrinsic_instr * intrin,unsigned align_mul,unsigned align_offset)2117 nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
2118                         unsigned align_mul, unsigned align_offset)
2119 {
2120    assert(util_is_power_of_two_nonzero(align_mul));
2121    assert(align_offset < align_mul);
2122    nir_intrinsic_set_align_mul(intrin, align_mul);
2123    nir_intrinsic_set_align_offset(intrin, align_offset);
2124 }
2125 
2126 /** Returns a simple alignment for an align_mul/offset pair
2127  *
2128  * This helper converts from the full mul+offset alignment scheme used by
2129  * most NIR intrinsics to a simple alignment.  The returned value is the
2130  * largest power of two which divides both align_mul and align_offset.
2131  * For any offset X which satisfies the complex alignment described by
2132  * align_mul/offset, X % align == 0.
2133  */
2134 static inline uint32_t
nir_combined_align(uint32_t align_mul,uint32_t align_offset)2135 nir_combined_align(uint32_t align_mul, uint32_t align_offset)
2136 {
2137    assert(util_is_power_of_two_nonzero(align_mul));
2138    assert(align_offset < align_mul);
2139    return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
2140 }
2141 
2142 /** Returns a simple alignment for a load/store intrinsic offset
2143  *
2144  * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
2145  * and ALIGN_OFFSET parameters, this helper takes both into account and
2146  * provides a single simple alignment parameter.  The offset X is guaranteed
2147  * to satisfy X % align == 0.
2148  */
2149 static inline unsigned
nir_intrinsic_align(const nir_intrinsic_instr * intrin)2150 nir_intrinsic_align(const nir_intrinsic_instr *intrin)
2151 {
2152    return nir_combined_align(nir_intrinsic_align_mul(intrin),
2153                              nir_intrinsic_align_offset(intrin));
2154 }
2155 
2156 static inline bool
nir_intrinsic_has_align(const nir_intrinsic_instr * intrin)2157 nir_intrinsic_has_align(const nir_intrinsic_instr *intrin)
2158 {
2159    return nir_intrinsic_has_align_mul(intrin) &&
2160           nir_intrinsic_has_align_offset(intrin);
2161 }
2162 
2163 unsigned
2164 nir_image_intrinsic_coord_components(const nir_intrinsic_instr *instr);
2165 
2166 /* Converts a image_deref_* intrinsic into a image_* one */
2167 void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
2168                                  nir_def *handle, bool bindless);
2169 
2170 /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
2171 static inline bool
nir_intrinsic_can_reorder(nir_intrinsic_instr * instr)2172 nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
2173 {
2174    if (nir_intrinsic_has_access(instr) &&
2175        nir_intrinsic_access(instr) & ACCESS_VOLATILE)
2176       return false;
2177 
2178    if (instr->intrinsic == nir_intrinsic_load_deref) {
2179       nir_deref_instr *deref = nir_src_as_deref(instr->src[0]);
2180       return nir_deref_mode_is_in_set(deref, nir_var_read_only_modes) ||
2181              (nir_intrinsic_access(instr) & ACCESS_CAN_REORDER);
2182    } else if (instr->intrinsic == nir_intrinsic_load_ssbo ||
2183               instr->intrinsic == nir_intrinsic_bindless_image_load ||
2184               instr->intrinsic == nir_intrinsic_image_deref_load ||
2185               instr->intrinsic == nir_intrinsic_image_load ||
2186               instr->intrinsic == nir_intrinsic_ald_nv ||
2187               instr->intrinsic == nir_intrinsic_load_sysval_nv) {
2188       return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER;
2189    } else {
2190       const nir_intrinsic_info *info =
2191          &nir_intrinsic_infos[instr->intrinsic];
2192       return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
2193              (info->flags & NIR_INTRINSIC_CAN_REORDER);
2194    }
2195 }
2196 
2197 bool nir_intrinsic_writes_external_memory(const nir_intrinsic_instr *instr);
2198 
2199 static inline bool
nir_intrinsic_is_ray_query(nir_intrinsic_op intrinsic)2200 nir_intrinsic_is_ray_query(nir_intrinsic_op intrinsic)
2201 {
2202    switch (intrinsic) {
2203    case nir_intrinsic_rq_confirm_intersection:
2204    case nir_intrinsic_rq_generate_intersection:
2205    case nir_intrinsic_rq_initialize:
2206    case nir_intrinsic_rq_load:
2207    case nir_intrinsic_rq_proceed:
2208    case nir_intrinsic_rq_terminate:
2209       return true;
2210    default:
2211       return false;
2212    }
2213 }
2214 
2215 /** Texture instruction source type */
2216 typedef enum nir_tex_src_type {
2217    /** Texture coordinate
2218     *
2219     * Must have :c:member:`nir_tex_instr.coord_components` components.
2220     */
2221    nir_tex_src_coord,
2222 
2223    /** Projector
2224     *
2225     * The texture coordinate (except for the array component, if any) is
2226     * divided by this value before LOD computation and sampling.
2227     *
2228     * Must be a float scalar.
2229     */
2230    nir_tex_src_projector,
2231 
2232    /** Shadow comparator
2233     *
2234     * For shadow sampling, the fetched texel values are compared against the
2235     * shadow comparator using the compare op specified by the sampler object
2236     * and converted to 1.0 if the comparison succeeds and 0.0 if it fails.
2237     * Interpolation happens after this conversion so the actual result may be
2238     * anywhere in the range [0.0, 1.0].
2239     *
2240     * Only valid if :c:member:`nir_tex_instr.is_shadow` and must be a float
2241     * scalar.
2242     */
2243    nir_tex_src_comparator,
2244 
2245    /** Coordinate offset
2246     *
2247     * An integer value that is added to the texel address before sampling.
2248     * This is only allowed with operations that take an explicit LOD as it is
2249     * applied in integer texel space after LOD selection and not normalized
2250     * coordinate space.
2251     */
2252    nir_tex_src_offset,
2253 
2254    /** LOD bias
2255     *
2256     * This value is added to the computed LOD before mip-mapping.
2257     */
2258    nir_tex_src_bias,
2259 
2260    /** Explicit LOD */
2261    nir_tex_src_lod,
2262 
2263    /** Min LOD
2264     *
2265     * The computed LOD is clamped to be at least as large as min_lod before
2266     * mip-mapping.
2267     */
2268    nir_tex_src_min_lod,
2269 
2270    /** MSAA sample index */
2271    nir_tex_src_ms_index,
2272 
2273    /** Intel-specific MSAA compression data */
2274    nir_tex_src_ms_mcs_intel,
2275 
2276    /** Explicit horizontal (X-major) coordinate derivative */
2277    nir_tex_src_ddx,
2278 
2279    /** Explicit vertical (Y-major) coordinate derivative */
2280    nir_tex_src_ddy,
2281 
2282    /** Texture variable dereference */
2283    nir_tex_src_texture_deref,
2284 
2285    /** Sampler variable dereference */
2286    nir_tex_src_sampler_deref,
2287 
2288    /** Texture index offset
2289     *
2290     * This is added to :c:member:`nir_tex_instr.texture_index`.  Unless
2291     * :c:member:`nir_tex_instr.texture_non_uniform` is set, this is guaranteed
2292     * to be dynamically uniform.
2293     */
2294    nir_tex_src_texture_offset,
2295 
2296    /** Dynamically uniform sampler index offset
2297     *
2298     * This is added to :c:member:`nir_tex_instr.sampler_index`.  Unless
2299     * :c:member:`nir_tex_instr.sampler_non_uniform` is set, this is guaranteed to be
2300     * dynamically uniform.  This should not be present until GLSL ES 3.20, GLSL
2301     * 4.00, or ARB_gpu_shader5, because in ES 3.10 and GL 3.30 samplers said
2302     * "When aggregated into arrays within a shader, samplers can only be indexed
2303     * with a constant integral expression."
2304     */
2305    nir_tex_src_sampler_offset,
2306 
2307    /** Bindless texture handle
2308     *
2309     * This is, unfortunately, a bit overloaded at the moment.  There are
2310     * generally two types of bindless handles:
2311     *
2312     *  1. For GL_ARB_bindless bindless handles. These are part of the
2313     *     GL/Gallium-level API and are always a 64-bit integer.
2314     *
2315     *  2. HW-specific handles.  GL_ARB_bindless handles may be lowered to
2316     *     these.  Also, these are used by many Vulkan drivers to implement
2317     *     descriptor sets, especially for UPDATE_AFTER_BIND descriptors.
2318     *     The details of hardware handles (bit size, format, etc.) is
2319     *     HW-specific.
2320     *
2321     * Because of this overloading and the resulting ambiguity, we currently
2322     * don't validate anything for these.
2323     */
2324    nir_tex_src_texture_handle,
2325 
2326    /** Bindless sampler handle
2327     *
2328     * See nir_tex_src_texture_handle,
2329     */
2330    nir_tex_src_sampler_handle,
2331 
2332    /** Tex src intrinsic
2333     *
2334     * This is an intrinsic used before function inlining i.e. before we know
2335     * if a bindless value has been given as function param for use as a tex
2336     * src.
2337     */
2338    nir_tex_src_sampler_deref_intrinsic,
2339    nir_tex_src_texture_deref_intrinsic,
2340 
2341    /** Plane index for multi-plane YCbCr textures */
2342    nir_tex_src_plane,
2343 
2344    /**
2345     * Backend-specific vec4 tex src argument.
2346     *
2347     * Can be used to have NIR optimization (copy propagation, lower_vec_to_regs)
2348     * apply to the packing of the tex srcs.  This lowering must only happen
2349     * after nir_lower_tex().
2350     *
2351     * The nir_tex_instr_src_type() of this argument is float, so no lowering
2352     * will happen if nir_lower_int_to_float is used.
2353     */
2354    nir_tex_src_backend1,
2355 
2356    /** Second backend-specific vec4 tex src argument, see nir_tex_src_backend1. */
2357    nir_tex_src_backend2,
2358 
2359    nir_num_tex_src_types
2360 } nir_tex_src_type;
2361 
2362 /** A texture instruction source */
2363 typedef struct nir_tex_src {
2364    /** Base source */
2365    nir_src src;
2366 
2367    /** Type of this source */
2368    nir_tex_src_type src_type;
2369 } nir_tex_src;
2370 
2371 /** Texture instruction opcode */
2372 typedef enum nir_texop {
2373    /** Regular texture look-up */
2374    nir_texop_tex,
2375    /** Texture look-up with LOD bias */
2376    nir_texop_txb,
2377    /** Texture look-up with explicit LOD */
2378    nir_texop_txl,
2379    /** Texture look-up with partial derivatives */
2380    nir_texop_txd,
2381    /** Texel fetch with explicit LOD */
2382    nir_texop_txf,
2383    /** Multisample texture fetch */
2384    nir_texop_txf_ms,
2385    /** Multisample texture fetch from framebuffer */
2386    nir_texop_txf_ms_fb,
2387    /** Multisample compression value fetch */
2388    nir_texop_txf_ms_mcs_intel,
2389    /** Texture size */
2390    nir_texop_txs,
2391    /** Texture lod query */
2392    nir_texop_lod,
2393    /** Texture gather */
2394    nir_texop_tg4,
2395    /** Texture levels query */
2396    nir_texop_query_levels,
2397    /** Texture samples query */
2398    nir_texop_texture_samples,
2399    /** Query whether all samples are definitely identical. */
2400    nir_texop_samples_identical,
2401    /** Regular texture look-up, eligible for pre-dispatch */
2402    nir_texop_tex_prefetch,
2403    /** Multisample fragment color texture fetch */
2404    nir_texop_fragment_fetch_amd,
2405    /** Multisample fragment mask texture fetch */
2406    nir_texop_fragment_mask_fetch_amd,
2407    /** Returns a buffer or image descriptor. */
2408    nir_texop_descriptor_amd,
2409    /** Returns a sampler descriptor. */
2410    nir_texop_sampler_descriptor_amd,
2411    /** Returns the sampler's LOD bias */
2412    nir_texop_lod_bias_agx,
2413    /** Returns a bool indicating that the sampler uses a custom border colour */
2414    nir_texop_has_custom_border_color_agx,
2415    /** Returns the sampler's custom border colour (if has_custom_border_agx) */
2416    nir_texop_custom_border_color_agx,
2417    /** Maps to TXQ.DIMENSION */
2418    nir_texop_hdr_dim_nv,
2419    /** Maps to TXQ.TEXTURE_TYPE */
2420    nir_texop_tex_type_nv,
2421 } nir_texop;
2422 
2423 /** Represents a texture instruction */
2424 typedef struct nir_tex_instr {
2425    /** Base instruction */
2426    nir_instr instr;
2427 
2428    /** Dimensionality of the texture operation
2429     *
2430     * This will typically match the dimensionality of the texture deref type
2431     * if a nir_tex_src_texture_deref is present.  However, it may not if
2432     * texture lowering has occurred.
2433     */
2434    enum glsl_sampler_dim sampler_dim;
2435 
2436    /** ALU type of the destination
2437     *
2438     * This is the canonical sampled type for this texture operation and may
2439     * not exactly match the sampled type of the deref type when a
2440     * nir_tex_src_texture_deref is present.  For OpenCL, the sampled type of
2441     * the texture deref will be GLSL_TYPE_VOID and this is allowed to be
2442     * anything.  With SPIR-V, the signedness of integer types is allowed to
2443     * differ.  For all APIs, the bit size may differ if the driver has done
2444     * any sort of mediump or similar lowering since texture types always have
2445     * 32-bit sampled types.
2446     */
2447    nir_alu_type dest_type;
2448 
2449    /** Texture opcode */
2450    nir_texop op;
2451 
2452    /** Destination */
2453    nir_def def;
2454 
2455    /** Array of sources
2456     *
2457     * This array has :c:member:`nir_tex_instr.num_srcs` elements
2458     */
2459    nir_tex_src *src;
2460 
2461    /** Number of sources */
2462    unsigned num_srcs;
2463 
2464    /** Number of components in the coordinate, if any */
2465    unsigned coord_components;
2466 
2467    /** True if the texture instruction acts on an array texture */
2468    bool is_array;
2469 
2470    /** True if the texture instruction performs a shadow comparison
2471     *
2472     * If this is true, the texture instruction must have a
2473     * nir_tex_src_comparator.
2474     */
2475    bool is_shadow;
2476 
2477    /**
2478     * If is_shadow is true, whether this is the old-style shadow that outputs
2479     * 4 components or the new-style shadow that outputs 1 component.
2480     */
2481    bool is_new_style_shadow;
2482 
2483    /**
2484     * True if this texture instruction should return a sparse residency code.
2485     * The code is in the last component of the result.
2486     */
2487    bool is_sparse;
2488 
2489    /** nir_texop_tg4 component selector
2490     *
2491     * This determines which RGBA component is gathered.
2492     */
2493    unsigned component : 2;
2494 
2495    /** Validation needs to know this for gradient component count */
2496    unsigned array_is_lowered_cube : 1;
2497 
2498    /** True if this tg4 instruction has an implicit LOD or LOD bias, instead of using level 0 */
2499    unsigned is_gather_implicit_lod : 1;
2500 
2501    /** Gather offsets */
2502    int8_t tg4_offsets[4][2];
2503 
2504    /** True if the texture index or handle is not dynamically uniform */
2505    bool texture_non_uniform;
2506 
2507    /** True if the sampler index or handle is not dynamically uniform.
2508     *
2509     * This may be set when VK_EXT_descriptor_indexing is supported and the
2510     * appropriate capability is enabled.
2511     *
2512     * This should always be false in GLSL (GLSL ES 3.20 says "When aggregated
2513     * into arrays within a shader, opaque types can only be indexed with a
2514     * dynamically uniform integral expression", and GLSL 4.60 says "When
2515     * aggregated into arrays within a shader, [texture, sampler, and
2516     * samplerShadow] types can only be indexed with a dynamically uniform
2517     * expression, or texture lookup will result in undefined values.").
2518     */
2519    bool sampler_non_uniform;
2520 
2521    /** The texture index
2522     *
2523     * If this texture instruction has a nir_tex_src_texture_offset source,
2524     * then the texture index is given by texture_index + texture_offset.
2525     */
2526    unsigned texture_index;
2527 
2528    /** The sampler index
2529     *
2530     * The following operations do not require a sampler and, as such, this
2531     * field should be ignored:
2532     *
2533     *    - nir_texop_txf
2534     *    - nir_texop_txf_ms
2535     *    - nir_texop_txs
2536     *    - nir_texop_query_levels
2537     *    - nir_texop_texture_samples
2538     *    - nir_texop_samples_identical
2539     *
2540     * If this texture instruction has a nir_tex_src_sampler_offset source,
2541     * then the sampler index is given by sampler_index + sampler_offset.
2542     */
2543    unsigned sampler_index;
2544 
2545    /* Back-end specific flags, intended to be used in combination with
2546     * nir_tex_src_backend1/2 to provide additional hw-specific information
2547     * to the back-end compiler.
2548     */
2549    uint32_t backend_flags;
2550 } nir_tex_instr;
2551 
2552 /**
2553  * Returns true if the texture operation requires a sampler as a general rule
2554  *
2555  * Note that the specific hw/driver backend could require to a sampler
2556  * object/configuration packet in any case, for some other reason.
2557  *
2558  * See also :c:member:`nir_tex_instr.sampler_index`.
2559  */
2560 bool nir_tex_instr_need_sampler(const nir_tex_instr *instr);
2561 
2562 /** Returns the number of components returned by this nir_tex_instr
2563  *
2564  * Useful for code building texture instructions when you don't want to think
2565  * about how many components a particular texture op returns.  This does not
2566  * include the sparse residency code.
2567  */
2568 unsigned
2569 nir_tex_instr_result_size(const nir_tex_instr *instr);
2570 
2571 /**
2572  * Returns the destination size of this nir_tex_instr including the sparse
2573  * residency code, if any.
2574  */
2575 static inline unsigned
nir_tex_instr_dest_size(const nir_tex_instr * instr)2576 nir_tex_instr_dest_size(const nir_tex_instr *instr)
2577 {
2578    /* One more component is needed for the residency code. */
2579    return nir_tex_instr_result_size(instr) + instr->is_sparse;
2580 }
2581 
2582 /**
2583  * Returns true if this texture operation queries something about the texture
2584  * rather than actually sampling it.
2585  */
2586 bool
2587 nir_tex_instr_is_query(const nir_tex_instr *instr);
2588 
2589 /** Returns true if this texture instruction does implicit derivatives
2590  *
2591  * This is important as there are extra control-flow rules around derivatives
2592  * and texture instructions which perform them implicitly.
2593  */
2594 bool
2595 nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr);
2596 
2597 /** Returns the ALU type of the given texture instruction source */
2598 nir_alu_type
2599 nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src);
2600 
2601 /**
2602  * Returns the number of components required by the given texture instruction
2603  * source
2604  */
2605 unsigned
2606 nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src);
2607 
2608 /**
2609  * Returns the index of the texture instruction source with the given
2610  * nir_tex_src_type or -1 if no such source exists.
2611  */
2612 static inline int
nir_tex_instr_src_index(const nir_tex_instr * instr,nir_tex_src_type type)2613 nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
2614 {
2615    for (unsigned i = 0; i < instr->num_srcs; i++)
2616       if (instr->src[i].src_type == type)
2617          return (int)i;
2618 
2619    return -1;
2620 }
2621 
2622 /** Adds a source to a texture instruction */
2623 void nir_tex_instr_add_src(nir_tex_instr *tex,
2624                            nir_tex_src_type src_type,
2625                            nir_def *src);
2626 
2627 /** Removes a source from a texture instruction */
2628 void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
2629 
2630 bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
2631 
2632 typedef struct {
2633    nir_instr instr;
2634 
2635    nir_def def;
2636 
2637    nir_const_value value[];
2638 } nir_load_const_instr;
2639 
2640 typedef enum {
2641    /** Return from a function
2642     *
2643     * This instruction is a classic function return.  It jumps to
2644     * nir_function_impl::end_block.  No return value is provided in this
2645     * instruction.  Instead, the function is expected to write any return
2646     * data to a deref passed in from the caller.
2647     */
2648    nir_jump_return,
2649 
2650    /** Immediately exit the current shader
2651     *
2652     * This instruction is roughly the equivalent of C's "exit()" in that it
2653     * immediately terminates the current shader invocation.  From a CFG
2654     * perspective, it looks like a jump to nir_function_impl::end_block but
2655     * it actually jumps to the end block of the shader entrypoint.  A halt
2656     * instruction in the shader entrypoint itself is semantically identical
2657     * to a return.
2658     *
2659     * For shaders with built-in I/O, any outputs written prior to a halt
2660     * instruction remain written and any outputs not written prior to the
2661     * halt have undefined values.  It does NOT cause an implicit discard of
2662     * written results.  If one wants discard results in a fragment shader,
2663     * for instance, a discard or demote intrinsic is required.
2664     */
2665    nir_jump_halt,
2666 
2667    /** Break out of the inner-most loop
2668     *
2669     * This has the same semantics as C's "break" statement.
2670     */
2671    nir_jump_break,
2672 
2673    /** Jump back to the top of the inner-most loop
2674     *
2675     * This has the same semantics as C's "continue" statement assuming that a
2676     * NIR loop is implemented as "while (1) { body }".
2677     */
2678    nir_jump_continue,
2679 
2680    /** Jumps for unstructured CFG.
2681     *
2682     * As within an unstructured CFG we can't rely on block ordering we need to
2683     * place explicit jumps at the end of every block.
2684     */
2685    nir_jump_goto,
2686    nir_jump_goto_if,
2687 } nir_jump_type;
2688 
2689 typedef struct {
2690    nir_instr instr;
2691    nir_jump_type type;
2692    nir_src condition;
2693    struct nir_block *target;
2694    struct nir_block *else_target;
2695 } nir_jump_instr;
2696 
2697 /* creates a new SSA variable in an undefined state */
2698 
2699 typedef struct {
2700    nir_instr instr;
2701    nir_def def;
2702 } nir_undef_instr;
2703 
2704 typedef struct {
2705    struct exec_node node;
2706 
2707    /* The predecessor block corresponding to this source */
2708    struct nir_block *pred;
2709 
2710    nir_src src;
2711 } nir_phi_src;
2712 
2713 #define nir_foreach_phi_src(phi_src, phi) \
2714    foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
2715 #define nir_foreach_phi_src_safe(phi_src, phi) \
2716    foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
2717 
2718 typedef struct {
2719    nir_instr instr;
2720 
2721    /** list of nir_phi_src */
2722    struct exec_list srcs;
2723 
2724    nir_def def;
2725 } nir_phi_instr;
2726 
2727 static inline nir_phi_src *
nir_phi_get_src_from_block(nir_phi_instr * phi,struct nir_block * block)2728 nir_phi_get_src_from_block(nir_phi_instr *phi, struct nir_block *block)
2729 {
2730    nir_foreach_phi_src(src, phi) {
2731       if (src->pred == block)
2732          return src;
2733    }
2734 
2735    assert(!"Block is not a predecessor of phi.");
2736    return NULL;
2737 }
2738 
2739 typedef struct {
2740    struct exec_node node;
2741    bool src_is_reg;
2742    bool dest_is_reg;
2743    nir_src src;
2744    union {
2745       nir_def def;
2746       nir_src reg;
2747    } dest;
2748 } nir_parallel_copy_entry;
2749 
2750 #define nir_foreach_parallel_copy_entry(entry, pcopy) \
2751    foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
2752 
2753 typedef struct {
2754    nir_instr instr;
2755 
2756    /* A list of nir_parallel_copy_entrys.  The sources of all of the
2757     * entries are copied to the corresponding destinations "in parallel".
2758     * In other words, if we have two entries: a -> b and b -> a, the values
2759     * get swapped.
2760     */
2761    struct exec_list entries;
2762 } nir_parallel_copy_instr;
2763 
2764 typedef enum nir_debug_info_type {
2765    nir_debug_info_src_loc,
2766    nir_debug_info_string,
2767 } nir_debug_info_type;
2768 
2769 typedef enum nir_debug_info_source {
2770    nir_debug_info_spirv,
2771    nir_debug_info_nir,
2772 } nir_debug_info_source;
2773 
2774 typedef struct nir_debug_info_instr {
2775    nir_instr instr;
2776 
2777    nir_debug_info_type type;
2778 
2779    union {
2780       struct {
2781          nir_src filename;
2782          /* 0 if only the spirv_offset is available. */
2783          uint32_t line;
2784          uint32_t column;
2785 
2786          uint32_t spirv_offset;
2787 
2788          nir_debug_info_source source;
2789       } src_loc;
2790 
2791       uint16_t string_length;
2792    };
2793 
2794    nir_def def;
2795 
2796    char string[];
2797 } nir_debug_info_instr;
2798 
2799 NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
2800                 type, nir_instr_type_alu)
2801 NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
2802                 type, nir_instr_type_deref)
2803 NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
2804                 type, nir_instr_type_call)
2805 NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
2806                 type, nir_instr_type_jump)
2807 NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
2808                 type, nir_instr_type_tex)
2809 NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
2810                 type, nir_instr_type_intrinsic)
2811 NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
2812                 type, nir_instr_type_load_const)
2813 NIR_DEFINE_CAST(nir_instr_as_undef, nir_instr, nir_undef_instr, instr,
2814                 type, nir_instr_type_undef)
2815 NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
2816                 type, nir_instr_type_phi)
2817 NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
2818                 nir_parallel_copy_instr, instr,
2819                 type, nir_instr_type_parallel_copy)
2820 NIR_DEFINE_CAST(nir_instr_as_debug_info, nir_instr,
2821                 nir_debug_info_instr, instr,
2822                 type, nir_instr_type_debug_info)
2823 
2824 #define NIR_DEFINE_SRC_AS_CONST(type, suffix)                 \
2825    static inline type                                         \
2826       nir_src_comp_as_##suffix(nir_src src, unsigned comp)    \
2827    {                                                          \
2828       assert(nir_src_is_const(src));                          \
2829       nir_load_const_instr *load =                            \
2830          nir_instr_as_load_const(src.ssa->parent_instr);      \
2831       assert(comp < load->def.num_components);                \
2832       return nir_const_value_as_##suffix(load->value[comp],   \
2833                                          load->def.bit_size); \
2834    }                                                          \
2835                                                               \
2836    static inline type                                         \
2837       nir_src_as_##suffix(nir_src src)                        \
2838    {                                                          \
2839       assert(nir_src_num_components(src) == 1);               \
2840       return nir_src_comp_as_##suffix(src, 0);                \
2841    }
2842 
2843 NIR_DEFINE_SRC_AS_CONST(int64_t, int)
2844 NIR_DEFINE_SRC_AS_CONST(uint64_t, uint)
2845 NIR_DEFINE_SRC_AS_CONST(bool, bool)
2846 NIR_DEFINE_SRC_AS_CONST(double, float)
2847 
2848 #undef NIR_DEFINE_SRC_AS_CONST
2849 
2850 typedef struct {
2851    nir_def *def;
2852    unsigned comp;
2853 } nir_scalar;
2854 
2855 static inline bool
nir_scalar_is_const(nir_scalar s)2856 nir_scalar_is_const(nir_scalar s)
2857 {
2858    return s.def->parent_instr->type == nir_instr_type_load_const;
2859 }
2860 
2861 static inline bool
nir_scalar_is_undef(nir_scalar s)2862 nir_scalar_is_undef(nir_scalar s)
2863 {
2864    return s.def->parent_instr->type == nir_instr_type_undef;
2865 }
2866 
2867 static inline nir_const_value
nir_scalar_as_const_value(nir_scalar s)2868 nir_scalar_as_const_value(nir_scalar s)
2869 {
2870    assert(s.comp < s.def->num_components);
2871    nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr);
2872    return load->value[s.comp];
2873 }
2874 
2875 #define NIR_DEFINE_SCALAR_AS_CONST(type, suffix)         \
2876    static inline type                                    \
2877       nir_scalar_as_##suffix(nir_scalar s)               \
2878    {                                                     \
2879       return nir_const_value_as_##suffix(                \
2880          nir_scalar_as_const_value(s), s.def->bit_size); \
2881    }
2882 
NIR_DEFINE_SCALAR_AS_CONST(int64_t,int)2883 NIR_DEFINE_SCALAR_AS_CONST(int64_t, int)
2884 NIR_DEFINE_SCALAR_AS_CONST(uint64_t, uint)
2885 NIR_DEFINE_SCALAR_AS_CONST(bool, bool)
2886 NIR_DEFINE_SCALAR_AS_CONST(double, float)
2887 
2888 #undef NIR_DEFINE_SCALAR_AS_CONST
2889 
2890 static inline bool
2891 nir_scalar_is_alu(nir_scalar s)
2892 {
2893    return s.def->parent_instr->type == nir_instr_type_alu;
2894 }
2895 
2896 static inline nir_op
nir_scalar_alu_op(nir_scalar s)2897 nir_scalar_alu_op(nir_scalar s)
2898 {
2899    return nir_instr_as_alu(s.def->parent_instr)->op;
2900 }
2901 
2902 static inline bool
nir_scalar_is_intrinsic(nir_scalar s)2903 nir_scalar_is_intrinsic(nir_scalar s)
2904 {
2905    return s.def->parent_instr->type == nir_instr_type_intrinsic;
2906 }
2907 
2908 static inline nir_intrinsic_op
nir_scalar_intrinsic_op(nir_scalar s)2909 nir_scalar_intrinsic_op(nir_scalar s)
2910 {
2911    return nir_instr_as_intrinsic(s.def->parent_instr)->intrinsic;
2912 }
2913 
2914 static inline nir_scalar
nir_scalar_chase_alu_src(nir_scalar s,unsigned alu_src_idx)2915 nir_scalar_chase_alu_src(nir_scalar s, unsigned alu_src_idx)
2916 {
2917    nir_scalar out = { NULL, 0 };
2918 
2919    nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
2920    assert(alu_src_idx < nir_op_infos[alu->op].num_inputs);
2921 
2922    /* Our component must be written */
2923    assert(s.comp < s.def->num_components);
2924 
2925    out.def = alu->src[alu_src_idx].src.ssa;
2926 
2927    if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) {
2928       /* The ALU src is unsized so the source component follows the
2929        * destination component.
2930        */
2931       out.comp = alu->src[alu_src_idx].swizzle[s.comp];
2932    } else {
2933       /* This is a sized source so all source components work together to
2934        * produce all the destination components.  Since we need to return a
2935        * scalar, this only works if the source is a scalar.
2936        */
2937       assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1);
2938       out.comp = alu->src[alu_src_idx].swizzle[0];
2939    }
2940    assert(out.comp < out.def->num_components);
2941 
2942    return out;
2943 }
2944 
2945 nir_scalar nir_scalar_chase_movs(nir_scalar s);
2946 
2947 static inline nir_scalar
nir_get_scalar(nir_def * def,unsigned channel)2948 nir_get_scalar(nir_def *def, unsigned channel)
2949 {
2950    nir_scalar s = { def, channel };
2951    return s;
2952 }
2953 
2954 /** Returns a nir_scalar where we've followed the bit-exact mov/vec use chain to the original definition */
2955 static inline nir_scalar
nir_scalar_resolved(nir_def * def,unsigned channel)2956 nir_scalar_resolved(nir_def *def, unsigned channel)
2957 {
2958    return nir_scalar_chase_movs(nir_get_scalar(def, channel));
2959 }
2960 
2961 static inline bool
nir_scalar_equal(nir_scalar s1,nir_scalar s2)2962 nir_scalar_equal(nir_scalar s1, nir_scalar s2)
2963 {
2964    return s1.def == s2.def && s1.comp == s2.comp;
2965 }
2966 
2967 static inline uint64_t
nir_alu_src_as_uint(nir_alu_src src)2968 nir_alu_src_as_uint(nir_alu_src src)
2969 {
2970    nir_scalar scalar = nir_get_scalar(src.src.ssa, src.swizzle[0]);
2971    return nir_scalar_as_uint(scalar);
2972 }
2973 
2974 typedef struct {
2975    bool success;
2976 
2977    nir_variable *var;
2978    unsigned desc_set;
2979    unsigned binding;
2980    unsigned num_indices;
2981    nir_src indices[4];
2982    bool read_first_invocation;
2983 } nir_binding;
2984 
2985 nir_binding nir_chase_binding(nir_src rsrc);
2986 nir_variable *nir_get_binding_variable(struct nir_shader *shader, nir_binding binding);
2987 
2988 /*
2989  * Control flow
2990  *
2991  * Control flow consists of a tree of control flow nodes, which include
2992  * if-statements and loops. The leaves of the tree are basic blocks, lists of
2993  * instructions that always run start-to-finish. Each basic block also keeps
2994  * track of its successors (blocks which may run immediately after the current
2995  * block) and predecessors (blocks which could have run immediately before the
2996  * current block). Each function also has a start block and an end block which
2997  * all return statements point to (which is always empty). Together, all the
2998  * blocks with their predecessors and successors make up the control flow
2999  * graph (CFG) of the function. There are helpers that modify the tree of
3000  * control flow nodes while modifying the CFG appropriately; these should be
3001  * used instead of modifying the tree directly.
3002  */
3003 
3004 typedef enum {
3005    nir_cf_node_block,
3006    nir_cf_node_if,
3007    nir_cf_node_loop,
3008    nir_cf_node_function
3009 } nir_cf_node_type;
3010 
3011 typedef struct nir_cf_node {
3012    struct exec_node node;
3013    nir_cf_node_type type;
3014    struct nir_cf_node *parent;
3015 } nir_cf_node;
3016 
3017 typedef struct nir_block {
3018    nir_cf_node cf_node;
3019 
3020    /** list of nir_instr */
3021    struct exec_list instr_list;
3022 
3023    /** generic block index; generated by nir_index_blocks */
3024    unsigned index;
3025 
3026    /* This indicates whether the block or any parent block is executed
3027     * conditionally and whether the condition uses a divergent value.
3028     */
3029    bool divergent;
3030 
3031    /*
3032     * Each block can only have up to 2 successors, so we put them in a simple
3033     * array - no need for anything more complicated.
3034     */
3035    struct nir_block *successors[2];
3036 
3037    /* Set of nir_block predecessors in the CFG */
3038    struct set *predecessors;
3039 
3040    /*
3041     * this node's immediate dominator in the dominance tree - set to NULL for
3042     * the start block and any unreachable blocks.
3043     */
3044    struct nir_block *imm_dom;
3045 
3046    /* This node's children in the dominance tree */
3047    unsigned num_dom_children;
3048    struct nir_block **dom_children;
3049 
3050    /* Set of nir_blocks on the dominance frontier of this block */
3051    struct set *dom_frontier;
3052 
3053    /*
3054     * These two indices have the property that dom_{pre,post}_index for each
3055     * child of this block in the dominance tree will always be between
3056     * dom_pre_index and dom_post_index for this block, which makes testing if
3057     * a given block is dominated by another block an O(1) operation.
3058     */
3059    uint32_t dom_pre_index, dom_post_index;
3060 
3061    /**
3062     * Value just before the first nir_instr->index in the block, but after
3063     * end_ip that of any predecessor block.
3064     */
3065    uint32_t start_ip;
3066    /**
3067     * Value just after the last nir_instr->index in the block, but before the
3068     * start_ip of any successor block.
3069     */
3070    uint32_t end_ip;
3071 
3072    /* SSA def live in and out for this block; used for liveness analysis.
3073     * Indexed by ssa_def->index
3074     */
3075    BITSET_WORD *live_in;
3076    BITSET_WORD *live_out;
3077 } nir_block;
3078 
3079 static inline bool
nir_block_is_reachable(nir_block * b)3080 nir_block_is_reachable(nir_block *b)
3081 {
3082    /* See also nir_block_dominates */
3083    return b->dom_post_index != 0;
3084 }
3085 
3086 static inline nir_instr *
nir_block_first_instr(nir_block * block)3087 nir_block_first_instr(nir_block *block)
3088 {
3089    struct exec_node *head = exec_list_get_head(&block->instr_list);
3090    return exec_node_data(nir_instr, head, node);
3091 }
3092 
3093 static inline nir_instr *
nir_block_last_instr(nir_block * block)3094 nir_block_last_instr(nir_block *block)
3095 {
3096    struct exec_node *tail = exec_list_get_tail(&block->instr_list);
3097    return exec_node_data(nir_instr, tail, node);
3098 }
3099 
3100 static inline bool
nir_block_ends_in_jump(nir_block * block)3101 nir_block_ends_in_jump(nir_block *block)
3102 {
3103    return !exec_list_is_empty(&block->instr_list) &&
3104           nir_block_last_instr(block)->type == nir_instr_type_jump;
3105 }
3106 
3107 static inline bool
nir_block_ends_in_return_or_halt(nir_block * block)3108 nir_block_ends_in_return_or_halt(nir_block *block)
3109 {
3110    if (exec_list_is_empty(&block->instr_list))
3111       return false;
3112 
3113    nir_instr *instr = nir_block_last_instr(block);
3114    if (instr->type != nir_instr_type_jump)
3115       return false;
3116 
3117    nir_jump_instr *jump_instr = nir_instr_as_jump(instr);
3118    return jump_instr->type == nir_jump_return ||
3119           jump_instr->type == nir_jump_halt;
3120 }
3121 
3122 static inline bool
nir_block_ends_in_break(nir_block * block)3123 nir_block_ends_in_break(nir_block *block)
3124 {
3125    if (exec_list_is_empty(&block->instr_list))
3126       return false;
3127 
3128    nir_instr *instr = nir_block_last_instr(block);
3129    return instr->type == nir_instr_type_jump &&
3130           nir_instr_as_jump(instr)->type == nir_jump_break;
3131 }
3132 
3133 bool nir_block_contains_work(nir_block *block);
3134 
3135 #define nir_foreach_instr(instr, block) \
3136    foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
3137 #define nir_foreach_instr_reverse(instr, block) \
3138    foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
3139 #define nir_foreach_instr_safe(instr, block) \
3140    foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
3141 #define nir_foreach_instr_reverse_safe(instr, block) \
3142    foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
3143 
3144 /* Phis come first in the block */
3145 static inline nir_phi_instr *
nir_first_phi_in_block(nir_block * block)3146 nir_first_phi_in_block(nir_block *block)
3147 {
3148    nir_foreach_instr(instr, block) {
3149       if (instr->type == nir_instr_type_phi)
3150          return nir_instr_as_phi(instr);
3151       else
3152          return NULL;
3153    }
3154 
3155    return NULL;
3156 }
3157 
3158 static inline nir_phi_instr *
nir_next_phi(nir_phi_instr * phi)3159 nir_next_phi(nir_phi_instr *phi)
3160 {
3161    nir_instr *next = nir_instr_next(&phi->instr);
3162 
3163    if (next && next->type == nir_instr_type_phi)
3164       return nir_instr_as_phi(next);
3165    else
3166       return NULL;
3167 }
3168 
3169 #define nir_foreach_phi(instr, block)                                        \
3170    for (nir_phi_instr *instr = nir_first_phi_in_block(block); instr != NULL; \
3171         instr = nir_next_phi(instr))
3172 
3173 #define nir_foreach_phi_safe(instr, block)                          \
3174    for (nir_phi_instr *instr = nir_first_phi_in_block(block),       \
3175                       *__next = instr ? nir_next_phi(instr) : NULL; \
3176         instr != NULL;                                              \
3177         instr = __next, __next = instr ? nir_next_phi(instr) : NULL)
3178 
3179 static inline nir_phi_instr *
nir_block_last_phi_instr(nir_block * block)3180 nir_block_last_phi_instr(nir_block *block)
3181 {
3182    nir_phi_instr *last_phi = NULL;
3183    nir_foreach_phi(instr, block)
3184       last_phi = instr;
3185 
3186    return last_phi;
3187 }
3188 
3189 typedef enum {
3190    nir_selection_control_none = 0x0,
3191 
3192    /**
3193     * Defined by SPIR-V spec 3.22 "Selection Control".
3194     * The application prefers to remove control flow.
3195     */
3196    nir_selection_control_flatten = 0x1,
3197 
3198    /**
3199     * Defined by SPIR-V spec 3.22 "Selection Control".
3200     * The application prefers to keep control flow.
3201     */
3202    nir_selection_control_dont_flatten = 0x2,
3203 
3204    /**
3205     * May be applied by the compiler stack when it knows
3206     * that a branch is divergent, and:
3207     * - either both the if and else are always taken
3208     * - the if or else is empty and the other is always taken
3209     */
3210    nir_selection_control_divergent_always_taken = 0x3,
3211 } nir_selection_control;
3212 
3213 typedef struct nir_if {
3214    nir_cf_node cf_node;
3215    nir_src condition;
3216    nir_selection_control control;
3217 
3218    /** list of nir_cf_node */
3219    struct exec_list then_list;
3220 
3221    /** list of nir_cf_node */
3222    struct exec_list else_list;
3223 } nir_if;
3224 
3225 typedef struct {
3226    nir_if *nif;
3227 
3228    /** Condition instruction that contains the induction variable */
3229    nir_instr *conditional_instr;
3230 
3231    /** Block within ::nif that has the break instruction. */
3232    nir_block *break_block;
3233 
3234    /** Last block for the then- or else-path that does not contain the break. */
3235    nir_block *continue_from_block;
3236 
3237    /** True when ::break_block is in the else-path of ::nif. */
3238    bool continue_from_then;
3239    bool induction_rhs;
3240 
3241    /* This is true if the terminators exact trip count is unknown. For
3242     * example:
3243     *
3244     *    for (int i = 0; i < imin(x, 4); i++)
3245     *       ...
3246     *
3247     * Here loop analysis would have set a max_trip_count of 4 however we dont
3248     * know for sure that this is the exact trip count.
3249     */
3250    bool exact_trip_count_unknown;
3251 
3252    struct list_head loop_terminator_link;
3253 } nir_loop_terminator;
3254 
3255 typedef struct {
3256    /* Induction variable. */
3257    nir_def *def;
3258 
3259    /* Init statement with only uniform. */
3260    nir_src *init_src;
3261 
3262    /* Update statement with only uniform. */
3263    nir_alu_src *update_src;
3264 } nir_loop_induction_variable;
3265 
3266 typedef struct {
3267    /* Estimated cost (in number of instructions) of the loop */
3268    unsigned instr_cost;
3269 
3270    /* Contains fp64 ops that will be lowered */
3271    bool has_soft_fp64;
3272 
3273    /* Guessed trip count based on array indexing */
3274    unsigned guessed_trip_count;
3275 
3276    /* Maximum number of times the loop is run (if known) */
3277    unsigned max_trip_count;
3278 
3279    /* Do we know the exact number of times the loop will be run */
3280    bool exact_trip_count_known;
3281 
3282    /* Unroll the loop regardless of its size */
3283    bool force_unroll;
3284 
3285    /* Does the loop contain complex loop terminators, continues or other
3286     * complex behaviours? If this is true we can't rely on
3287     * loop_terminator_list to be complete or accurate.
3288     */
3289    bool complex_loop;
3290 
3291    nir_loop_terminator *limiting_terminator;
3292 
3293    /* A list of loop_terminators terminating this loop. */
3294    struct list_head loop_terminator_list;
3295 
3296    /* array of induction variables for this loop */
3297    nir_loop_induction_variable *induction_vars;
3298    unsigned num_induction_vars;
3299 } nir_loop_info;
3300 
3301 typedef enum {
3302    nir_loop_control_none = 0x0,
3303    nir_loop_control_unroll = 0x1,
3304    nir_loop_control_dont_unroll = 0x2,
3305 } nir_loop_control;
3306 
3307 typedef struct {
3308    nir_cf_node cf_node;
3309 
3310    /** list of nir_cf_node */
3311    struct exec_list body;
3312 
3313    /** (optional) list of nir_cf_node */
3314    struct exec_list continue_list;
3315 
3316    nir_loop_info *info;
3317    nir_loop_control control;
3318    bool partially_unrolled;
3319    bool divergent;
3320 } nir_loop;
3321 
3322 /**
3323  * Various bits of metadata that can may be created or required by
3324  * optimization and analysis passes
3325  */
3326 typedef enum {
3327    nir_metadata_none = 0x0,
3328 
3329    /** Indicates that nir_block::index values are valid.
3330     *
3331     * The start block has index 0 and they increase through a natural walk of
3332     * the CFG.  nir_function_impl::num_blocks is the number of blocks and
3333     * every block index is in the range [0, nir_function_impl::num_blocks].
3334     *
3335     * A pass can preserve this metadata type if it doesn't touch the CFG.
3336     */
3337    nir_metadata_block_index = 0x1,
3338 
3339    /** Indicates that block dominance information is valid
3340     *
3341     * This includes:
3342     *
3343     *   - nir_block::num_dom_children
3344     *   - nir_block::dom_children
3345     *   - nir_block::dom_frontier
3346     *   - nir_block::dom_pre_index
3347     *   - nir_block::dom_post_index
3348     *
3349     * A pass can preserve this metadata type if it doesn't touch the CFG.
3350     */
3351    nir_metadata_dominance = 0x2,
3352 
3353    /** Indicates that SSA def data-flow liveness information is valid
3354     *
3355     * This includes:
3356     *
3357     *   - nir_block::live_in
3358     *   - nir_block::live_out
3359     *
3360     * A pass can preserve this metadata type if it never adds or removes any
3361     * SSA defs or uses of SSA defs (most passes shouldn't preserve this
3362     * metadata type).
3363     */
3364    nir_metadata_live_defs = 0x4,
3365 
3366    /** A dummy metadata value to track when a pass forgot to call
3367     * nir_metadata_preserve.
3368     *
3369     * A pass should always clear this value even if it doesn't make any
3370     * progress to indicate that it thought about preserving metadata.
3371     */
3372    nir_metadata_not_properly_reset = 0x8,
3373 
3374    /** Indicates that loop analysis information is valid.
3375     *
3376     * This includes everything pointed to by nir_loop::info.
3377     *
3378     * A pass can preserve this metadata type if it is guaranteed to not affect
3379     * any loop metadata.  However, since loop metadata includes things like
3380     * loop counts which depend on arithmetic in the loop, this is very hard to
3381     * determine.  Most passes shouldn't preserve this metadata type.
3382     */
3383    nir_metadata_loop_analysis = 0x10,
3384 
3385    /** Indicates that nir_instr::index values are valid.
3386     *
3387     * The start instruction has index 0 and they increase through a natural
3388     * walk of instructions in blocks in the CFG.  The indices my have holes
3389     * after passes such as DCE.
3390     *
3391     * A pass can preserve this metadata type if it never adds or moves any
3392     * instructions (most passes shouldn't preserve this metadata type), but
3393     * can preserve it if it only removes instructions.
3394     */
3395    nir_metadata_instr_index = 0x20,
3396 
3397    /** All control flow metadata
3398     *
3399     * This includes all metadata preserved by a pass that preserves control flow
3400     * but modifies instructions. For example, a pass using
3401     * nir_shader_instructions_pass will typically preserve this if it does not
3402     * insert control flow.
3403     *
3404     * This is the most common metadata set to preserve, so it has its own alias.
3405     */
3406    nir_metadata_control_flow = nir_metadata_block_index |
3407                                nir_metadata_dominance,
3408 
3409    /** All metadata
3410     *
3411     * This includes all nir_metadata flags except not_properly_reset.  Passes
3412     * which do not change the shader in any way should call
3413     *
3414     *    nir_metadata_preserve(impl, nir_metadata_all);
3415     */
3416    nir_metadata_all = ~nir_metadata_not_properly_reset,
3417 } nir_metadata;
3418 MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(nir_metadata)
3419 
3420 typedef struct {
3421    nir_cf_node cf_node;
3422 
3423    /** pointer to the function of which this is an implementation */
3424    struct nir_function *function;
3425 
3426    /**
3427     * For entrypoints, a pointer to a nir_function_impl which runs before
3428     * it, once per draw or dispatch, communicating via store_preamble and
3429     * load_preamble intrinsics. If NULL then there is no preamble.
3430     */
3431    struct nir_function *preamble;
3432 
3433    /** list of nir_cf_node */
3434    struct exec_list body;
3435 
3436    nir_block *end_block;
3437 
3438    /** list for all local variables in the function */
3439    struct exec_list locals;
3440 
3441    /** next available SSA value index */
3442    unsigned ssa_alloc;
3443 
3444    /* total number of basic blocks, only valid when block_index_dirty = false */
3445    unsigned num_blocks;
3446 
3447    /** True if this nir_function_impl uses structured control-flow
3448     *
3449     * Structured nir_function_impls have different validation rules.
3450     */
3451    bool structured;
3452 
3453    nir_metadata valid_metadata;
3454 } nir_function_impl;
3455 
3456 #define nir_foreach_function_temp_variable(var, impl) \
3457    foreach_list_typed(nir_variable, var, node, &(impl)->locals)
3458 
3459 #define nir_foreach_function_temp_variable_safe(var, impl) \
3460    foreach_list_typed_safe(nir_variable, var, node, &(impl)->locals)
3461 
3462 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
nir_start_block(nir_function_impl * impl)3463 nir_start_block(nir_function_impl *impl)
3464 {
3465    return (nir_block *)impl->body.head_sentinel.next;
3466 }
3467 
3468 ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
nir_impl_last_block(nir_function_impl * impl)3469 nir_impl_last_block(nir_function_impl *impl)
3470 {
3471    return (nir_block *)impl->body.tail_sentinel.prev;
3472 }
3473 
3474 static inline nir_cf_node *
nir_cf_node_next(nir_cf_node * node)3475 nir_cf_node_next(nir_cf_node *node)
3476 {
3477    struct exec_node *next = exec_node_get_next(&node->node);
3478    if (exec_node_is_tail_sentinel(next))
3479       return NULL;
3480    else
3481       return exec_node_data(nir_cf_node, next, node);
3482 }
3483 
3484 static inline nir_cf_node *
nir_cf_node_prev(nir_cf_node * node)3485 nir_cf_node_prev(nir_cf_node *node)
3486 {
3487    struct exec_node *prev = exec_node_get_prev(&node->node);
3488    if (exec_node_is_head_sentinel(prev))
3489       return NULL;
3490    else
3491       return exec_node_data(nir_cf_node, prev, node);
3492 }
3493 
3494 static inline bool
nir_cf_node_is_first(const nir_cf_node * node)3495 nir_cf_node_is_first(const nir_cf_node *node)
3496 {
3497    return exec_node_is_head_sentinel(node->node.prev);
3498 }
3499 
3500 static inline bool
nir_cf_node_is_last(const nir_cf_node * node)3501 nir_cf_node_is_last(const nir_cf_node *node)
3502 {
3503    return exec_node_is_tail_sentinel(node->node.next);
3504 }
3505 
NIR_DEFINE_CAST(nir_cf_node_as_block,nir_cf_node,nir_block,cf_node,type,nir_cf_node_block)3506 NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
3507                 type, nir_cf_node_block)
3508 NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
3509                 type, nir_cf_node_if)
3510 NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
3511                 type, nir_cf_node_loop)
3512 NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
3513                 nir_function_impl, cf_node, type, nir_cf_node_function)
3514 
3515 static inline nir_block *
3516 nir_if_first_then_block(nir_if *if_stmt)
3517 {
3518    struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
3519    return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3520 }
3521 
3522 static inline nir_block *
nir_if_last_then_block(nir_if * if_stmt)3523 nir_if_last_then_block(nir_if *if_stmt)
3524 {
3525    struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
3526    return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3527 }
3528 
3529 static inline nir_block *
nir_if_first_else_block(nir_if * if_stmt)3530 nir_if_first_else_block(nir_if *if_stmt)
3531 {
3532    struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
3533    return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3534 }
3535 
3536 static inline nir_block *
nir_if_last_else_block(nir_if * if_stmt)3537 nir_if_last_else_block(nir_if *if_stmt)
3538 {
3539    struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
3540    return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3541 }
3542 
3543 static inline nir_block *
nir_loop_first_block(nir_loop * loop)3544 nir_loop_first_block(nir_loop *loop)
3545 {
3546    struct exec_node *head = exec_list_get_head(&loop->body);
3547    return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3548 }
3549 
3550 static inline nir_block *
nir_loop_last_block(nir_loop * loop)3551 nir_loop_last_block(nir_loop *loop)
3552 {
3553    struct exec_node *tail = exec_list_get_tail(&loop->body);
3554    return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3555 }
3556 
3557 static inline bool
nir_loop_has_continue_construct(const nir_loop * loop)3558 nir_loop_has_continue_construct(const nir_loop *loop)
3559 {
3560    return !exec_list_is_empty(&loop->continue_list);
3561 }
3562 
3563 static inline nir_block *
nir_loop_first_continue_block(nir_loop * loop)3564 nir_loop_first_continue_block(nir_loop *loop)
3565 {
3566    assert(nir_loop_has_continue_construct(loop));
3567    struct exec_node *head = exec_list_get_head(&loop->continue_list);
3568    return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3569 }
3570 
3571 static inline nir_block *
nir_loop_last_continue_block(nir_loop * loop)3572 nir_loop_last_continue_block(nir_loop *loop)
3573 {
3574    assert(nir_loop_has_continue_construct(loop));
3575    struct exec_node *tail = exec_list_get_tail(&loop->continue_list);
3576    return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3577 }
3578 
3579 /**
3580  * Return the target block of a nir_jump_continue statement
3581  */
3582 static inline nir_block *
nir_loop_continue_target(nir_loop * loop)3583 nir_loop_continue_target(nir_loop *loop)
3584 {
3585    if (nir_loop_has_continue_construct(loop))
3586       return nir_loop_first_continue_block(loop);
3587    else
3588       return nir_loop_first_block(loop);
3589 }
3590 
3591 /**
3592  * Return true if this list of cf_nodes contains a single empty block.
3593  */
3594 static inline bool
nir_cf_list_is_empty_block(struct exec_list * cf_list)3595 nir_cf_list_is_empty_block(struct exec_list *cf_list)
3596 {
3597    if (exec_list_is_singular(cf_list)) {
3598       struct exec_node *head = exec_list_get_head(cf_list);
3599       nir_block *block =
3600          nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3601       return exec_list_is_empty(&block->instr_list);
3602    }
3603    return false;
3604 }
3605 
3606 typedef struct {
3607    uint8_t num_components;
3608    uint8_t bit_size;
3609 
3610    /* True if this paramater is actually the function return variable */
3611    bool is_return;
3612 
3613    /* The type of the function param */
3614    const struct glsl_type *type;
3615 } nir_parameter;
3616 
3617 typedef struct nir_function {
3618    struct exec_node node;
3619 
3620    const char *name;
3621    struct nir_shader *shader;
3622 
3623    unsigned num_params;
3624    nir_parameter *params;
3625 
3626    /** The implementation of this function.
3627     *
3628     * If the function is only declared and not implemented, this is NULL.
3629     *
3630     * Unless setting to NULL or NIR_SERIALIZE_FUNC_HAS_IMPL, set with
3631     * nir_function_set_impl to maintain IR invariants.
3632     */
3633    nir_function_impl *impl;
3634 
3635    bool is_entrypoint;
3636    /* from SPIR-V linkage, only for libraries */
3637    bool is_exported;
3638    bool is_preamble;
3639    /* from SPIR-V function control */
3640    bool should_inline;
3641    bool dont_inline; /* from SPIR-V */
3642 
3643    /**
3644     * Is this function a subroutine type declaration
3645     * e.g. subroutine void type1(float arg1);
3646     */
3647    bool is_subroutine;
3648 
3649    /**
3650     * Is this function associated to a subroutine type
3651     * e.g. subroutine (type1, type2) function_name { function_body };
3652     * would have num_subroutine_types 2,
3653     * and pointers to the type1 and type2 types.
3654     */
3655    int num_subroutine_types;
3656    const struct glsl_type **subroutine_types;
3657 
3658    int subroutine_index;
3659 } nir_function;
3660 
3661 typedef enum {
3662    nir_lower_imul64 = (1 << 0),
3663    nir_lower_isign64 = (1 << 1),
3664    /** Lower all int64 modulus and division opcodes */
3665    nir_lower_divmod64 = (1 << 2),
3666    /** Lower all 64-bit umul_high and imul_high opcodes */
3667    nir_lower_imul_high64 = (1 << 3),
3668    nir_lower_bcsel64 = (1 << 4),
3669    nir_lower_icmp64 = (1 << 5),
3670    nir_lower_iadd64 = (1 << 6),
3671    nir_lower_iabs64 = (1 << 7),
3672    nir_lower_ineg64 = (1 << 8),
3673    nir_lower_logic64 = (1 << 9),
3674    nir_lower_minmax64 = (1 << 10),
3675    nir_lower_shift64 = (1 << 11),
3676    nir_lower_imul_2x32_64 = (1 << 12),
3677    nir_lower_extract64 = (1 << 13),
3678    nir_lower_ufind_msb64 = (1 << 14),
3679    nir_lower_bit_count64 = (1 << 15),
3680    nir_lower_subgroup_shuffle64 = (1 << 16),
3681    nir_lower_scan_reduce_bitwise64 = (1 << 17),
3682    nir_lower_scan_reduce_iadd64 = (1 << 18),
3683    nir_lower_vote_ieq64 = (1 << 19),
3684    nir_lower_usub_sat64 = (1 << 20),
3685    nir_lower_iadd_sat64 = (1 << 21),
3686    nir_lower_find_lsb64 = (1 << 22),
3687    nir_lower_conv64 = (1 << 23),
3688    nir_lower_uadd_sat64 = (1 << 24),
3689    nir_lower_iadd3_64 = (1 << 25),
3690 } nir_lower_int64_options;
3691 
3692 typedef enum {
3693    nir_lower_drcp = (1 << 0),
3694    nir_lower_dsqrt = (1 << 1),
3695    nir_lower_drsq = (1 << 2),
3696    nir_lower_dtrunc = (1 << 3),
3697    nir_lower_dfloor = (1 << 4),
3698    nir_lower_dceil = (1 << 5),
3699    nir_lower_dfract = (1 << 6),
3700    nir_lower_dround_even = (1 << 7),
3701    nir_lower_dmod = (1 << 8),
3702    nir_lower_dsub = (1 << 9),
3703    nir_lower_ddiv = (1 << 10),
3704    nir_lower_dsign = (1 << 11),
3705    nir_lower_dminmax = (1 << 12),
3706    nir_lower_dsat = (1 << 13),
3707    nir_lower_fp64_full_software = (1 << 14),
3708 } nir_lower_doubles_options;
3709 
3710 typedef enum {
3711    nir_divergence_single_prim_per_subgroup = (1 << 0),
3712    nir_divergence_single_patch_per_tcs_subgroup = (1 << 1),
3713    nir_divergence_single_patch_per_tes_subgroup = (1 << 2),
3714    nir_divergence_view_index_uniform = (1 << 3),
3715    nir_divergence_single_frag_shading_rate_per_subgroup = (1 << 4),
3716    nir_divergence_multiple_workgroup_per_compute_subgroup = (1 << 5),
3717    nir_divergence_shader_record_ptr_uniform = (1 << 6),
3718    nir_divergence_uniform_load_tears = (1 << 7),
3719 } nir_divergence_options;
3720 
3721 typedef enum {
3722    /**
3723     * Whether a fragment shader can interpolate the same input multiple times
3724     * with different modes (smooth, noperspective) and locations (pixel,
3725     * centroid, sample, at_offset, at_sample), excluding the flat mode.
3726     *
3727     * This matches AMD GPU flexibility and limitations and is a superset of
3728     * the GL4 requirement that each input can be interpolated at its specified
3729     * location, and then also as centroid, at_offset, and at_sample.
3730     */
3731    nir_io_has_flexible_input_interpolation_except_flat = BITFIELD_BIT(0),
3732 
3733    /**
3734     * nir_opt_varyings compacts (relocates) components of varyings by
3735     * rewriting their locations completely, effectively moving components of
3736     * varyings between slots. This option forces nir_opt_varyings to make
3737     * VARYING_SLOT_POS unused by moving its contents to VARn if the consumer
3738     * is not FS. If this option is not set and POS is unused, it moves
3739     * components of VARn to POS until it's fully used.
3740     */
3741    nir_io_dont_use_pos_for_non_fs_varyings = BITFIELD_BIT(1),
3742 
3743    nir_io_16bit_input_output_support = BITFIELD_BIT(2),
3744 
3745    /**
3746     * Implement mediump inputs and outputs as normal 32-bit IO.
3747     * Causes the mediump flag to be not set for IO semantics, essentially
3748     * destroying any mediump-related IO information in the shader.
3749     */
3750    nir_io_mediump_is_32bit = BITFIELD_BIT(3),
3751 
3752    /**
3753     * Whether nir_opt_vectorize_io should ignore FS inputs.
3754     */
3755    nir_io_prefer_scalar_fs_inputs = BITFIELD_BIT(4),
3756 
3757    /**
3758     * Whether interpolated fragment shader vec4 slots can use load_input for
3759     * a subset of its components to skip interpolation for those components.
3760     * The result of such load_input is a value from a random (not necessarily
3761     * provoking) vertex. If a value from the provoking vertex is required,
3762     * the vec4 slot should have no load_interpolated_input instructions.
3763     *
3764     * This exposes the AMD capability that allows packing flat inputs with
3765     * interpolated inputs in a limited number of cases. Normally, flat
3766     * components must be in a separate vec4 slot to get the value from
3767     * the provoking vertex. If the compiler can prove that all per-vertex
3768     * values are equal (convergent, i.e. the provoking vertex doesn't matter),
3769     * it can put such flat components into any interpolated vec4 slot.
3770     *
3771     * It should also be set if the hw can mix flat and interpolated components
3772     * in the same vec4 slot.
3773     *
3774     * This causes nir_opt_varyings to skip interpolation for all varyings
3775     * that are convergent, and enables better compaction and inter-shader code
3776     * motion for convergent varyings.
3777     */
3778    nir_io_mix_convergent_flat_with_interpolated = BITFIELD_BIT(5),
3779 
3780    /**
3781     * Whether src_type and dest_type of IO intrinsics are irrelevant and
3782     * should be ignored by nir_opt_vectorize_io. All drivers that always treat
3783     * load_input and store_output as untyped and load_interpolated_input as
3784     * float##bit_size should set this.
3785     */
3786    nir_io_vectorizer_ignores_types = BITFIELD_BIT(6),
3787 
3788    /* Options affecting the GLSL compiler are below. */
3789 
3790    /**
3791     * Lower load_deref/store_deref to load_input/store_output/etc. intrinsics.
3792     * This is only affects GLSL compilation.
3793     */
3794    nir_io_glsl_lower_derefs = BITFIELD_BIT(16),
3795 
3796    /**
3797     * Run nir_opt_varyings in the GLSL linker. If false, optimize varyings
3798     * the old way and lower IO later.
3799     *
3800     * nir_io_lower_to_intrinsics must be set for this to take effect.
3801     *
3802     * TODO: remove this and default to enabled once we are sure that this
3803     * codepath is solid.
3804     */
3805    nir_io_glsl_opt_varyings = BITFIELD_BIT(17),
3806 } nir_io_options;
3807 
3808 typedef enum {
3809    nir_lower_packing_op_pack_64_2x32,
3810    nir_lower_packing_op_unpack_64_2x32,
3811    nir_lower_packing_op_pack_64_4x16,
3812    nir_lower_packing_op_unpack_64_4x16,
3813    nir_lower_packing_op_pack_32_2x16,
3814    nir_lower_packing_op_unpack_32_2x16,
3815    nir_lower_packing_op_pack_32_4x8,
3816    nir_lower_packing_op_unpack_32_4x8,
3817    nir_lower_packing_num_ops,
3818 } nir_lower_packing_op;
3819 
3820 /** An instruction filtering callback
3821  *
3822  * Returns true if the instruction should be processed and false otherwise.
3823  */
3824 typedef bool (*nir_instr_filter_cb)(const nir_instr *, const void *);
3825 
3826 /** A vectorization width callback
3827  *
3828  * Returns the maximum vectorization width per instruction.
3829  * 0, if the instruction must not be modified.
3830  *
3831  * The vectorization width must be a power of 2.
3832  */
3833 typedef uint8_t (*nir_vectorize_cb)(const nir_instr *, const void *);
3834 
3835 typedef struct nir_shader_compiler_options {
3836    bool lower_fdiv;
3837    bool lower_ffma16;
3838    bool lower_ffma32;
3839    bool lower_ffma64;
3840    bool fuse_ffma16;
3841    bool fuse_ffma32;
3842    bool fuse_ffma64;
3843    bool lower_flrp16;
3844    bool lower_flrp32;
3845    /** Lowers flrp when it does not support doubles */
3846    bool lower_flrp64;
3847    bool lower_fpow;
3848    bool lower_fsat;
3849    bool lower_fsqrt;
3850    bool lower_sincos;
3851    bool lower_fmod;
3852    /** Lowers ibitfield_extract/ubitfield_extract. */
3853    bool lower_bitfield_extract;
3854    /** Lowers bitfield_insert. */
3855    bool lower_bitfield_insert;
3856    /** Lowers bitfield_reverse to shifts. */
3857    bool lower_bitfield_reverse;
3858    /** Lowers bit_count to shifts. */
3859    bool lower_bit_count;
3860    /** Lowers ifind_msb. */
3861    bool lower_ifind_msb;
3862    /** Lowers ufind_msb. */
3863    bool lower_ufind_msb;
3864    /** Lowers find_lsb to ufind_msb and logic ops */
3865    bool lower_find_lsb;
3866    bool lower_uadd_carry;
3867    bool lower_usub_borrow;
3868    /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
3869    bool lower_mul_high;
3870    /** lowers fneg to fmul(x, -1.0). Driver must call nir_opt_algebraic_late() */
3871    bool lower_fneg;
3872    /** lowers ineg to isub. Driver must call nir_opt_algebraic_late(). */
3873    bool lower_ineg;
3874    /** lowers fisnormal to alu ops. */
3875    bool lower_fisnormal;
3876 
3877    /* lower {slt,sge,seq,sne} to {flt,fge,feq,fneu} + b2f: */
3878    bool lower_scmp;
3879 
3880    /* lower b/fall_equalN/b/fany_nequalN (ex:fany_nequal4 to sne+fdot4+fsat) */
3881    bool lower_vector_cmp;
3882 
3883    /** enable rules to avoid bit ops */
3884    bool lower_bitops;
3885 
3886    /** enables rules to lower isign to imin+imax */
3887    bool lower_isign;
3888 
3889    /** enables rules to lower fsign to fsub and flt */
3890    bool lower_fsign;
3891 
3892    /** enables rules to lower iabs to ineg+imax */
3893    bool lower_iabs;
3894 
3895    /** enable rules that avoid generating umax from signed integer ops */
3896    bool lower_umax;
3897 
3898    /** enable rules that avoid generating umin from signed integer ops */
3899    bool lower_umin;
3900 
3901    /* lower fmin/fmax with signed zero preserve to fmin/fmax with
3902     * no_signed_zero, for backends whose fmin/fmax implementations do not
3903     * implement IEEE-754-2019 semantics for signed zero.
3904     */
3905    bool lower_fminmax_signed_zero;
3906 
3907    /* lower fdph to fdot4 */
3908    bool lower_fdph;
3909 
3910    /** lower fdot to fmul and fsum/fadd. */
3911    bool lower_fdot;
3912 
3913    /* Does the native fdot instruction replicate its result for four
3914     * components?  If so, then opt_algebraic_late will turn all fdotN
3915     * instructions into fdotN_replicated instructions.
3916     */
3917    bool fdot_replicates;
3918 
3919    /** lowers ffloor to fsub+ffract: */
3920    bool lower_ffloor;
3921 
3922    /** lowers ffract to fsub+ffloor: */
3923    bool lower_ffract;
3924 
3925    /** lowers fceil to fneg+ffloor+fneg: */
3926    bool lower_fceil;
3927 
3928    bool lower_ftrunc;
3929 
3930    /** Lowers fround_even to ffract+feq+csel.
3931     *
3932     * Not correct in that it doesn't correctly handle the "_even" part of the
3933     * rounding, but good enough for DX9 array indexing handling on DX9-class
3934     * hardware.
3935     */
3936    bool lower_fround_even;
3937 
3938    bool lower_ldexp;
3939 
3940    bool lower_pack_half_2x16;
3941    bool lower_pack_unorm_2x16;
3942    bool lower_pack_snorm_2x16;
3943    bool lower_pack_unorm_4x8;
3944    bool lower_pack_snorm_4x8;
3945    bool lower_pack_64_2x32;
3946    bool lower_pack_64_4x16;
3947    bool lower_pack_32_2x16;
3948    bool lower_pack_64_2x32_split;
3949    bool lower_pack_32_2x16_split;
3950    bool lower_unpack_half_2x16;
3951    bool lower_unpack_unorm_2x16;
3952    bool lower_unpack_snorm_2x16;
3953    bool lower_unpack_unorm_4x8;
3954    bool lower_unpack_snorm_4x8;
3955    bool lower_unpack_64_2x32_split;
3956    bool lower_unpack_32_2x16_split;
3957 
3958    bool lower_pack_split;
3959 
3960    bool lower_extract_byte;
3961    bool lower_extract_word;
3962    bool lower_insert_byte;
3963    bool lower_insert_word;
3964 
3965    bool lower_all_io_to_temps;
3966    bool lower_all_io_to_elements;
3967 
3968    /* Indicates that the driver only has zero-based vertex id */
3969    bool vertex_id_zero_based;
3970 
3971    /**
3972     * If enabled, gl_BaseVertex will be lowered as:
3973     * is_indexed_draw (~0/0) & firstvertex
3974     */
3975    bool lower_base_vertex;
3976 
3977    /**
3978     * If enabled, gl_HelperInvocation will be lowered as:
3979     *
3980     *   !((1 << sample_id) & sample_mask_in))
3981     *
3982     * This depends on some possibly hw implementation details, which may
3983     * not be true for all hw.  In particular that the FS is only executed
3984     * for covered samples or for helper invocations.  So, do not blindly
3985     * enable this option.
3986     *
3987     * Note: See also issue #22 in ARB_shader_image_load_store
3988     */
3989    bool lower_helper_invocation;
3990 
3991    /**
3992     * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
3993     *
3994     *   gl_SampleMaskIn == 0 ---> gl_HelperInvocation
3995     *   gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
3996     */
3997    bool optimize_sample_mask_in;
3998 
3999    /**
4000     * Optimize boolean reductions of quad broadcasts. This should only be enabled if
4001     * nir_intrinsic_reduce supports INCLUDE_HELPERS.
4002     */
4003    bool optimize_quad_vote_to_reduce;
4004 
4005    bool lower_cs_local_index_to_id;
4006    bool lower_cs_local_id_to_index;
4007 
4008    /* Prevents lowering global_invocation_id to be in terms of workgroup_id */
4009    bool has_cs_global_id;
4010 
4011    bool lower_device_index_to_zero;
4012 
4013    /* Set if nir_lower_pntc_ytransform() should invert gl_PointCoord.
4014     * Either when frame buffer is flipped or GL_POINT_SPRITE_COORD_ORIGIN
4015     * is GL_LOWER_LEFT.
4016     */
4017    bool lower_wpos_pntc;
4018 
4019    /**
4020     * Set if nir_op_[iu]hadd and nir_op_[iu]rhadd instructions should be
4021     * lowered to simple arithmetic.
4022     *
4023     * If this flag is set, the lowering will be applied to all bit-sizes of
4024     * these instructions.
4025     *
4026     * :c:member:`lower_hadd64`
4027     */
4028    bool lower_hadd;
4029 
4030    /**
4031     * Set if only 64-bit nir_op_[iu]hadd and nir_op_[iu]rhadd instructions
4032     * should be lowered to simple arithmetic.
4033     *
4034     * If this flag is set, the lowering will be applied to only 64-bit
4035     * versions of these instructions.
4036     *
4037     * :c:member:`lower_hadd`
4038     */
4039    bool lower_hadd64;
4040 
4041    /**
4042     * Set if nir_op_uadd_sat should be lowered to simple arithmetic.
4043     *
4044     * If this flag is set, the lowering will be applied to all bit-sizes of
4045     * these instructions.
4046     */
4047    bool lower_uadd_sat;
4048 
4049    /**
4050     * Set if nir_op_usub_sat should be lowered to simple arithmetic.
4051     *
4052     * If this flag is set, the lowering will be applied to all bit-sizes of
4053     * these instructions.
4054     */
4055    bool lower_usub_sat;
4056 
4057    /**
4058     * Set if nir_op_iadd_sat and nir_op_isub_sat should be lowered to simple
4059     * arithmetic.
4060     *
4061     * If this flag is set, the lowering will be applied to all bit-sizes of
4062     * these instructions.
4063     */
4064    bool lower_iadd_sat;
4065 
4066    /**
4067     * Set if imul_32x16 and umul_32x16 should be lowered to simple
4068     * arithmetic.
4069     */
4070    bool lower_mul_32x16;
4071 
4072    /**
4073     * Should IO be re-vectorized?  Some scalar ISAs still operate on vec4's
4074     * for IO purposes and would prefer loads/stores be vectorized.
4075     */
4076    bool vectorize_io;
4077    bool vectorize_tess_levels;
4078    bool lower_to_scalar;
4079    nir_instr_filter_cb lower_to_scalar_filter;
4080 
4081    /**
4082     * Disables potentially harmful algebraic transformations for architectures
4083     * with SIMD-within-a-register semantics.
4084     *
4085     * Note, to actually vectorize 16bit instructions, use nir_opt_vectorize()
4086     * with a suitable callback function.
4087     */
4088    bool vectorize_vec2_16bit;
4089 
4090    /**
4091     * Should the linker unify inputs_read/outputs_written between adjacent
4092     * shader stages which are linked into a single program?
4093     */
4094    bool unify_interfaces;
4095 
4096    /**
4097     * Should nir_lower_io() create load_interpolated_input intrinsics?
4098     *
4099     * If not, it generates regular load_input intrinsics and interpolation
4100     * information must be inferred from the list of input nir_variables.
4101     */
4102    bool use_interpolated_input_intrinsics;
4103 
4104    /**
4105     * Whether nir_lower_io() will lower interpolateAt functions to
4106     * load_interpolated_input intrinsics.
4107     *
4108     * Unlike use_interpolated_input_intrinsics this will only lower these
4109     * functions and leave input load intrinsics untouched.
4110     */
4111    bool lower_interpolate_at;
4112 
4113    /* Lowers when 32x32->64 bit multiplication is not supported */
4114    bool lower_mul_2x32_64;
4115 
4116    /* Indicates that urol and uror are supported */
4117    bool has_rotate8;
4118    bool has_rotate16;
4119    bool has_rotate32;
4120 
4121    /** Backend supports shfr */
4122    bool has_shfr32;
4123 
4124    /** Backend supports ternary addition */
4125    bool has_iadd3;
4126 
4127    /**
4128     * Backend supports imul24, and would like to use it (when possible)
4129     * for address/offset calculation.  If true, driver should call
4130     * nir_lower_amul().  (If not set, amul will automatically be lowered
4131     * to imul.)
4132     */
4133    bool has_imul24;
4134 
4135    /** Backend supports umul24, if not set  umul24 will automatically be lowered
4136     * to imul with masked inputs */
4137    bool has_umul24;
4138 
4139    /** Backend supports 32-bit imad */
4140    bool has_imad32;
4141 
4142    /** Backend supports umad24, if not set  umad24 will automatically be lowered
4143     * to imul with masked inputs and iadd */
4144    bool has_umad24;
4145 
4146    /* Backend supports fused comapre against zero and csel */
4147    bool has_fused_comp_and_csel;
4148 
4149    /* Backend supports fneo, fequ, fltu, fgeu. */
4150    bool has_fneo_fcmpu;
4151 
4152    /* Backend supports ford and funord. */
4153    bool has_ford_funord;
4154 
4155    /** Backend supports fsub, if not set fsub will automatically be lowered to
4156     * fadd(x, fneg(y)). If true, driver should call nir_opt_algebraic_late(). */
4157    bool has_fsub;
4158 
4159    /** Backend supports isub, if not set isub will automatically be lowered to
4160     * iadd(x, ineg(y)). If true, driver should call nir_opt_algebraic_late(). */
4161    bool has_isub;
4162 
4163    /** Backend supports pack_32_4x8 or pack_32_4x8_split. */
4164    bool has_pack_32_4x8;
4165 
4166    /** Backend supports nir_load_texture_scale and prefers it over txs for nir
4167     * lowerings. */
4168    bool has_texture_scaling;
4169 
4170    /** Backend supports sdot_4x8_iadd. */
4171    bool has_sdot_4x8;
4172 
4173    /** Backend supports udot_4x8_uadd. */
4174    bool has_udot_4x8;
4175 
4176    /** Backend supports sudot_4x8_iadd. */
4177    bool has_sudot_4x8;
4178 
4179    /** Backend supports sdot_4x8_iadd_sat. */
4180    bool has_sdot_4x8_sat;
4181 
4182    /** Backend supports udot_4x8_uadd_sat. */
4183    bool has_udot_4x8_sat;
4184 
4185    /** Backend supports sudot_4x8_iadd_sat. */
4186    bool has_sudot_4x8_sat;
4187 
4188    /** Backend supports sdot_2x16 and udot_2x16 opcodes. */
4189    bool has_dot_2x16;
4190 
4191    /** Backend supports fmulz (and ffmaz if lower_ffma32=false) */
4192    bool has_fmulz;
4193 
4194    /**
4195     * Backend supports fmulz (and ffmaz if lower_ffma32=false) but only if
4196     * FLOAT_CONTROLS_DENORM_PRESERVE_FP32 is not set
4197     */
4198    bool has_fmulz_no_denorms;
4199 
4200    /** Backend supports 32bit ufind_msb_rev and ifind_msb_rev. */
4201    bool has_find_msb_rev;
4202 
4203    /** Backend supports pack_half_2x16_rtz_split. */
4204    bool has_pack_half_2x16_rtz;
4205 
4206    /** Backend supports bitz/bitnz. */
4207    bool has_bit_test;
4208 
4209    /** Backend supports ubfe/ibfe. */
4210    bool has_bfe;
4211 
4212    /** Backend supports bfm. */
4213    bool has_bfm;
4214 
4215    /** Backend supports bfi. */
4216    bool has_bfi;
4217 
4218    /** Backend supports bitfield_select. */
4219    bool has_bitfield_select;
4220 
4221    /** Backend supports uclz. */
4222    bool has_uclz;
4223 
4224    /** Backend support msad_u4x8. */
4225    bool has_msad;
4226 
4227    /**
4228     * Is this the Intel vec4 backend?
4229     *
4230     * Used to inhibit algebraic optimizations that are known to be harmful on
4231     * the Intel vec4 backend.  This is generally applicable to any
4232     * optimization that might cause more immediate values to be used in
4233     * 3-source (e.g., ffma and flrp) instructions.
4234     */
4235    bool intel_vec4;
4236 
4237    /**
4238     * For most Intel GPUs, all ternary operations such as FMA and BFE cannot
4239     * have immediates, so two to three instructions may eventually be needed.
4240     */
4241    bool avoid_ternary_with_two_constants;
4242 
4243    /** Whether 8-bit ALU is supported. */
4244    bool support_8bit_alu;
4245 
4246    /** Whether 16-bit ALU is supported. */
4247    bool support_16bit_alu;
4248 
4249    unsigned max_unroll_iterations;
4250    unsigned max_unroll_iterations_aggressive;
4251    unsigned max_unroll_iterations_fp64;
4252 
4253    bool lower_uniforms_to_ubo;
4254 
4255    /* If the precision is ignored, backends that don't handle
4256     * different precisions when passing data between stages and use
4257     * vectorized IO can pack more varyings when linking. */
4258    bool linker_ignore_precision;
4259 
4260    /* Specifies if indirect sampler array access will trigger forced loop
4261     * unrolling.
4262     */
4263    bool force_indirect_unrolling_sampler;
4264 
4265    /* Some older drivers don't support GLSL versions with the concept of flat
4266     * varyings and also don't support integers. This setting helps us avoid
4267     * marking varyings as flat and potentially having them changed to ints via
4268     * varying packing.
4269     */
4270    bool no_integers;
4271 
4272    /**
4273     * Specifies which type of indirectly accessed variables should force
4274     * loop unrolling.
4275     */
4276    nir_variable_mode force_indirect_unrolling;
4277 
4278    bool driver_functions;
4279 
4280    nir_lower_int64_options lower_int64_options;
4281    nir_lower_doubles_options lower_doubles_options;
4282    nir_divergence_options divergence_analysis_options;
4283 
4284    /**
4285     * The masks of shader stages that support indirect indexing with
4286     * load_input and store_output intrinsics. It's used by
4287     * nir_lower_io_passes.
4288     */
4289    uint8_t support_indirect_inputs;
4290    uint8_t support_indirect_outputs;
4291 
4292    /**
4293     * Remove varying loaded from uniform, let fragment shader load the
4294     * uniform directly. GPU passing varying by memory can benifit from it
4295     * for sure; but GPU passing varying by on chip resource may not.
4296     * Because it saves on chip resource but may increase memory pressure when
4297     * fragment task is far more than vertex one, so better left it disabled.
4298     */
4299    bool lower_varying_from_uniform;
4300 
4301    /** store the variable offset into the instrinsic range_base instead
4302     *  of adding it to the image index.
4303     */
4304    bool lower_image_offset_to_range_base;
4305 
4306    /** store the variable offset into the instrinsic range_base instead
4307     *  of adding it to the atomic source
4308     */
4309    bool lower_atomic_offset_to_range_base;
4310 
4311    /** Don't convert medium-precision casts (e.g. f2fmp) into concrete
4312     *  type casts (e.g. f2f16).
4313     */
4314    bool preserve_mediump;
4315 
4316    /** lowers fquantize2f16 to alu ops. */
4317    bool lower_fquantize2f16;
4318 
4319    /** Lower f2f16 to f2f16_rtz when execution mode is not rtne. */
4320    bool force_f2f16_rtz;
4321 
4322    /** Lower VARYING_SLOT_LAYER in FS to SYSTEM_VALUE_LAYER_ID. */
4323    bool lower_layer_fs_input_to_sysval;
4324 
4325    /** clip/cull distance and tess level arrays use compact semantics */
4326    bool compact_arrays;
4327 
4328    /**
4329     * Whether discard gets emitted as nir_intrinsic_demote.
4330     * Otherwise, nir_intrinsic_terminate is being used.
4331     */
4332    bool discard_is_demote;
4333 
4334    /**
4335     * Whether the new-style derivative intrinsics are supported. If false,
4336     * legacy ALU derivative ops will be emitted. This transitional option will
4337     * be removed once all drivers are converted to derivative intrinsics.
4338     */
4339    bool has_ddx_intrinsics;
4340 
4341    /** Whether derivative intrinsics must be scalarized. */
4342    bool scalarize_ddx;
4343 
4344    /** Options determining lowering and behavior of inputs and outputs. */
4345    nir_io_options io_options;
4346 
4347    /**
4348     * Bit mask of nir_lower_packing_op to skip lowering some nir ops in
4349     * nir_lower_packing().
4350     */
4351    unsigned skip_lower_packing_ops;
4352 
4353    /** Driver callback where drivers can define how to lower mediump.
4354     *  Used by nir_lower_io_passes.
4355     */
4356    void (*lower_mediump_io)(struct nir_shader *nir);
4357 
4358    /**
4359     * Return the maximum cost of an expression that's written to a shader
4360     * output that can be moved into the next shader to remove that output.
4361     *
4362     * Currently only uniform expressions are moved. A uniform expression is
4363     * any ALU expression sourcing only constants, uniforms, and UBO loads.
4364     *
4365     * Set to NULL or return 0 if you only want to propagate constants from
4366     * outputs to inputs.
4367     *
4368     * Drivers can set the maximum cost based on the types of consecutive
4369     * shaders or shader SHA1s.
4370     *
4371     * Drivers should also set "varying_estimate_instr_cost".
4372     */
4373    unsigned (*varying_expression_max_cost)(struct nir_shader *consumer,
4374                                            struct nir_shader *producer);
4375 
4376    /**
4377     * Return the cost of an instruction that could be moved into the next
4378     * shader. If the cost of all instructions in an expression is <=
4379     * varying_expression_max_cost(), the instruction is moved.
4380     */
4381    unsigned (*varying_estimate_instr_cost)(struct nir_instr *instr);
4382 } nir_shader_compiler_options;
4383 
4384 typedef struct nir_shader {
4385    gc_ctx *gctx;
4386 
4387    /** list of uniforms (nir_variable) */
4388    struct exec_list variables;
4389 
4390    /** Set of driver-specific options for the shader.
4391     *
4392     * The memory for the options is expected to be kept in a single static
4393     * copy by the driver.
4394     */
4395    const struct nir_shader_compiler_options *options;
4396 
4397    /** Various bits of compile-time information about a given shader */
4398    struct shader_info info;
4399 
4400    /** list of nir_function */
4401    struct exec_list functions;
4402 
4403    /**
4404     * The size of the variable space for load_input_*, load_uniform_*, etc.
4405     * intrinsics.  This is in back-end specific units which is likely one of
4406     * bytes, dwords, or vec4s depending on context and back-end.
4407     */
4408    unsigned num_inputs, num_uniforms, num_outputs;
4409 
4410    /** Size in bytes of required implicitly bound global memory */
4411    unsigned global_mem_size;
4412 
4413    /** Size in bytes of required scratch space */
4414    unsigned scratch_size;
4415 
4416    /** Constant data associated with this shader.
4417     *
4418     * Constant data is loaded through load_constant intrinsics (as compared to
4419     * the NIR load_const instructions which have the constant value inlined
4420     * into them).  This is usually generated by nir_opt_large_constants (so
4421     * shaders don't have to load_const into a temporary array when they want
4422     * to indirect on a const array).
4423     */
4424    void *constant_data;
4425    /** Size of the constant data associated with the shader, in bytes */
4426    unsigned constant_data_size;
4427 
4428    struct nir_xfb_info *xfb_info;
4429 
4430    unsigned printf_info_count;
4431    u_printf_info *printf_info;
4432 } nir_shader;
4433 
4434 #define nir_foreach_function(func, shader) \
4435    foreach_list_typed(nir_function, func, node, &(shader)->functions)
4436 
4437 #define nir_foreach_function_safe(func, shader) \
4438    foreach_list_typed_safe(nir_function, func, node, &(shader)->functions)
4439 
4440 static inline nir_function *
nir_foreach_function_with_impl_first(const nir_shader * shader)4441 nir_foreach_function_with_impl_first(const nir_shader *shader)
4442 {
4443    foreach_list_typed(nir_function, func, node, &shader->functions) {
4444       if (func->impl != NULL)
4445          return func;
4446    }
4447 
4448    return NULL;
4449 }
4450 
4451 static inline nir_function_impl *
nir_foreach_function_with_impl_next(nir_function ** it)4452 nir_foreach_function_with_impl_next(nir_function **it)
4453 {
4454    foreach_list_typed_from(nir_function, func, node, _, (*it)->node.next) {
4455       if (func->impl != NULL) {
4456          *it = func;
4457          return func->impl;
4458       }
4459    }
4460 
4461    return NULL;
4462 }
4463 
4464 #define nir_foreach_function_with_impl(it, impl_it, shader)              \
4465    for (nir_function *it = nir_foreach_function_with_impl_first(shader); \
4466         it != NULL;                                                      \
4467         it = NULL)                                                       \
4468                                                                          \
4469       for (nir_function_impl *impl_it = it->impl;                        \
4470            impl_it != NULL;                                              \
4471            impl_it = nir_foreach_function_with_impl_next(&it))
4472 
4473 /* Equivalent to
4474  *
4475  *    nir_foreach_function(func, shader) {
4476  *       if (func->impl != NULL) {
4477  *             ...
4478  *       }
4479  *    }
4480  *
4481  * Carefully written to ensure break/continue work in the user code.
4482  */
4483 
4484 #define nir_foreach_function_impl(it, shader) \
4485    nir_foreach_function_with_impl(_func_##it, it, shader)
4486 
4487 static inline nir_function_impl *
nir_shader_get_entrypoint(const nir_shader * shader)4488 nir_shader_get_entrypoint(const nir_shader *shader)
4489 {
4490    nir_function *func = NULL;
4491 
4492    nir_foreach_function(function, shader) {
4493       assert(func == NULL);
4494       if (function->is_entrypoint) {
4495          func = function;
4496 #ifndef NDEBUG
4497          break;
4498 #endif
4499       }
4500    }
4501 
4502    if (!func)
4503       return NULL;
4504 
4505    assert(func->num_params == 0);
4506    assert(func->impl);
4507    return func->impl;
4508 }
4509 
4510 static inline nir_function *
nir_shader_get_function_for_name(const nir_shader * shader,const char * name)4511 nir_shader_get_function_for_name(const nir_shader *shader, const char *name)
4512 {
4513    nir_foreach_function(func, shader) {
4514       if (func->name && strcmp(func->name, name) == 0)
4515          return func;
4516    }
4517 
4518    return NULL;
4519 }
4520 
4521 /*
4522  * After all functions are forcibly inlined, these passes remove redundant
4523  * functions from a shader and library respectively.
4524  */
4525 void nir_remove_non_entrypoints(nir_shader *shader);
4526 void nir_remove_non_exported(nir_shader *shader);
4527 
4528 nir_shader *nir_shader_create(void *mem_ctx,
4529                               gl_shader_stage stage,
4530                               const nir_shader_compiler_options *options,
4531                               shader_info *si);
4532 
4533 /** Adds a variable to the appropriate list in nir_shader */
4534 void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
4535 
4536 static inline void
nir_function_impl_add_variable(nir_function_impl * impl,nir_variable * var)4537 nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
4538 {
4539    assert(var->data.mode == nir_var_function_temp);
4540    exec_list_push_tail(&impl->locals, &var->node);
4541 }
4542 
4543 /** creates a variable, sets a few defaults, and adds it to the list */
4544 nir_variable *nir_variable_create(nir_shader *shader,
4545                                   nir_variable_mode mode,
4546                                   const struct glsl_type *type,
4547                                   const char *name);
4548 /** creates a local variable and adds it to the list */
4549 nir_variable *nir_local_variable_create(nir_function_impl *impl,
4550                                         const struct glsl_type *type,
4551                                         const char *name);
4552 
4553 /** Creates a uniform builtin state variable. */
4554 nir_variable *
4555 nir_state_variable_create(nir_shader *shader,
4556                           const struct glsl_type *type,
4557                           const char *name,
4558                           const gl_state_index16 tokens[STATE_LENGTH]);
4559 
4560 /* Gets the variable for the given mode and location, creating it (with the given
4561  * type) if necessary.
4562  */
4563 nir_variable *
4564 nir_get_variable_with_location(nir_shader *shader, nir_variable_mode mode, int location,
4565                                const struct glsl_type *type);
4566 
4567 /* Creates a variable for the given mode and location.
4568  */
4569 nir_variable *
4570 nir_create_variable_with_location(nir_shader *shader, nir_variable_mode mode, int location,
4571                                   const struct glsl_type *type);
4572 
4573 nir_variable *nir_find_variable_with_location(nir_shader *shader,
4574                                               nir_variable_mode mode,
4575                                               unsigned location);
4576 
4577 nir_variable *nir_find_variable_with_driver_location(nir_shader *shader,
4578                                                      nir_variable_mode mode,
4579                                                      unsigned location);
4580 
4581 nir_variable *nir_find_state_variable(nir_shader *s,
4582                                       gl_state_index16 tokens[STATE_LENGTH]);
4583 
4584 nir_variable *nir_find_sampler_variable_with_tex_index(nir_shader *shader,
4585                                                        unsigned texture_index);
4586 
4587 void nir_sort_variables_with_modes(nir_shader *shader,
4588                                    int (*compar)(const nir_variable *,
4589                                                  const nir_variable *),
4590                                    nir_variable_mode modes);
4591 
4592 /** creates a function and adds it to the shader's list of functions */
4593 nir_function *nir_function_create(nir_shader *shader, const char *name);
4594 
4595 static inline void
nir_function_set_impl(nir_function * func,nir_function_impl * impl)4596 nir_function_set_impl(nir_function *func, nir_function_impl *impl)
4597 {
4598    func->impl = impl;
4599    impl->function = func;
4600 }
4601 
4602 nir_function_impl *nir_function_impl_create(nir_function *func);
4603 /** creates a function_impl that isn't tied to any particular function */
4604 nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
4605 
4606 nir_block *nir_block_create(nir_shader *shader);
4607 nir_if *nir_if_create(nir_shader *shader);
4608 nir_loop *nir_loop_create(nir_shader *shader);
4609 
4610 nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
4611 
4612 /** requests that the given pieces of metadata be generated */
4613 void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
4614 /** dirties all but the preserved metadata */
4615 void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
4616 /** Preserves all metadata for the given shader */
4617 void nir_shader_preserve_all_metadata(nir_shader *shader);
4618 
4619 /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
4620 nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
4621 
4622 nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
4623                                         nir_deref_type deref_type);
4624 
4625 nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
4626 
4627 nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
4628                                                   unsigned num_components,
4629                                                   unsigned bit_size);
4630 
4631 nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
4632                                                 nir_intrinsic_op op);
4633 
4634 nir_call_instr *nir_call_instr_create(nir_shader *shader,
4635                                       nir_function *callee);
4636 
4637 /** Creates a NIR texture instruction */
4638 nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
4639 
4640 nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
4641 nir_phi_src *nir_phi_instr_add_src(nir_phi_instr *instr,
4642                                    nir_block *pred, nir_def *src);
4643 
4644 nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
4645 
4646 nir_debug_info_instr *nir_debug_info_instr_create(nir_shader *shader,
4647                                                   nir_debug_info_type type,
4648                                                   uint32_t string_length);
4649 
4650 nir_undef_instr *nir_undef_instr_create(nir_shader *shader,
4651                                         unsigned num_components,
4652                                         unsigned bit_size);
4653 
4654 nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
4655 
4656 /**
4657  * NIR Cursors and Instruction Insertion API
4658  * @{
4659  *
4660  * A tiny struct representing a point to insert/extract instructions or
4661  * control flow nodes.  Helps reduce the combinatorial explosion of possible
4662  * points to insert/extract.
4663  *
4664  * \sa nir_control_flow.h
4665  */
4666 typedef enum {
4667    nir_cursor_before_block,
4668    nir_cursor_after_block,
4669    nir_cursor_before_instr,
4670    nir_cursor_after_instr,
4671 } nir_cursor_option;
4672 
4673 typedef struct {
4674    nir_cursor_option option;
4675    union {
4676       nir_block *block;
4677       nir_instr *instr;
4678    };
4679 } nir_cursor;
4680 
4681 static inline nir_block *
nir_cursor_current_block(nir_cursor cursor)4682 nir_cursor_current_block(nir_cursor cursor)
4683 {
4684    if (cursor.option == nir_cursor_before_instr ||
4685        cursor.option == nir_cursor_after_instr) {
4686       return cursor.instr->block;
4687    } else {
4688       return cursor.block;
4689    }
4690 }
4691 
4692 bool nir_cursors_equal(nir_cursor a, nir_cursor b);
4693 
4694 static inline nir_cursor
nir_before_block(nir_block * block)4695 nir_before_block(nir_block *block)
4696 {
4697    nir_cursor cursor;
4698    cursor.option = nir_cursor_before_block;
4699    cursor.block = block;
4700    return cursor;
4701 }
4702 
4703 static inline nir_cursor
nir_after_block(nir_block * block)4704 nir_after_block(nir_block *block)
4705 {
4706    nir_cursor cursor;
4707    cursor.option = nir_cursor_after_block;
4708    cursor.block = block;
4709    return cursor;
4710 }
4711 
4712 static inline nir_cursor
nir_before_instr(nir_instr * instr)4713 nir_before_instr(nir_instr *instr)
4714 {
4715    nir_cursor cursor;
4716    cursor.option = nir_cursor_before_instr;
4717    cursor.instr = instr;
4718    return cursor;
4719 }
4720 
4721 static inline nir_cursor
nir_after_instr(nir_instr * instr)4722 nir_after_instr(nir_instr *instr)
4723 {
4724    nir_cursor cursor;
4725    cursor.option = nir_cursor_after_instr;
4726    cursor.instr = instr;
4727    return cursor;
4728 }
4729 
4730 static inline nir_cursor
nir_before_block_after_phis(nir_block * block)4731 nir_before_block_after_phis(nir_block *block)
4732 {
4733    nir_phi_instr *last_phi = nir_block_last_phi_instr(block);
4734    if (last_phi)
4735       return nir_after_instr(&last_phi->instr);
4736    else
4737       return nir_before_block(block);
4738 }
4739 
4740 static inline nir_cursor
nir_after_block_before_jump(nir_block * block)4741 nir_after_block_before_jump(nir_block *block)
4742 {
4743    nir_instr *last_instr = nir_block_last_instr(block);
4744    if (last_instr && last_instr->type == nir_instr_type_jump) {
4745       return nir_before_instr(last_instr);
4746    } else {
4747       return nir_after_block(block);
4748    }
4749 }
4750 
4751 static inline nir_cursor
nir_before_src(nir_src * src)4752 nir_before_src(nir_src *src)
4753 {
4754    if (nir_src_is_if(src)) {
4755       nir_block *prev_block =
4756          nir_cf_node_as_block(nir_cf_node_prev(&nir_src_parent_if(src)->cf_node));
4757       return nir_after_block(prev_block);
4758    } else if (nir_src_parent_instr(src)->type == nir_instr_type_phi) {
4759 #ifndef NDEBUG
4760       nir_phi_instr *cond_phi = nir_instr_as_phi(nir_src_parent_instr(src));
4761       bool found = false;
4762       nir_foreach_phi_src(phi_src, cond_phi) {
4763          if (phi_src->src.ssa == src->ssa) {
4764             found = true;
4765             break;
4766          }
4767       }
4768       assert(found);
4769 #endif
4770       /* The list_entry() macro is a generic container-of macro, it just happens
4771        * to have a more specific name.
4772        */
4773       nir_phi_src *phi_src = list_entry(src, nir_phi_src, src);
4774       return nir_after_block_before_jump(phi_src->pred);
4775    } else {
4776       return nir_before_instr(nir_src_parent_instr(src));
4777    }
4778 }
4779 
4780 static inline nir_cursor
nir_before_cf_node(nir_cf_node * node)4781 nir_before_cf_node(nir_cf_node *node)
4782 {
4783    if (node->type == nir_cf_node_block)
4784       return nir_before_block(nir_cf_node_as_block(node));
4785 
4786    return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
4787 }
4788 
4789 static inline nir_cursor
nir_after_cf_node(nir_cf_node * node)4790 nir_after_cf_node(nir_cf_node *node)
4791 {
4792    if (node->type == nir_cf_node_block)
4793       return nir_after_block(nir_cf_node_as_block(node));
4794 
4795    return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
4796 }
4797 
4798 static inline nir_cursor
nir_after_phis(nir_block * block)4799 nir_after_phis(nir_block *block)
4800 {
4801    nir_foreach_instr(instr, block) {
4802       if (instr->type != nir_instr_type_phi)
4803          return nir_before_instr(instr);
4804    }
4805    return nir_after_block(block);
4806 }
4807 
4808 static inline nir_cursor
nir_after_instr_and_phis(nir_instr * instr)4809 nir_after_instr_and_phis(nir_instr *instr)
4810 {
4811    if (instr->type == nir_instr_type_phi)
4812       return nir_after_phis(instr->block);
4813    else
4814       return nir_after_instr(instr);
4815 }
4816 
4817 static inline nir_cursor
nir_after_cf_node_and_phis(nir_cf_node * node)4818 nir_after_cf_node_and_phis(nir_cf_node *node)
4819 {
4820    if (node->type == nir_cf_node_block)
4821       return nir_after_block(nir_cf_node_as_block(node));
4822 
4823    nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
4824 
4825    return nir_after_phis(block);
4826 }
4827 
4828 static inline nir_cursor
nir_before_cf_list(struct exec_list * cf_list)4829 nir_before_cf_list(struct exec_list *cf_list)
4830 {
4831    nir_cf_node *first_node = exec_node_data(nir_cf_node,
4832                                             exec_list_get_head(cf_list), node);
4833    return nir_before_cf_node(first_node);
4834 }
4835 
4836 static inline nir_cursor
nir_after_cf_list(struct exec_list * cf_list)4837 nir_after_cf_list(struct exec_list *cf_list)
4838 {
4839    nir_cf_node *last_node = exec_node_data(nir_cf_node,
4840                                            exec_list_get_tail(cf_list), node);
4841    return nir_after_cf_node(last_node);
4842 }
4843 
4844 static inline nir_cursor
nir_before_impl(nir_function_impl * impl)4845 nir_before_impl(nir_function_impl *impl)
4846 {
4847    return nir_before_cf_list(&impl->body);
4848 }
4849 
4850 static inline nir_cursor
nir_after_impl(nir_function_impl * impl)4851 nir_after_impl(nir_function_impl *impl)
4852 {
4853    return nir_after_cf_list(&impl->body);
4854 }
4855 
4856 /**
4857  * Insert a NIR instruction at the given cursor.
4858  *
4859  * Note: This does not update the cursor.
4860  */
4861 void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
4862 
4863 bool nir_instr_move(nir_cursor cursor, nir_instr *instr);
4864 
4865 static inline void
nir_instr_insert_before(nir_instr * instr,nir_instr * before)4866 nir_instr_insert_before(nir_instr *instr, nir_instr *before)
4867 {
4868    nir_instr_insert(nir_before_instr(instr), before);
4869 }
4870 
4871 static inline void
nir_instr_insert_after(nir_instr * instr,nir_instr * after)4872 nir_instr_insert_after(nir_instr *instr, nir_instr *after)
4873 {
4874    nir_instr_insert(nir_after_instr(instr), after);
4875 }
4876 
4877 static inline void
nir_instr_insert_before_block(nir_block * block,nir_instr * before)4878 nir_instr_insert_before_block(nir_block *block, nir_instr *before)
4879 {
4880    nir_instr_insert(nir_before_block(block), before);
4881 }
4882 
4883 static inline void
nir_instr_insert_after_block(nir_block * block,nir_instr * after)4884 nir_instr_insert_after_block(nir_block *block, nir_instr *after)
4885 {
4886    nir_instr_insert(nir_after_block(block), after);
4887 }
4888 
4889 static inline void
nir_instr_insert_before_cf(nir_cf_node * node,nir_instr * before)4890 nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
4891 {
4892    nir_instr_insert(nir_before_cf_node(node), before);
4893 }
4894 
4895 static inline void
nir_instr_insert_after_cf(nir_cf_node * node,nir_instr * after)4896 nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
4897 {
4898    nir_instr_insert(nir_after_cf_node(node), after);
4899 }
4900 
4901 static inline void
nir_instr_insert_before_cf_list(struct exec_list * list,nir_instr * before)4902 nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
4903 {
4904    nir_instr_insert(nir_before_cf_list(list), before);
4905 }
4906 
4907 static inline void
nir_instr_insert_after_cf_list(struct exec_list * list,nir_instr * after)4908 nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
4909 {
4910    nir_instr_insert(nir_after_cf_list(list), after);
4911 }
4912 
4913 void nir_instr_remove_v(nir_instr *instr);
4914 void nir_instr_free(nir_instr *instr);
4915 void nir_instr_free_list(struct exec_list *list);
4916 
4917 static inline nir_cursor
nir_instr_remove(nir_instr * instr)4918 nir_instr_remove(nir_instr *instr)
4919 {
4920    nir_cursor cursor;
4921    nir_instr *prev = nir_instr_prev(instr);
4922    if (prev) {
4923       cursor = nir_after_instr(prev);
4924    } else {
4925       cursor = nir_before_block(instr->block);
4926    }
4927    nir_instr_remove_v(instr);
4928    return cursor;
4929 }
4930 
4931 nir_cursor nir_instr_free_and_dce(nir_instr *instr);
4932 
4933 /** @} */
4934 
4935 nir_def *nir_instr_def(nir_instr *instr);
4936 
4937 typedef bool (*nir_foreach_def_cb)(nir_def *def, void *state);
4938 typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
4939 static inline bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
4940 bool nir_foreach_phi_src_leaving_block(nir_block *instr,
4941                                        nir_foreach_src_cb cb,
4942                                        void *state);
4943 
4944 nir_const_value *nir_src_as_const_value(nir_src src);
4945 
4946 #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro) \
4947    static inline c_type *                                \
4948       nir_src_as_##name(nir_src src)                     \
4949    {                                                     \
4950       return src.ssa->parent_instr->type == type_enum    \
4951                 ? cast_macro(src.ssa->parent_instr)      \
4952                 : NULL;                                  \
4953    }
4954 
4955 NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
4956 NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
4957             nir_instr_type_intrinsic, nir_instr_as_intrinsic)
4958 NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
4959 NIR_SRC_AS_(debug_info, nir_debug_info_instr, nir_instr_type_debug_info, nir_instr_as_debug_info)
4960 
4961 const char *nir_src_as_string(nir_src src);
4962 
4963 bool nir_src_is_always_uniform(nir_src src);
4964 bool nir_srcs_equal(nir_src src1, nir_src src2);
4965 bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2);
4966 nir_block *nir_src_get_block(nir_src *src);
4967 
4968 static inline void
nir_src_rewrite(nir_src * src,nir_def * new_ssa)4969 nir_src_rewrite(nir_src *src, nir_def *new_ssa)
4970 {
4971    assert(src->ssa);
4972    assert(nir_src_is_if(src) ? (nir_src_parent_if(src) != NULL) : (nir_src_parent_instr(src) != NULL));
4973    list_del(&src->use_link);
4974    src->ssa = new_ssa;
4975    list_addtail(&src->use_link, &new_ssa->uses);
4976 }
4977 
4978 /** Initialize a nir_src
4979  *
4980  * This is almost never the helper you want to use.  This helper assumes that
4981  * the source is uninitialized garbage and blasts over it without doing any
4982  * tear-down the existing source, including removing it from uses lists.
4983  * Using this helper on a source that currently exists in any uses list will
4984  * result in linked list corruption.  It also assumes that the instruction is
4985  * currently live in the IR and adds the source to the uses list for the given
4986  * nir_def as part of setup.
4987  *
4988  * This is pretty much only useful for adding sources to extant instructions
4989  * or manipulating parallel copy instructions as part of out-of-SSA.
4990  *
4991  * When in doubt, use nir_src_rewrite() instead.
4992  */
4993 void nir_instr_init_src(nir_instr *instr, nir_src *src, nir_def *def);
4994 
4995 /** Clear a nir_src
4996  *
4997  * This helper clears a nir_src by removing it from any uses lists and
4998  * resetting its contents to NIR_SRC_INIT.  This is typically used as a
4999  * precursor to removing the source from the instruction by adjusting a
5000  * num_srcs parameter somewhere or overwriting it with nir_instr_move_src().
5001  */
5002 void nir_instr_clear_src(nir_instr *instr, nir_src *src);
5003 
5004 void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
5005 
5006 void nir_def_init(nir_instr *instr, nir_def *def,
5007                   unsigned num_components, unsigned bit_size);
5008 static inline void
nir_def_init_for_type(nir_instr * instr,nir_def * def,const struct glsl_type * type)5009 nir_def_init_for_type(nir_instr *instr, nir_def *def,
5010                       const struct glsl_type *type)
5011 {
5012    assert(glsl_type_is_vector_or_scalar(type));
5013    nir_def_init(instr, def, glsl_get_components(type),
5014                 glsl_get_bit_size(type));
5015 }
5016 void nir_def_rewrite_uses(nir_def *def, nir_def *new_ssa);
5017 void nir_def_rewrite_uses_src(nir_def *def, nir_src new_src);
5018 void nir_def_rewrite_uses_after(nir_def *def, nir_def *new_ssa,
5019                                 nir_instr *after_me);
5020 
5021 static inline void
nir_def_replace(nir_def * def,nir_def * new_ssa)5022 nir_def_replace(nir_def *def, nir_def *new_ssa)
5023 {
5024    nir_def_rewrite_uses(def, new_ssa);
5025    nir_instr_remove(def->parent_instr);
5026 }
5027 
5028 nir_component_mask_t nir_src_components_read(const nir_src *src);
5029 nir_component_mask_t nir_def_components_read(const nir_def *def);
5030 bool nir_def_all_uses_are_fsat(const nir_def *def);
5031 
5032 static inline bool
nir_def_is_unused(nir_def * ssa)5033 nir_def_is_unused(nir_def *ssa)
5034 {
5035    return list_is_empty(&ssa->uses);
5036 }
5037 
5038 /** Sorts unstructured blocks
5039  *
5040  * NIR requires that unstructured blocks be sorted in reverse post
5041  * depth-first-search order.  This is the standard ordering used in the
5042  * compiler literature which guarantees dominance.  In particular, reverse
5043  * post-DFS order guarantees that dominators occur in the list before the
5044  * blocks they dominate.
5045  *
5046  * NOTE: This function also implicitly deletes any unreachable blocks.
5047  */
5048 void nir_sort_unstructured_blocks(nir_function_impl *impl);
5049 
5050 /** Returns the next block
5051  *
5052  * For structured control-flow, this follows the same order as
5053  * nir_block_cf_tree_next().  For unstructured control-flow the blocks are in
5054  * reverse post-DFS order.  (See nir_sort_unstructured_blocks() above.)
5055  */
5056 nir_block *nir_block_unstructured_next(nir_block *block);
5057 nir_block *nir_unstructured_start_block(nir_function_impl *impl);
5058 
5059 #define nir_foreach_block_unstructured(block, impl)                           \
5060    for (nir_block *block = nir_unstructured_start_block(impl); block != NULL; \
5061         block = nir_block_unstructured_next(block))
5062 
5063 #define nir_foreach_block_unstructured_safe(block, impl)       \
5064    for (nir_block *block = nir_unstructured_start_block(impl), \
5065                   *next = nir_block_unstructured_next(block);  \
5066         block != NULL;                                         \
5067         block = next, next = nir_block_unstructured_next(block))
5068 
5069 /*
5070  * finds the next basic block in source-code order, returns NULL if there is
5071  * none
5072  */
5073 
5074 nir_block *nir_block_cf_tree_next(nir_block *block);
5075 
5076 /* Performs the opposite of nir_block_cf_tree_next() */
5077 
5078 nir_block *nir_block_cf_tree_prev(nir_block *block);
5079 
5080 /* Gets the first block in a CF node in source-code order */
5081 
5082 nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
5083 
5084 /* Gets the last block in a CF node in source-code order */
5085 
5086 nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
5087 
5088 /* Gets the next block after a CF node in source-code order */
5089 
5090 nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
5091 
5092 /* Gets the block before a CF node in source-code order */
5093 
5094 nir_block *nir_cf_node_cf_tree_prev(nir_cf_node *node);
5095 
5096 /* Macros for loops that visit blocks in source-code order */
5097 
5098 #define nir_foreach_block(block, impl)                           \
5099    for (nir_block *block = nir_start_block(impl); block != NULL; \
5100         block = nir_block_cf_tree_next(block))
5101 
5102 #define nir_foreach_block_safe(block, impl)              \
5103    for (nir_block *block = nir_start_block(impl),        \
5104                   *next = nir_block_cf_tree_next(block); \
5105         block != NULL;                                   \
5106         block = next, next = nir_block_cf_tree_next(block))
5107 
5108 #define nir_foreach_block_reverse(block, impl)                       \
5109    for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
5110         block = nir_block_cf_tree_prev(block))
5111 
5112 #define nir_foreach_block_reverse_safe(block, impl)      \
5113    for (nir_block *block = nir_impl_last_block(impl),    \
5114                   *prev = nir_block_cf_tree_prev(block); \
5115         block != NULL;                                   \
5116         block = prev, prev = nir_block_cf_tree_prev(block))
5117 
5118 #define nir_foreach_block_in_cf_node(block, node)           \
5119    for (nir_block *block = nir_cf_node_cf_tree_first(node); \
5120         block != nir_cf_node_cf_tree_next(node);            \
5121         block = nir_block_cf_tree_next(block))
5122 
5123 #define nir_foreach_block_in_cf_node_safe(block, node)      \
5124    for (nir_block *block = nir_cf_node_cf_tree_first(node), \
5125                   *next = nir_block_cf_tree_next(block);    \
5126         block != nir_cf_node_cf_tree_next(node);            \
5127         block = next, next = nir_block_cf_tree_next(block))
5128 
5129 #define nir_foreach_block_in_cf_node_reverse(block, node)  \
5130    for (nir_block *block = nir_cf_node_cf_tree_last(node); \
5131         block != nir_cf_node_cf_tree_prev(node);           \
5132         block = nir_block_cf_tree_prev(block))
5133 
5134 #define nir_foreach_block_in_cf_node_reverse_safe(block, node) \
5135    for (nir_block *block = nir_cf_node_cf_tree_last(node),     \
5136                   *prev = nir_block_cf_tree_prev(block);       \
5137         block != nir_cf_node_cf_tree_prev(node);               \
5138         block = prev, prev = nir_block_cf_tree_prev(block))
5139 
5140 /* If the following CF node is an if, this function returns that if.
5141  * Otherwise, it returns NULL.
5142  */
5143 nir_if *nir_block_get_following_if(nir_block *block);
5144 
5145 nir_loop *nir_block_get_following_loop(nir_block *block);
5146 
5147 nir_block **nir_block_get_predecessors_sorted(const nir_block *block, void *mem_ctx);
5148 
5149 void nir_index_ssa_defs(nir_function_impl *impl);
5150 unsigned nir_index_instrs(nir_function_impl *impl);
5151 
5152 void nir_index_blocks(nir_function_impl *impl);
5153 
5154 void nir_shader_clear_pass_flags(nir_shader *shader);
5155 
5156 unsigned nir_shader_index_vars(nir_shader *shader, nir_variable_mode modes);
5157 unsigned nir_function_impl_index_vars(nir_function_impl *impl);
5158 
5159 void nir_print_shader(nir_shader *shader, FILE *fp);
5160 void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
5161 void nir_print_instr(const nir_instr *instr, FILE *fp);
5162 void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
5163 void nir_log_shader_annotated_tagged(enum mesa_log_level level, const char *tag, nir_shader *shader, struct hash_table *annotations);
5164 #define nir_log_shadere(s)                       nir_log_shader_annotated_tagged(MESA_LOG_ERROR, (MESA_LOG_TAG), (s), NULL)
5165 #define nir_log_shaderw(s)                       nir_log_shader_annotated_tagged(MESA_LOG_WARN, (MESA_LOG_TAG), (s), NULL)
5166 #define nir_log_shaderi(s)                       nir_log_shader_annotated_tagged(MESA_LOG_INFO, (MESA_LOG_TAG), (s), NULL)
5167 #define nir_log_shader_annotated(s, annotations) nir_log_shader_annotated_tagged(MESA_LOG_ERROR, (MESA_LOG_TAG), (s), annotations)
5168 
5169 char *nir_shader_as_str(nir_shader *nir, void *mem_ctx);
5170 char *nir_shader_as_str_annotated(nir_shader *nir, struct hash_table *annotations, void *mem_ctx);
5171 char *nir_instr_as_str(const nir_instr *instr, void *mem_ctx);
5172 
5173 char *nir_shader_gather_debug_info(nir_shader *shader, const char *filename);
5174 
5175 /** Shallow clone of a single instruction. */
5176 nir_instr *nir_instr_clone(nir_shader *s, const nir_instr *orig);
5177 
5178 /** Clone a single instruction, including a remap table to rewrite sources. */
5179 nir_instr *nir_instr_clone_deep(nir_shader *s, const nir_instr *orig,
5180                                 struct hash_table *remap_table);
5181 
5182 /** Shallow clone of a single ALU instruction. */
5183 nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
5184 
5185 nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
5186 nir_function *nir_function_clone(nir_shader *ns, const nir_function *fxn);
5187 nir_function_impl *nir_function_impl_clone(nir_shader *shader,
5188                                            const nir_function_impl *fi);
5189 nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
5190 nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
5191 
5192 void nir_shader_replace(nir_shader *dest, nir_shader *src);
5193 
5194 void nir_shader_serialize_deserialize(nir_shader *s);
5195 
5196 #ifndef NDEBUG
5197 void nir_validate_shader(nir_shader *shader, const char *when);
5198 void nir_validate_ssa_dominance(nir_shader *shader, const char *when);
5199 void nir_metadata_set_validation_flag(nir_shader *shader);
5200 void nir_metadata_check_validation_flag(nir_shader *shader);
5201 
5202 static inline bool
should_skip_nir(const char * name)5203 should_skip_nir(const char *name)
5204 {
5205    static const char *list = NULL;
5206    if (!list) {
5207       /* Comma separated list of names to skip. */
5208       list = getenv("NIR_SKIP");
5209       if (!list)
5210          list = "";
5211    }
5212 
5213    if (!list[0])
5214       return false;
5215 
5216    return comma_separated_list_contains(list, name);
5217 }
5218 
5219 static inline bool
should_print_nir(nir_shader * shader)5220 should_print_nir(nir_shader *shader)
5221 {
5222    if ((shader->info.internal && !NIR_DEBUG(PRINT_INTERNAL)) ||
5223        shader->info.stage < 0 ||
5224        shader->info.stage > MESA_SHADER_KERNEL)
5225       return false;
5226 
5227    return unlikely(nir_debug_print_shader[shader->info.stage]);
5228 }
5229 #else
5230 static inline void
nir_validate_shader(nir_shader * shader,const char * when)5231 nir_validate_shader(nir_shader *shader, const char *when)
5232 {
5233    (void)shader;
5234    (void)when;
5235 }
5236 static inline void
nir_validate_ssa_dominance(nir_shader * shader,const char * when)5237 nir_validate_ssa_dominance(nir_shader *shader, const char *when)
5238 {
5239    (void)shader;
5240    (void)when;
5241 }
5242 static inline void
nir_metadata_set_validation_flag(nir_shader * shader)5243 nir_metadata_set_validation_flag(nir_shader *shader)
5244 {
5245    (void)shader;
5246 }
5247 static inline void
nir_metadata_check_validation_flag(nir_shader * shader)5248 nir_metadata_check_validation_flag(nir_shader *shader)
5249 {
5250    (void)shader;
5251 }
5252 static inline bool
should_skip_nir(UNUSED const char * pass_name)5253 should_skip_nir(UNUSED const char *pass_name)
5254 {
5255    return false;
5256 }
5257 static inline bool
should_print_nir(UNUSED nir_shader * shader)5258 should_print_nir(UNUSED nir_shader *shader)
5259 {
5260    return false;
5261 }
5262 #endif /* NDEBUG */
5263 
5264 #define _PASS(pass, nir, do_pass)                                       \
5265    do {                                                                 \
5266       if (should_skip_nir(#pass)) {                                     \
5267          printf("skipping %s\n", #pass);                                \
5268          break;                                                         \
5269       }                                                                 \
5270       do_pass if (NIR_DEBUG(CLONE))                                     \
5271       {                                                                 \
5272          nir_shader *_clone = nir_shader_clone(ralloc_parent(nir), nir);\
5273          nir_shader_replace(nir, _clone);                               \
5274       }                                                                 \
5275       if (NIR_DEBUG(SERIALIZE)) {                                       \
5276          nir_shader_serialize_deserialize(nir);                         \
5277       }                                                                 \
5278    } while (0)
5279 
5280 #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir, {   \
5281    nir_metadata_set_validation_flag(nir);                       \
5282    if (should_print_nir(nir))                                   \
5283       printf("%s\n", #pass);                                    \
5284    if (pass(nir, ##__VA_ARGS__)) {                              \
5285       nir_validate_shader(nir, "after " #pass " in " __FILE__); \
5286       UNUSED bool _;                                            \
5287       progress = true;                                          \
5288       if (should_print_nir(nir))                                \
5289          nir_print_shader(nir, stdout);                         \
5290       nir_metadata_check_validation_flag(nir);                  \
5291    }                                                            \
5292 })
5293 
5294 #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir, {        \
5295    if (should_print_nir(nir))                                \
5296       printf("%s\n", #pass);                                 \
5297    pass(nir, ##__VA_ARGS__);                                 \
5298    nir_validate_shader(nir, "after " #pass " in " __FILE__); \
5299    if (should_print_nir(nir))                                \
5300       nir_print_shader(nir, stdout);                         \
5301 })
5302 
5303 #define _NIR_LOOP_PASS(progress, idempotent, skip, nir, pass, ...)   \
5304 do {                                                                 \
5305    bool nir_loop_pass_progress = false;                              \
5306    if (!_mesa_set_search(skip, (void (*)())&pass))                   \
5307       NIR_PASS(nir_loop_pass_progress, nir, pass, ##__VA_ARGS__);    \
5308    if (nir_loop_pass_progress)                                       \
5309       _mesa_set_clear(skip, NULL);                                   \
5310    if (idempotent || !nir_loop_pass_progress)                        \
5311       _mesa_set_add(skip, (void (*)())&pass);                        \
5312    UNUSED bool _ = false;                                            \
5313    progress |= nir_loop_pass_progress;                               \
5314 } while (0)
5315 
5316 /* Helper to skip a pass if no different passes have made progress since it was
5317  * previously run. Note that two passes are considered the same if they have
5318  * the same function pointer, even if they used different options.
5319  *
5320  * The usage of this is mostly identical to NIR_PASS. "skip" is a "struct set *"
5321  * (created by _mesa_pointer_set_create) which the macro uses to keep track of
5322  * already run passes.
5323  *
5324  * Example:
5325  * bool progress = true;
5326  * struct set *skip = _mesa_pointer_set_create(NULL);
5327  * while (progress) {
5328  *    progress = false;
5329  *    NIR_LOOP_PASS(progress, skip, nir, pass1);
5330  *    NIR_LOOP_PASS_NOT_IDEMPOTENT(progress, skip, nir, nir_opt_algebraic);
5331  *    NIR_LOOP_PASS(progress, skip, nir, pass2);
5332  *    ...
5333  * }
5334  * _mesa_set_destroy(skip, NULL);
5335  *
5336  * You shouldn't mix usage of this with the NIR_PASS set of helpers, without
5337  * using a new "skip" in-between.
5338  */
5339 #define NIR_LOOP_PASS(progress, skip, nir, pass, ...) \
5340    _NIR_LOOP_PASS(progress, true, skip, nir, pass, ##__VA_ARGS__)
5341 
5342 /* Like NIR_LOOP_PASS, but use this for passes which may make further progress
5343  * when repeated.
5344  */
5345 #define NIR_LOOP_PASS_NOT_IDEMPOTENT(progress, skip, nir, pass, ...) \
5346    _NIR_LOOP_PASS(progress, false, skip, nir, pass, ##__VA_ARGS__)
5347 
5348 #define NIR_SKIP(name) should_skip_nir(#name)
5349 
5350 /** An instruction filtering callback with writemask
5351  *
5352  * Returns true if the instruction should be processed with the associated
5353  * writemask and false otherwise.
5354  */
5355 typedef bool (*nir_instr_writemask_filter_cb)(const nir_instr *,
5356                                               unsigned writemask, const void *);
5357 
5358 /** A simple instruction lowering callback
5359  *
5360  * Many instruction lowering passes can be written as a simple function which
5361  * takes an instruction as its input and returns a sequence of instructions
5362  * that implement the consumed instruction.  This function type represents
5363  * such a lowering function.  When called, a function with this prototype
5364  * should either return NULL indicating that no lowering needs to be done or
5365  * emit a sequence of instructions using the provided builder (whose cursor
5366  * will already be placed after the instruction to be lowered) and return the
5367  * resulting nir_def.
5368  */
5369 typedef nir_def *(*nir_lower_instr_cb)(struct nir_builder *,
5370                                        nir_instr *, void *);
5371 
5372 /**
5373  * Special return value for nir_lower_instr_cb when some progress occurred
5374  * (like changing an input to the instr) that didn't result in a replacement
5375  * SSA def being generated.
5376  */
5377 #define NIR_LOWER_INSTR_PROGRESS ((nir_def *)(uintptr_t)1)
5378 
5379 /**
5380  * Special return value for nir_lower_instr_cb when some progress occurred
5381  * that should remove the current instruction that doesn't create an output
5382  * (like a store)
5383  */
5384 
5385 #define NIR_LOWER_INSTR_PROGRESS_REPLACE ((nir_def *)(uintptr_t)2)
5386 
5387 /** Iterate over all the instructions in a nir_function_impl and lower them
5388  *  using the provided callbacks
5389  *
5390  * This function implements the guts of a standard lowering pass for you.  It
5391  * iterates over all of the instructions in a nir_function_impl and calls the
5392  * filter callback on each one.  If the filter callback returns true, it then
5393  * calls the lowering call back on the instruction.  (Splitting it this way
5394  * allows us to avoid some save/restore work for instructions we know won't be
5395  * lowered.)  If the instruction is dead after the lowering is complete, it
5396  * will be removed.  If new instructions are added, the lowering callback will
5397  * also be called on them in case multiple lowerings are required.
5398  *
5399  * If the callback indicates that the original instruction is replaced (either
5400  * through a new SSA def or NIR_LOWER_INSTR_PROGRESS_REPLACE), then the
5401  * instruction is removed along with any now-dead SSA defs it used.
5402  *
5403  * The metadata for the nir_function_impl will also be updated.  If any blocks
5404  * are added (they cannot be removed), dominance and block indices will be
5405  * invalidated.
5406  */
5407 bool nir_function_impl_lower_instructions(nir_function_impl *impl,
5408                                           nir_instr_filter_cb filter,
5409                                           nir_lower_instr_cb lower,
5410                                           void *cb_data);
5411 bool nir_shader_lower_instructions(nir_shader *shader,
5412                                    nir_instr_filter_cb filter,
5413                                    nir_lower_instr_cb lower,
5414                                    void *cb_data);
5415 
5416 void nir_calc_dominance_impl(nir_function_impl *impl);
5417 void nir_calc_dominance(nir_shader *shader);
5418 
5419 nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
5420 bool nir_block_dominates(nir_block *parent, nir_block *child);
5421 bool nir_block_is_unreachable(nir_block *block);
5422 
5423 void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
5424 void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
5425 
5426 void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
5427 void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
5428 
5429 void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
5430 void nir_dump_cfg(nir_shader *shader, FILE *fp);
5431 
5432 void nir_gs_count_vertices_and_primitives(const nir_shader *shader,
5433                                           int *out_vtxcnt,
5434                                           int *out_prmcnt,
5435                                           int *out_decomposed_prmcnt,
5436                                           unsigned num_streams);
5437 
5438 typedef enum {
5439    nir_group_all,
5440    nir_group_same_resource_only,
5441 } nir_load_grouping;
5442 
5443 void nir_group_loads(nir_shader *shader, nir_load_grouping grouping,
5444                      unsigned max_distance);
5445 
5446 bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
5447 bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
5448 bool nir_split_var_copies(nir_shader *shader);
5449 bool nir_split_per_member_structs(nir_shader *shader);
5450 bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
5451 
5452 bool nir_lower_returns_impl(nir_function_impl *impl);
5453 bool nir_lower_returns(nir_shader *shader);
5454 
5455 void nir_inline_function_impl(struct nir_builder *b,
5456                               const nir_function_impl *impl,
5457                               nir_def **params,
5458                               struct hash_table *shader_var_remap);
5459 bool nir_inline_functions(nir_shader *shader);
5460 void nir_cleanup_functions(nir_shader *shader);
5461 bool nir_link_shader_functions(nir_shader *shader,
5462                                const nir_shader *link_shader);
5463 
5464 void nir_find_inlinable_uniforms(nir_shader *shader);
5465 void nir_inline_uniforms(nir_shader *shader, unsigned num_uniforms,
5466                          const uint32_t *uniform_values,
5467                          const uint16_t *uniform_dw_offsets);
5468 bool nir_collect_src_uniforms(const nir_src *src, int component,
5469                               uint32_t *uni_offsets, uint8_t *num_offsets,
5470                               unsigned max_num_bo, unsigned max_offset);
5471 void nir_add_inlinable_uniforms(const nir_src *cond, nir_loop_info *info,
5472                                 uint32_t *uni_offsets, uint8_t *num_offsets,
5473                                 unsigned max_num_bo, unsigned max_offset);
5474 
5475 bool nir_propagate_invariant(nir_shader *shader, bool invariant_prim);
5476 
5477 void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
5478 void nir_lower_deref_copy_instr(struct nir_builder *b,
5479                                 nir_intrinsic_instr *copy);
5480 bool nir_lower_var_copies(nir_shader *shader);
5481 
5482 bool nir_opt_memcpy(nir_shader *shader);
5483 bool nir_lower_memcpy(nir_shader *shader);
5484 
5485 void nir_fixup_deref_modes(nir_shader *shader);
5486 void nir_fixup_deref_types(nir_shader *shader);
5487 
5488 bool nir_lower_global_vars_to_local(nir_shader *shader);
5489 
5490 typedef enum {
5491    nir_lower_direct_array_deref_of_vec_load = (1 << 0),
5492    nir_lower_indirect_array_deref_of_vec_load = (1 << 1),
5493    nir_lower_direct_array_deref_of_vec_store = (1 << 2),
5494    nir_lower_indirect_array_deref_of_vec_store = (1 << 3),
5495 } nir_lower_array_deref_of_vec_options;
5496 
5497 bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
5498                                   bool (*filter)(nir_variable *),
5499                                   nir_lower_array_deref_of_vec_options options);
5500 
5501 bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes,
5502                                uint32_t max_lower_array_len);
5503 
5504 bool nir_lower_indirect_var_derefs(nir_shader *shader,
5505                                    const struct set *vars);
5506 
5507 bool nir_lower_locals_to_regs(nir_shader *shader, uint8_t bool_bitsize);
5508 
5509 bool nir_lower_io_to_temporaries(nir_shader *shader,
5510                                  nir_function_impl *entrypoint,
5511                                  bool outputs, bool inputs);
5512 
5513 bool nir_lower_vars_to_scratch(nir_shader *shader,
5514                                nir_variable_mode modes,
5515                                int size_threshold,
5516                                glsl_type_size_align_func variable_size_align,
5517                                glsl_type_size_align_func scratch_layout_size_align);
5518 
5519 void nir_lower_clip_halfz(nir_shader *shader);
5520 
5521 void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
5522 
5523 void nir_gather_types(nir_function_impl *impl,
5524                       BITSET_WORD *float_types,
5525                       BITSET_WORD *int_types);
5526 
5527 void nir_assign_var_locations(nir_shader *shader, nir_variable_mode mode,
5528                               unsigned *size,
5529                               int (*type_size)(const struct glsl_type *, bool));
5530 
5531 /* Some helpers to do very simple linking */
5532 bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
5533 bool nir_remove_unused_io_vars(nir_shader *shader, nir_variable_mode mode,
5534                                uint64_t *used_by_other_stage,
5535                                uint64_t *used_by_other_stage_patches);
5536 void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
5537                           bool default_to_smooth_interp);
5538 void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
5539 bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
5540 void nir_link_varying_precision(nir_shader *producer, nir_shader *consumer);
5541 nir_variable *nir_clone_uniform_variable(nir_shader *nir,
5542                                          nir_variable *uniform, bool spirv);
5543 nir_deref_instr *nir_clone_deref_instr(struct nir_builder *b,
5544                                        nir_variable *var,
5545                                        nir_deref_instr *deref);
5546 
5547 
5548 /* Return status from nir_opt_varyings. */
5549 typedef enum {
5550    /* Whether the IR changed such that NIR optimizations should be run, such
5551     * as due to removal of loads and stores. IO semantic changes such as
5552     * compaction don't count as IR changes because they don't affect NIR
5553     * optimizations.
5554     */
5555    nir_progress_producer = BITFIELD_BIT(0),
5556    nir_progress_consumer = BITFIELD_BIT(1),
5557 } nir_opt_varyings_progress;
5558 
5559 nir_opt_varyings_progress
5560 nir_opt_varyings(nir_shader *producer, nir_shader *consumer, bool spirv,
5561                  unsigned max_uniform_components, unsigned max_ubos_per_stage);
5562 
5563 bool nir_slot_is_sysval_output(gl_varying_slot slot,
5564                                gl_shader_stage next_shader);
5565 bool nir_slot_is_varying(gl_varying_slot slot);
5566 bool nir_slot_is_sysval_output_and_varying(gl_varying_slot slot,
5567                                            gl_shader_stage next_shader);
5568 bool nir_remove_varying(nir_intrinsic_instr *intr, gl_shader_stage next_shader);
5569 bool nir_remove_sysval_output(nir_intrinsic_instr *intr);
5570 
5571 bool nir_lower_amul(nir_shader *shader,
5572                     int (*type_size)(const struct glsl_type *, bool));
5573 
5574 bool nir_lower_ubo_vec4(nir_shader *shader);
5575 
5576 void nir_sort_variables_by_location(nir_shader *shader, nir_variable_mode mode);
5577 void nir_assign_io_var_locations(nir_shader *shader,
5578                                  nir_variable_mode mode,
5579                                  unsigned *size,
5580                                  gl_shader_stage stage);
5581 
5582 typedef enum {
5583    /* If set, this causes all 64-bit IO operations to be lowered on-the-fly
5584     * to 32-bit operations.  This is only valid for nir_var_shader_in/out
5585     * modes.
5586     *
5587     * Note that this destroys dual-slot information i.e. whether an input
5588     * occupies the low or high half of dvec4. Instead, it adds an offset of 1
5589     * to the load (which is ambiguous) and expects driver locations of inputs
5590     * to be final, which prevents any further optimizations.
5591     *
5592     * TODO: remove this in favor of nir_lower_io_lower_64bit_to_32_new.
5593     */
5594    nir_lower_io_lower_64bit_to_32 = (1 << 0),
5595 
5596    /* If set, this causes the subset of 64-bit IO operations involving floats to be lowered on-the-fly
5597     * to 32-bit operations.  This is only valid for nir_var_shader_in/out
5598     * modes.
5599     */
5600    nir_lower_io_lower_64bit_float_to_32 = (1 << 1),
5601 
5602    /* This causes all 64-bit IO operations to be lowered to 32-bit operations.
5603     * This is only valid for nir_var_shader_in/out modes.
5604     *
5605     * Only VS inputs: Dual slot information is preserved as nir_io_semantics::
5606     * high_dvec2 and gathered into shader_info::dual_slot_inputs, so that
5607     * the shader can be arbitrarily optimized and the low or high half of
5608     * dvec4 can be DCE'd independently without affecting the other half.
5609     */
5610    nir_lower_io_lower_64bit_to_32_new = (1 << 2),
5611 } nir_lower_io_options;
5612 bool nir_lower_io(nir_shader *shader,
5613                   nir_variable_mode modes,
5614                   int (*type_size)(const struct glsl_type *, bool),
5615                   nir_lower_io_options);
5616 
5617 bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode modes);
5618 bool nir_lower_color_inputs(nir_shader *nir);
5619 void nir_lower_io_passes(nir_shader *nir, bool renumber_vs_inputs);
5620 bool nir_io_add_intrinsic_xfb_info(nir_shader *nir);
5621 
5622 bool
5623 nir_lower_vars_to_explicit_types(nir_shader *shader,
5624                                  nir_variable_mode modes,
5625                                  glsl_type_size_align_func type_info);
5626 void
5627 nir_gather_explicit_io_initializers(nir_shader *shader,
5628                                     void *dst, size_t dst_size,
5629                                     nir_variable_mode mode);
5630 
5631 bool nir_lower_vec3_to_vec4(nir_shader *shader, nir_variable_mode modes);
5632 
5633 typedef enum {
5634    /**
5635     * An address format which is a simple 32-bit global GPU address.
5636     */
5637    nir_address_format_32bit_global,
5638 
5639    /**
5640     * An address format which is a simple 64-bit global GPU address.
5641     */
5642    nir_address_format_64bit_global,
5643 
5644    /**
5645     * An address format which is a 64-bit global GPU address encoded as a
5646     * 2x32-bit vector.
5647     */
5648    nir_address_format_2x32bit_global,
5649 
5650    /**
5651     * An address format which is a 64-bit global base address and a 32-bit
5652     * offset.
5653     *
5654     * This is identical to 64bit_bounded_global except that bounds checking
5655     * is not applied when lowering to global access.  Even though the size is
5656     * never used for an actual bounds check, it needs to be valid so we can
5657     * lower deref_buffer_array_length properly.
5658     */
5659    nir_address_format_64bit_global_32bit_offset,
5660 
5661    /**
5662     * An address format which is a bounds-checked 64-bit global GPU address.
5663     *
5664     * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
5665     * address stored with the low bits in .x and high bits in .y, .z is a
5666     * size, and .w is an offset.  When the final I/O operation is lowered, .w
5667     * is checked against .z and the operation is predicated on the result.
5668     */
5669    nir_address_format_64bit_bounded_global,
5670 
5671    /**
5672     * An address format which is comprised of a vec2 where the first
5673     * component is a buffer index and the second is an offset.
5674     */
5675    nir_address_format_32bit_index_offset,
5676 
5677    /**
5678     * An address format which is a 64-bit value, where the high 32 bits
5679     * are a buffer index, and the low 32 bits are an offset.
5680     */
5681    nir_address_format_32bit_index_offset_pack64,
5682 
5683    /**
5684     * An address format which is comprised of a vec3 where the first two
5685     * components specify the buffer and the third is an offset.
5686     */
5687    nir_address_format_vec2_index_32bit_offset,
5688 
5689    /**
5690     * An address format which represents generic pointers with a 62-bit
5691     * pointer and a 2-bit enum in the top two bits.  The top two bits have
5692     * the following meanings:
5693     *
5694     *  - 0x0: Global memory
5695     *  - 0x1: Shared memory
5696     *  - 0x2: Scratch memory
5697     *  - 0x3: Global memory
5698     *
5699     * The redundancy between 0x0 and 0x3 is because of Intel sign-extension of
5700     * addresses.  Valid global memory addresses may naturally have either 0 or
5701     * ~0 as their high bits.
5702     *
5703     * Shared and scratch pointers are represented as 32-bit offsets with the
5704     * top 32 bits only being used for the enum.  This allows us to avoid
5705     * 64-bit address calculations in a bunch of cases.
5706     */
5707    nir_address_format_62bit_generic,
5708 
5709    /**
5710     * An address format which is a simple 32-bit offset.
5711     */
5712    nir_address_format_32bit_offset,
5713 
5714    /**
5715     * An address format which is a simple 32-bit offset cast to 64-bit.
5716     */
5717    nir_address_format_32bit_offset_as_64bit,
5718 
5719    /**
5720     * An address format representing a purely logical addressing model.  In
5721     * this model, all deref chains must be complete from the dereference
5722     * operation to the variable.  Cast derefs are not allowed.  These
5723     * addresses will be 32-bit scalars but the format is immaterial because
5724     * you can always chase the chain.
5725     */
5726    nir_address_format_logical,
5727 } nir_address_format;
5728 
5729 unsigned
5730 nir_address_format_bit_size(nir_address_format addr_format);
5731 
5732 unsigned
5733 nir_address_format_num_components(nir_address_format addr_format);
5734 
5735 static inline const struct glsl_type *
nir_address_format_to_glsl_type(nir_address_format addr_format)5736 nir_address_format_to_glsl_type(nir_address_format addr_format)
5737 {
5738    unsigned bit_size = nir_address_format_bit_size(addr_format);
5739    assert(bit_size == 32 || bit_size == 64);
5740    return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
5741                            nir_address_format_num_components(addr_format));
5742 }
5743 
5744 const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
5745 
5746 nir_def *nir_build_addr_iadd(struct nir_builder *b, nir_def *addr,
5747                              nir_address_format addr_format,
5748                              nir_variable_mode modes,
5749                              nir_def *offset);
5750 
5751 nir_def *nir_build_addr_iadd_imm(struct nir_builder *b, nir_def *addr,
5752                                  nir_address_format addr_format,
5753                                  nir_variable_mode modes,
5754                                  int64_t offset);
5755 
5756 nir_def *nir_build_addr_ieq(struct nir_builder *b, nir_def *addr0, nir_def *addr1,
5757                             nir_address_format addr_format);
5758 
5759 nir_def *nir_build_addr_isub(struct nir_builder *b, nir_def *addr0, nir_def *addr1,
5760                              nir_address_format addr_format);
5761 
5762 nir_def *nir_explicit_io_address_from_deref(struct nir_builder *b,
5763                                             nir_deref_instr *deref,
5764                                             nir_def *base_addr,
5765                                             nir_address_format addr_format);
5766 
5767 bool nir_get_explicit_deref_align(nir_deref_instr *deref,
5768                                   bool default_to_type_align,
5769                                   uint32_t *align_mul,
5770                                   uint32_t *align_offset);
5771 
5772 void nir_lower_explicit_io_instr(struct nir_builder *b,
5773                                  nir_intrinsic_instr *io_instr,
5774                                  nir_def *addr,
5775                                  nir_address_format addr_format);
5776 
5777 bool nir_lower_explicit_io(nir_shader *shader,
5778                            nir_variable_mode modes,
5779                            nir_address_format);
5780 
5781 typedef struct {
5782    uint8_t num_components;
5783    uint8_t bit_size;
5784    uint16_t align;
5785 } nir_mem_access_size_align;
5786 
5787 /* clang-format off */
5788 typedef nir_mem_access_size_align
5789    (*nir_lower_mem_access_bit_sizes_cb)(nir_intrinsic_op intrin,
5790                                         uint8_t bytes,
5791                                         uint8_t bit_size,
5792                                         uint32_t align_mul,
5793                                         uint32_t align_offset,
5794                                         bool offset_is_const,
5795                                         const void *cb_data);
5796 /* clang-format on */
5797 
5798 typedef struct {
5799    nir_lower_mem_access_bit_sizes_cb callback;
5800    nir_variable_mode modes;
5801    bool may_lower_unaligned_stores_to_atomics;
5802    void *cb_data;
5803 } nir_lower_mem_access_bit_sizes_options;
5804 
5805 bool nir_lower_mem_access_bit_sizes(nir_shader *shader,
5806                                     const nir_lower_mem_access_bit_sizes_options *options);
5807 
5808 typedef struct {
5809    /* Lower load_ubo to be robust. Out-of-bounds loads will return UNDEFINED
5810     * values (not necessarily zero).
5811     */
5812    bool lower_ubo;
5813 
5814    /* Lower load_ssbo/store_ssbo/ssbo_atomic(_swap) to be robust. Out-of-bounds
5815     * loads and atomics will return UNDEFINED values (not necessarily zero).
5816     * Out-of-bounds stores and atomics CORRUPT the contents of the SSBO.
5817     *
5818     * This suffices for robustBufferAccess but not robustBufferAccess2.
5819     */
5820    bool lower_ssbo;
5821 
5822    /* Lower all image_load/image_store/image_atomic(_swap) instructions to be
5823     * robust.  Out-of-bounds loads will return ZERO.
5824     *
5825     * This suffices for robustImageAccess but not robustImageAccess2.
5826     */
5827    bool lower_image;
5828 
5829    /* Lower all buffer image instructions as above. Implied by lower_image. */
5830    bool lower_buffer_image;
5831 
5832    /* Lower image_atomic(_swap) for all dimensions. Implied by lower_image. */
5833    bool lower_image_atomic;
5834 
5835    /* Vulkan's robustBufferAccess feature is only concerned with buffers that
5836     * are bound through descriptor sets, so shared memory is not included, but
5837     * it may be useful to enable this for debugging.
5838     */
5839    bool lower_shared;
5840 } nir_lower_robust_access_options;
5841 
5842 bool nir_lower_robust_access(nir_shader *s,
5843                              const nir_lower_robust_access_options *opts);
5844 
5845 /* clang-format off */
5846 typedef bool (*nir_should_vectorize_mem_func)(unsigned align_mul,
5847                                               unsigned align_offset,
5848                                               unsigned bit_size,
5849                                               unsigned num_components,
5850                                               nir_intrinsic_instr *low,
5851                                               nir_intrinsic_instr *high,
5852                                               void *data);
5853 /* clang-format on */
5854 
5855 typedef struct {
5856    nir_should_vectorize_mem_func callback;
5857    nir_variable_mode modes;
5858    nir_variable_mode robust_modes;
5859    void *cb_data;
5860    bool has_shared2_amd;
5861 } nir_load_store_vectorize_options;
5862 
5863 bool nir_opt_load_store_vectorize(nir_shader *shader, const nir_load_store_vectorize_options *options);
5864 bool nir_opt_load_store_update_alignments(nir_shader *shader);
5865 
5866 typedef bool (*nir_lower_shader_calls_should_remat_func)(nir_instr *instr, void *data);
5867 
5868 typedef struct nir_lower_shader_calls_options {
5869    /* Address format used for load/store operations on the call stack. */
5870    nir_address_format address_format;
5871 
5872    /* Stack alignment */
5873    unsigned stack_alignment;
5874 
5875    /* Put loads from the stack as close as possible from where they're needed.
5876     * You might want to disable combined_loads for best effects.
5877     */
5878    bool localized_loads;
5879 
5880    /* If this function pointer is not NULL, lower_shader_calls will run
5881     * nir_opt_load_store_vectorize for stack load/store operations. Otherwise
5882     * the optimizaion is not run.
5883     */
5884    nir_should_vectorize_mem_func vectorizer_callback;
5885 
5886    /* Data passed to vectorizer_callback */
5887    void *vectorizer_data;
5888 
5889    /* If this function pointer is not NULL, lower_shader_calls will call this
5890     * function on instructions that require spill/fill/rematerialization of
5891     * their value. If this function returns true, lower_shader_calls will
5892     * ensure that the instruction is rematerialized, adding the sources of the
5893     * instruction to be spilled/filled.
5894     */
5895    nir_lower_shader_calls_should_remat_func should_remat_callback;
5896 
5897    /* Data passed to should_remat_callback */
5898    void *should_remat_data;
5899 } nir_lower_shader_calls_options;
5900 
5901 bool
5902 nir_lower_shader_calls(nir_shader *shader,
5903                        const nir_lower_shader_calls_options *options,
5904                        nir_shader ***resume_shaders_out,
5905                        uint32_t *num_resume_shaders_out,
5906                        void *mem_ctx);
5907 
5908 int nir_get_io_offset_src_number(const nir_intrinsic_instr *instr);
5909 int nir_get_io_arrayed_index_src_number(const nir_intrinsic_instr *instr);
5910 
5911 nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
5912 nir_src *nir_get_io_arrayed_index_src(nir_intrinsic_instr *instr);
5913 nir_src *nir_get_shader_call_payload_src(nir_intrinsic_instr *call);
5914 
5915 bool nir_is_arrayed_io(const nir_variable *var, gl_shader_stage stage);
5916 
5917 bool nir_lower_reg_intrinsics_to_ssa_impl(nir_function_impl *impl);
5918 bool nir_lower_reg_intrinsics_to_ssa(nir_shader *shader);
5919 bool nir_lower_vars_to_ssa(nir_shader *shader);
5920 
5921 bool nir_remove_dead_derefs(nir_shader *shader);
5922 bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
5923 
5924 typedef struct nir_remove_dead_variables_options {
5925    bool (*can_remove_var)(nir_variable *var, void *data);
5926    void *can_remove_var_data;
5927 } nir_remove_dead_variables_options;
5928 
5929 bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes,
5930                                const nir_remove_dead_variables_options *options);
5931 
5932 bool nir_lower_variable_initializers(nir_shader *shader,
5933                                      nir_variable_mode modes);
5934 bool nir_zero_initialize_shared_memory(nir_shader *shader,
5935                                        const unsigned shared_size,
5936                                        const unsigned chunk_size);
5937 bool nir_clear_shared_memory(nir_shader *shader,
5938                              const unsigned shared_size,
5939                              const unsigned chunk_size);
5940 
5941 bool nir_move_vec_src_uses_to_dest(nir_shader *shader, bool skip_const_srcs);
5942 bool nir_lower_vec_to_regs(nir_shader *shader, nir_instr_writemask_filter_cb cb,
5943                            const void *_data);
5944 bool nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
5945                           bool alpha_to_one,
5946                           const gl_state_index16 *alpha_ref_state_tokens);
5947 bool nir_lower_alu(nir_shader *shader);
5948 
5949 bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
5950                     bool always_precise);
5951 
5952 bool nir_scale_fdiv(nir_shader *shader);
5953 
5954 bool nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
5955 bool nir_lower_alu_width(nir_shader *shader, nir_vectorize_cb cb, const void *data);
5956 bool nir_lower_alu_vec8_16_srcs(nir_shader *shader);
5957 bool nir_lower_bool_to_bitsize(nir_shader *shader);
5958 bool nir_lower_bool_to_float(nir_shader *shader, bool has_fcsel_ne);
5959 bool nir_lower_bool_to_int32(nir_shader *shader);
5960 bool nir_opt_simplify_convert_alu_types(nir_shader *shader);
5961 bool nir_lower_const_arrays_to_uniforms(nir_shader *shader,
5962                                         unsigned max_uniform_components);
5963 bool nir_lower_convert_alu_types(nir_shader *shader,
5964                                  bool (*should_lower)(nir_intrinsic_instr *));
5965 bool nir_lower_constant_convert_alu_types(nir_shader *shader);
5966 bool nir_lower_alu_conversion_to_intrinsic(nir_shader *shader);
5967 bool nir_lower_int_to_float(nir_shader *shader);
5968 bool nir_lower_load_const_to_scalar(nir_shader *shader);
5969 bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
5970 bool nir_lower_phis_to_scalar(nir_shader *shader, bool lower_all);
5971 void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
5972 bool nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
5973                                                   bool outputs_only);
5974 bool nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask, nir_instr_filter_cb filter, void *filter_data);
5975 bool nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
5976 bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
5977 bool nir_vectorize_tess_levels(nir_shader *shader);
5978 nir_shader *nir_create_passthrough_tcs_impl(const nir_shader_compiler_options *options,
5979                                             unsigned *locations, unsigned num_locations,
5980                                             uint8_t patch_vertices);
5981 nir_shader *nir_create_passthrough_tcs(const nir_shader_compiler_options *options,
5982                                        const nir_shader *vs, uint8_t patch_vertices);
5983 nir_shader *nir_create_passthrough_gs(const nir_shader_compiler_options *options,
5984                                       const nir_shader *prev_stage,
5985                                       enum mesa_prim primitive_type,
5986                                       enum mesa_prim output_primitive_type,
5987                                       bool emulate_edgeflags,
5988                                       bool force_line_strip_out);
5989 
5990 bool nir_lower_fragcolor(nir_shader *shader, unsigned max_cbufs);
5991 bool nir_lower_fragcoord_wtrans(nir_shader *shader);
5992 bool nir_lower_frag_coord_to_pixel_coord(nir_shader *shader);
5993 bool nir_lower_viewport_transform(nir_shader *shader);
5994 bool nir_lower_uniforms_to_ubo(nir_shader *shader, bool dword_packed, bool load_vec4);
5995 
5996 bool nir_lower_is_helper_invocation(nir_shader *shader);
5997 
5998 bool nir_lower_single_sampled(nir_shader *shader);
5999 
6000 typedef struct nir_lower_subgroups_options {
6001    /* In addition to the boolean lowering options below, this optional callback
6002     * will filter instructions for lowering if non-NULL. The data passed will be
6003     * this options struct itself.
6004     */
6005    nir_instr_filter_cb filter;
6006 
6007    uint8_t subgroup_size;
6008    uint8_t ballot_bit_size;
6009    uint8_t ballot_components;
6010    bool lower_to_scalar : 1;
6011    bool lower_vote_trivial : 1;
6012    bool lower_vote_eq : 1;
6013    bool lower_vote_bool_eq : 1;
6014    bool lower_first_invocation_to_ballot : 1;
6015    bool lower_read_first_invocation : 1;
6016    bool lower_subgroup_masks : 1;
6017    bool lower_relative_shuffle : 1;
6018    bool lower_shuffle_to_32bit : 1;
6019    bool lower_shuffle_to_swizzle_amd : 1;
6020    bool lower_shuffle : 1;
6021    bool lower_quad : 1;
6022    bool lower_quad_broadcast_dynamic : 1;
6023    bool lower_quad_broadcast_dynamic_to_const : 1;
6024    bool lower_elect : 1;
6025    bool lower_read_invocation_to_cond : 1;
6026    bool lower_rotate_to_shuffle : 1;
6027    bool lower_ballot_bit_count_to_mbcnt_amd : 1;
6028    bool lower_inverse_ballot : 1;
6029    bool lower_reduce : 1;
6030    bool lower_boolean_reduce : 1;
6031    bool lower_boolean_shuffle : 1;
6032 } nir_lower_subgroups_options;
6033 
6034 bool nir_lower_subgroups(nir_shader *shader,
6035                          const nir_lower_subgroups_options *options);
6036 
6037 bool nir_lower_system_values(nir_shader *shader);
6038 
6039 nir_def *
6040 nir_build_lowered_load_helper_invocation(struct nir_builder *b);
6041 
6042 typedef struct nir_lower_compute_system_values_options {
6043    bool has_base_global_invocation_id : 1;
6044    bool has_base_workgroup_id : 1;
6045    bool has_global_size : 1;
6046    bool shuffle_local_ids_for_quad_derivatives : 1;
6047    bool lower_local_invocation_index : 1;
6048    bool lower_cs_local_id_to_index : 1;
6049    bool lower_workgroup_id_to_index : 1;
6050    /* At shader execution time, check if WorkGroupId should be 1D
6051     * and compute it quickly. Fall back to slow computation if not.
6052     */
6053    bool shortcut_1d_workgroup_id : 1;
6054    uint32_t num_workgroups[3]; /* Compile-time-known dispatch sizes, or 0 if unknown. */
6055 } nir_lower_compute_system_values_options;
6056 
6057 bool nir_lower_compute_system_values(nir_shader *shader,
6058                                      const nir_lower_compute_system_values_options *options);
6059 
6060 struct nir_lower_sysvals_to_varyings_options {
6061    bool frag_coord : 1;
6062    bool front_face : 1;
6063    bool point_coord : 1;
6064 };
6065 
6066 bool
6067 nir_lower_sysvals_to_varyings(nir_shader *shader,
6068                               const struct nir_lower_sysvals_to_varyings_options *options);
6069 
6070 /***/
6071 enum ENUM_PACKED nir_lower_tex_packing {
6072    /** No packing */
6073    nir_lower_tex_packing_none = 0,
6074    /**
6075     * The sampler returns up to 2 32-bit words of half floats or 16-bit signed
6076     * or unsigned ints based on the sampler type
6077     */
6078    nir_lower_tex_packing_16,
6079    /** The sampler returns 1 32-bit word of 4x8 unorm */
6080    nir_lower_tex_packing_8,
6081 };
6082 
6083 /***/
6084 typedef struct nir_lower_tex_options {
6085    /**
6086     * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
6087     * sampler types a texture projector is lowered.
6088     */
6089    unsigned lower_txp;
6090 
6091    /**
6092     * If true, lower texture projector for any array sampler dims
6093     */
6094    bool lower_txp_array;
6095 
6096    /**
6097     * If true, lower away nir_tex_src_offset for all texelfetch instructions.
6098     */
6099    bool lower_txf_offset;
6100 
6101    /**
6102     * If true, lower away nir_tex_src_offset for all rect textures.
6103     */
6104    bool lower_rect_offset;
6105 
6106    /**
6107     * If not NULL, this filter will return true for tex instructions that
6108     * should lower away nir_tex_src_offset.
6109     */
6110    nir_instr_filter_cb lower_offset_filter;
6111 
6112    /**
6113     * If true, lower rect textures to 2D, using txs to fetch the
6114     * texture dimensions and dividing the texture coords by the
6115     * texture dims to normalize.
6116     */
6117    bool lower_rect;
6118 
6119    /**
6120     * If true, lower 1D textures to 2D. This requires the GL/VK driver to map 1D
6121     * textures to 2D textures with height=1.
6122     *
6123     * lower_1d_shadow does this lowering for shadow textures only.
6124     */
6125    bool lower_1d;
6126    bool lower_1d_shadow;
6127 
6128    /**
6129     * If true, convert yuv to rgb.
6130     */
6131    unsigned lower_y_uv_external;
6132    unsigned lower_y_vu_external;
6133    unsigned lower_y_u_v_external;
6134    unsigned lower_yx_xuxv_external;
6135    unsigned lower_yx_xvxu_external;
6136    unsigned lower_xy_uxvx_external;
6137    unsigned lower_xy_vxux_external;
6138    unsigned lower_ayuv_external;
6139    unsigned lower_xyuv_external;
6140    unsigned lower_yuv_external;
6141    unsigned lower_yu_yv_external;
6142    unsigned lower_yv_yu_external;
6143    unsigned lower_y41x_external;
6144    unsigned bt709_external;
6145    unsigned bt2020_external;
6146    unsigned yuv_full_range_external;
6147 
6148    /**
6149     * To emulate certain texture wrap modes, this can be used
6150     * to saturate the specified tex coord to [0.0, 1.0].  The
6151     * bits are according to sampler #, ie. if, for example:
6152     *
6153     *   (conf->saturate_s & (1 << n))
6154     *
6155     * is true, then the s coord for sampler n is saturated.
6156     *
6157     * Note that clamping must happen *after* projector lowering
6158     * so any projected texture sample instruction with a clamped
6159     * coordinate gets automatically lowered, regardless of the
6160     * 'lower_txp' setting.
6161     */
6162    unsigned saturate_s;
6163    unsigned saturate_t;
6164    unsigned saturate_r;
6165 
6166    /* Bitmask of textures that need swizzling.
6167     *
6168     * If (swizzle_result & (1 << texture_index)), then the swizzle in
6169     * swizzles[texture_index] is applied to the result of the texturing
6170     * operation.
6171     */
6172    unsigned swizzle_result;
6173 
6174    /* A swizzle for each texture.  Values 0-3 represent x, y, z, or w swizzles
6175     * while 4 and 5 represent 0 and 1 respectively.
6176     *
6177     * Indexed by texture-id.
6178     */
6179    uint8_t swizzles[32][4];
6180 
6181    /* Can be used to scale sampled values in range required by the
6182     * format.
6183     *
6184     * Indexed by texture-id.
6185     */
6186    float scale_factors[32];
6187 
6188    /**
6189     * Bitmap of textures that need srgb to linear conversion.  If
6190     * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
6191     * of the texture are lowered to linear.
6192     */
6193    unsigned lower_srgb;
6194 
6195    /**
6196     * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
6197     */
6198    bool lower_txd_cube_map;
6199 
6200    /**
6201     * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
6202     */
6203    bool lower_txd_3d;
6204 
6205    /**
6206     * If true, lower nir_texop_txd any array surfaces with nir_texop_txl.
6207     */
6208    bool lower_txd_array;
6209 
6210    /**
6211     * If true, lower nir_texop_txd on shadow samplers (except cube maps)
6212     * with nir_texop_txl. Notice that cube map shadow samplers are lowered
6213     * with lower_txd_cube_map.
6214     */
6215    bool lower_txd_shadow;
6216 
6217    /**
6218     * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
6219     * Implies lower_txd_cube_map and lower_txd_shadow.
6220     */
6221    bool lower_txd;
6222 
6223    /**
6224     * If true, lower nir_texop_txd  when it uses min_lod.
6225     */
6226    bool lower_txd_clamp;
6227 
6228    /**
6229     * If true, lower nir_texop_txb that try to use shadow compare and min_lod
6230     * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
6231     */
6232    bool lower_txb_shadow_clamp;
6233 
6234    /**
6235     * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
6236     * with nir_texop_txl.  This includes cube maps.
6237     */
6238    bool lower_txd_shadow_clamp;
6239 
6240    /**
6241     * If true, lower nir_texop_txd on when it uses both offset and min_lod
6242     * with nir_texop_txl.  This includes cube maps.
6243     */
6244    bool lower_txd_offset_clamp;
6245 
6246    /**
6247     * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
6248     * sampler is bindless.
6249     */
6250    bool lower_txd_clamp_bindless_sampler;
6251 
6252    /**
6253     * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
6254     * sampler index is not statically determinable to be less than 16.
6255     */
6256    bool lower_txd_clamp_if_sampler_index_not_lt_16;
6257 
6258    /**
6259     * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
6260     * 0-lod followed by a nir_ishr.
6261     */
6262    bool lower_txs_lod;
6263 
6264    /**
6265     * If true, lower nir_texop_txs for cube arrays to a nir_texop_txs with a
6266     * 2D array type followed by a nir_idiv by 6.
6267     */
6268    bool lower_txs_cube_array;
6269 
6270    /**
6271     * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
6272     * mixed-up tg4 locations.
6273     */
6274    bool lower_tg4_broadcom_swizzle;
6275 
6276    /**
6277     * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
6278     */
6279    bool lower_tg4_offsets;
6280 
6281    /**
6282     * Lower txf_ms to fragment_mask_fetch and fragment_fetch and samples_identical to
6283     * fragment_mask_fetch.
6284     */
6285    bool lower_to_fragment_fetch_amd;
6286 
6287    /**
6288     * To lower packed sampler return formats. This will be called for all
6289     * tex instructions.
6290     */
6291    enum nir_lower_tex_packing (*lower_tex_packing_cb)(const nir_tex_instr *tex, const void *data);
6292    const void *lower_tex_packing_data;
6293 
6294    /**
6295     * If true, lower nir_texop_lod to return -FLT_MAX if the sum of the
6296     * absolute values of derivatives is 0 for all coordinates.
6297     */
6298    bool lower_lod_zero_width;
6299 
6300    /* Turns nir_op_tex and other ops with an implicit derivative, in stages
6301     * without implicit derivatives (like the vertex shader) to have an explicit
6302     * LOD with a value of 0.
6303     */
6304    bool lower_invalid_implicit_lod;
6305 
6306    /* If true, texture_index (sampler_index) will be zero if a texture_offset
6307     * (sampler_offset) source is present. This is convenient for backends that
6308     * support indirect indexing of textures (samplers) but not offsetting it.
6309     */
6310    bool lower_index_to_offset;
6311 
6312    /**
6313     * Payload data to be sent to callback / filter functions.
6314     */
6315    void *callback_data;
6316 } nir_lower_tex_options;
6317 
6318 /** Lowers complex texture instructions to simpler ones */
6319 bool nir_lower_tex(nir_shader *shader,
6320                    const nir_lower_tex_options *options);
6321 
6322 typedef struct nir_lower_tex_shadow_swizzle {
6323    unsigned swizzle_r : 3;
6324    unsigned swizzle_g : 3;
6325    unsigned swizzle_b : 3;
6326    unsigned swizzle_a : 3;
6327 } nir_lower_tex_shadow_swizzle;
6328 
6329 bool
6330 nir_lower_tex_shadow(nir_shader *s,
6331                      unsigned n_states,
6332                      enum compare_func *compare_func,
6333                      nir_lower_tex_shadow_swizzle *tex_swizzles);
6334 
6335 typedef struct nir_lower_image_options {
6336    /**
6337     * If true, lower cube size operations.
6338     */
6339    bool lower_cube_size;
6340 
6341    /**
6342     * Lower multi sample image load and samples_identical to use fragment_mask_load.
6343     */
6344    bool lower_to_fragment_mask_load_amd;
6345 
6346    /**
6347     * Lower image_samples to a constant in case the driver doesn't support multisampled
6348     * images.
6349     */
6350    bool lower_image_samples_to_one;
6351 } nir_lower_image_options;
6352 
6353 bool nir_lower_image(nir_shader *nir,
6354                      const nir_lower_image_options *options);
6355 
6356 bool
6357 nir_lower_image_atomics_to_global(nir_shader *s);
6358 
6359 bool nir_lower_readonly_images_to_tex(nir_shader *shader, bool per_variable);
6360 
6361 enum nir_lower_non_uniform_access_type {
6362    nir_lower_non_uniform_ubo_access = (1 << 0),
6363    nir_lower_non_uniform_ssbo_access = (1 << 1),
6364    nir_lower_non_uniform_texture_access = (1 << 2),
6365    nir_lower_non_uniform_image_access = (1 << 3),
6366    nir_lower_non_uniform_get_ssbo_size = (1 << 4),
6367 };
6368 
6369 /* Given the nir_src used for the resource, return the channels which might be non-uniform. */
6370 typedef nir_component_mask_t (*nir_lower_non_uniform_access_callback)(const nir_src *, void *);
6371 
6372 typedef struct nir_lower_non_uniform_access_options {
6373    enum nir_lower_non_uniform_access_type types;
6374    nir_lower_non_uniform_access_callback callback;
6375    void *callback_data;
6376 } nir_lower_non_uniform_access_options;
6377 
6378 bool nir_has_non_uniform_access(nir_shader *shader, enum nir_lower_non_uniform_access_type types);
6379 bool nir_opt_non_uniform_access(nir_shader *shader);
6380 bool nir_lower_non_uniform_access(nir_shader *shader,
6381                                   const nir_lower_non_uniform_access_options *options);
6382 
6383 typedef struct {
6384    /* Whether 16-bit floating point arithmetic should be allowed in 8-bit
6385     * division lowering
6386     */
6387    bool allow_fp16;
6388 } nir_lower_idiv_options;
6389 
6390 bool nir_lower_idiv(nir_shader *shader, const nir_lower_idiv_options *options);
6391 
6392 typedef struct nir_input_attachment_options {
6393    bool use_fragcoord_sysval;
6394    bool use_layer_id_sysval;
6395    bool use_view_id_for_layer;
6396    uint32_t unscaled_input_attachment_ir3;
6397 } nir_input_attachment_options;
6398 
6399 bool nir_lower_input_attachments(nir_shader *shader,
6400                                  const nir_input_attachment_options *options);
6401 
6402 bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables,
6403                        bool use_vars,
6404                        bool use_clipdist_array,
6405                        const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
6406 bool nir_lower_clip_gs(nir_shader *shader, unsigned ucp_enables,
6407                        bool use_clipdist_array,
6408                        const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
6409 bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables,
6410                        bool use_clipdist_array);
6411 
6412 bool nir_lower_clip_cull_distance_to_vec4s(nir_shader *shader);
6413 bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
6414 bool nir_lower_clip_disable(nir_shader *shader, unsigned clip_plane_enable);
6415 
6416 bool nir_lower_point_size_mov(nir_shader *shader,
6417                               const gl_state_index16 *pointsize_state_tokens);
6418 
6419 bool nir_lower_frexp(nir_shader *nir);
6420 
6421 bool nir_lower_two_sided_color(nir_shader *shader, bool face_sysval);
6422 
6423 bool nir_lower_clamp_color_outputs(nir_shader *shader);
6424 
6425 bool nir_lower_flatshade(nir_shader *shader);
6426 
6427 bool nir_lower_passthrough_edgeflags(nir_shader *shader);
6428 bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
6429                               const gl_state_index16 *uniform_state_tokens);
6430 
6431 typedef struct nir_lower_wpos_ytransform_options {
6432    gl_state_index16 state_tokens[STATE_LENGTH];
6433    bool fs_coord_origin_upper_left : 1;
6434    bool fs_coord_origin_lower_left : 1;
6435    bool fs_coord_pixel_center_integer : 1;
6436    bool fs_coord_pixel_center_half_integer : 1;
6437 } nir_lower_wpos_ytransform_options;
6438 
6439 bool nir_lower_wpos_ytransform(nir_shader *shader,
6440                                const nir_lower_wpos_ytransform_options *options);
6441 bool nir_lower_wpos_center(nir_shader *shader);
6442 
6443 bool nir_lower_pntc_ytransform(nir_shader *shader,
6444                                const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
6445 
6446 bool nir_lower_wrmasks(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
6447 
6448 bool nir_lower_fb_read(nir_shader *shader);
6449 
6450 typedef struct nir_lower_drawpixels_options {
6451    gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
6452    gl_state_index16 scale_state_tokens[STATE_LENGTH];
6453    gl_state_index16 bias_state_tokens[STATE_LENGTH];
6454    unsigned drawpix_sampler;
6455    unsigned pixelmap_sampler;
6456    bool pixel_maps : 1;
6457    bool scale_and_bias : 1;
6458 } nir_lower_drawpixels_options;
6459 
6460 bool nir_lower_drawpixels(nir_shader *shader,
6461                           const nir_lower_drawpixels_options *options);
6462 
6463 typedef struct nir_lower_bitmap_options {
6464    unsigned sampler;
6465    bool swizzle_xxxx;
6466 } nir_lower_bitmap_options;
6467 
6468 bool nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
6469 
6470 bool nir_lower_atomics_to_ssbo(nir_shader *shader, unsigned offset_align_state);
6471 
6472 typedef enum {
6473    nir_lower_gs_intrinsics_per_stream = 1 << 0,
6474    nir_lower_gs_intrinsics_count_primitives = 1 << 1,
6475    nir_lower_gs_intrinsics_count_vertices_per_primitive = 1 << 2,
6476    nir_lower_gs_intrinsics_overwrite_incomplete = 1 << 3,
6477    nir_lower_gs_intrinsics_always_end_primitive = 1 << 4,
6478    nir_lower_gs_intrinsics_count_decomposed_primitives = 1 << 5,
6479 } nir_lower_gs_intrinsics_flags;
6480 
6481 bool nir_lower_gs_intrinsics(nir_shader *shader, nir_lower_gs_intrinsics_flags options);
6482 
6483 bool nir_lower_tess_coord_z(nir_shader *shader, bool triangles);
6484 
6485 typedef struct {
6486    bool payload_to_shared_for_atomics : 1;
6487    bool payload_to_shared_for_small_types : 1;
6488    uint32_t payload_offset_in_bytes;
6489 } nir_lower_task_shader_options;
6490 
6491 bool nir_lower_task_shader(nir_shader *shader, nir_lower_task_shader_options options);
6492 
6493 typedef unsigned (*nir_lower_bit_size_callback)(const nir_instr *, void *);
6494 
6495 bool nir_lower_bit_size(nir_shader *shader,
6496                         nir_lower_bit_size_callback callback,
6497                         void *callback_data);
6498 bool nir_lower_64bit_phis(nir_shader *shader);
6499 
6500 bool nir_split_64bit_vec3_and_vec4(nir_shader *shader);
6501 
6502 nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
6503 bool nir_lower_int64(nir_shader *shader);
6504 bool nir_lower_int64_float_conversions(nir_shader *shader);
6505 
6506 nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
6507 bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
6508                        nir_lower_doubles_options options);
6509 bool nir_lower_pack(nir_shader *shader);
6510 
6511 bool nir_recompute_io_bases(nir_shader *nir, nir_variable_mode modes);
6512 bool nir_lower_mediump_vars(nir_shader *nir, nir_variable_mode modes);
6513 bool nir_lower_mediump_io(nir_shader *nir, nir_variable_mode modes,
6514                           uint64_t varying_mask, bool use_16bit_slots);
6515 bool nir_force_mediump_io(nir_shader *nir, nir_variable_mode modes,
6516                           nir_alu_type types);
6517 bool nir_unpack_16bit_varying_slots(nir_shader *nir, nir_variable_mode modes);
6518 
6519 struct nir_opt_tex_srcs_options {
6520    unsigned sampler_dims;
6521    unsigned src_types;
6522 };
6523 
6524 struct nir_opt_16bit_tex_image_options {
6525    nir_rounding_mode rounding_mode;
6526    nir_alu_type opt_tex_dest_types;
6527    nir_alu_type opt_image_dest_types;
6528    bool integer_dest_saturates;
6529    bool opt_image_store_data;
6530    bool opt_image_srcs;
6531    unsigned opt_srcs_options_count;
6532    struct nir_opt_tex_srcs_options *opt_srcs_options;
6533 };
6534 
6535 bool nir_opt_16bit_tex_image(nir_shader *nir,
6536                              struct nir_opt_16bit_tex_image_options *options);
6537 
6538 typedef struct {
6539    bool legalize_type;         /* whether this src should be legalized */
6540    uint8_t bit_size;           /* bit_size to enforce */
6541    nir_tex_src_type match_src; /* if bit_size is 0, match bit size of this */
6542 } nir_tex_src_type_constraint, nir_tex_src_type_constraints[nir_num_tex_src_types];
6543 
6544 bool nir_legalize_16bit_sampler_srcs(nir_shader *nir,
6545                                      nir_tex_src_type_constraints constraints);
6546 
6547 bool nir_lower_point_size(nir_shader *shader, float min, float max);
6548 
6549 void nir_lower_texcoord_replace(nir_shader *s, unsigned coord_replace,
6550                                 bool point_coord_is_sysval, bool yinvert);
6551 
6552 void nir_lower_texcoord_replace_late(nir_shader *s, unsigned coord_replace,
6553                                      bool point_coord_is_sysval);
6554 
6555 typedef enum {
6556    nir_lower_interpolation_at_sample = (1 << 1),
6557    nir_lower_interpolation_at_offset = (1 << 2),
6558    nir_lower_interpolation_centroid = (1 << 3),
6559    nir_lower_interpolation_pixel = (1 << 4),
6560    nir_lower_interpolation_sample = (1 << 5),
6561 } nir_lower_interpolation_options;
6562 
6563 bool nir_lower_interpolation(nir_shader *shader,
6564                              nir_lower_interpolation_options options);
6565 
6566 typedef enum {
6567    nir_lower_discard_if_to_cf = (1 << 0),
6568    nir_lower_demote_if_to_cf = (1 << 1),
6569    nir_lower_terminate_if_to_cf = (1 << 2),
6570 } nir_lower_discard_if_options;
6571 
6572 bool nir_lower_discard_if(nir_shader *shader, nir_lower_discard_if_options options);
6573 
6574 bool nir_lower_terminate_to_demote(nir_shader *nir);
6575 
6576 bool nir_lower_memory_model(nir_shader *shader);
6577 
6578 bool nir_lower_goto_ifs(nir_shader *shader);
6579 bool nir_lower_continue_constructs(nir_shader *shader);
6580 
6581 bool nir_shader_uses_view_index(nir_shader *shader);
6582 bool nir_can_lower_multiview(nir_shader *shader);
6583 bool nir_lower_multiview(nir_shader *shader, uint32_t view_mask);
6584 
6585 bool nir_lower_view_index_to_device_index(nir_shader *shader);
6586 
6587 typedef enum {
6588    nir_lower_fp16_rtz = (1 << 0),
6589    nir_lower_fp16_rtne = (1 << 1),
6590    nir_lower_fp16_ru = (1 << 2),
6591    nir_lower_fp16_rd = (1 << 3),
6592    nir_lower_fp16_all = 0xf,
6593    nir_lower_fp16_split_fp64 = (1 << 4),
6594 } nir_lower_fp16_cast_options;
6595 bool nir_lower_fp16_casts(nir_shader *shader, nir_lower_fp16_cast_options options);
6596 bool nir_normalize_cubemap_coords(nir_shader *shader);
6597 
6598 bool nir_shader_supports_implicit_lod(nir_shader *shader);
6599 
6600 void nir_live_defs_impl(nir_function_impl *impl);
6601 
6602 const BITSET_WORD *nir_get_live_defs(nir_cursor cursor, void *mem_ctx);
6603 
6604 void nir_loop_analyze_impl(nir_function_impl *impl,
6605                            nir_variable_mode indirect_mask,
6606                            bool force_unroll_sampler_indirect);
6607 
6608 bool nir_defs_interfere(nir_def *a, nir_def *b);
6609 
6610 bool nir_repair_ssa_impl(nir_function_impl *impl);
6611 bool nir_repair_ssa(nir_shader *shader);
6612 
6613 void nir_convert_loop_to_lcssa(nir_loop *loop);
6614 bool nir_convert_to_lcssa(nir_shader *shader, bool skip_invariants, bool skip_bool_invariants);
6615 void nir_divergence_analysis(nir_shader *shader);
6616 void nir_vertex_divergence_analysis(nir_shader *shader);
6617 bool nir_update_instr_divergence(nir_shader *shader, nir_instr *instr);
6618 bool nir_has_divergent_loop(nir_shader *shader);
6619 
6620 void
6621 nir_rewrite_uses_to_load_reg(struct nir_builder *b, nir_def *old,
6622                              nir_def *reg);
6623 
6624 /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
6625  * registers.  If false, convert all values (even those not involved in a phi
6626  * node) to registers.
6627  */
6628 bool nir_convert_from_ssa(nir_shader *shader,
6629                           bool phi_webs_only);
6630 
6631 bool nir_lower_phis_to_regs_block(nir_block *block);
6632 bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
6633 
6634 bool nir_rematerialize_deref_in_use_blocks(nir_deref_instr *instr);
6635 bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
6636 
6637 bool nir_lower_samplers(nir_shader *shader);
6638 bool nir_lower_cl_images(nir_shader *shader, bool lower_image_derefs, bool lower_sampler_derefs);
6639 bool nir_dedup_inline_samplers(nir_shader *shader);
6640 
6641 typedef struct nir_lower_ssbo_options {
6642    bool native_loads;
6643    bool native_offset;
6644 } nir_lower_ssbo_options;
6645 
6646 bool nir_lower_ssbo(nir_shader *shader, const nir_lower_ssbo_options *opts);
6647 
6648 bool nir_lower_helper_writes(nir_shader *shader, bool lower_plain_stores);
6649 
6650 typedef struct nir_lower_printf_options {
6651    unsigned max_buffer_size;
6652    unsigned ptr_bit_size;
6653    bool     use_printf_base_identifier;
6654 } nir_lower_printf_options;
6655 
6656 bool nir_lower_printf(nir_shader *nir, const nir_lower_printf_options *options);
6657 
6658 /* This is here for unit tests. */
6659 bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
6660 
6661 bool nir_opt_comparison_pre(nir_shader *shader);
6662 
6663 typedef struct nir_opt_access_options {
6664    bool is_vulkan;
6665 } nir_opt_access_options;
6666 
6667 bool nir_opt_access(nir_shader *shader, const nir_opt_access_options *options);
6668 bool nir_opt_algebraic(nir_shader *shader);
6669 bool nir_opt_algebraic_before_ffma(nir_shader *shader);
6670 bool nir_opt_algebraic_before_lower_int64(nir_shader *shader);
6671 bool nir_opt_algebraic_late(nir_shader *shader);
6672 bool nir_opt_algebraic_distribute_src_mods(nir_shader *shader);
6673 bool nir_opt_constant_folding(nir_shader *shader);
6674 
6675 /* Try to combine a and b into a.  Return true if combination was possible,
6676  * which will result in b being removed by the pass.  Return false if
6677  * combination wasn't possible.
6678  */
6679 typedef bool (*nir_combine_barrier_cb)(
6680    nir_intrinsic_instr *a, nir_intrinsic_instr *b, void *data);
6681 
6682 bool nir_opt_combine_barriers(nir_shader *shader,
6683                               nir_combine_barrier_cb combine_cb,
6684                               void *data);
6685 bool nir_opt_barrier_modes(nir_shader *shader);
6686 
6687 bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
6688 
6689 bool nir_copy_prop_impl(nir_function_impl *impl);
6690 bool nir_copy_prop(nir_shader *shader);
6691 
6692 bool nir_opt_copy_prop_vars(nir_shader *shader);
6693 
6694 bool nir_opt_cse(nir_shader *shader);
6695 
6696 bool nir_opt_dce(nir_shader *shader);
6697 
6698 bool nir_opt_dead_cf(nir_shader *shader);
6699 
6700 bool nir_opt_dead_write_vars(nir_shader *shader);
6701 
6702 bool nir_opt_deref_impl(nir_function_impl *impl);
6703 bool nir_opt_deref(nir_shader *shader);
6704 
6705 bool nir_opt_find_array_copies(nir_shader *shader);
6706 
6707 bool nir_opt_fragdepth(nir_shader *shader);
6708 
6709 bool nir_opt_gcm(nir_shader *shader, bool value_number);
6710 
6711 bool nir_opt_generate_bfi(nir_shader *shader);
6712 
6713 bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
6714 
6715 bool nir_opt_mqsad(nir_shader *shader);
6716 
6717 typedef enum {
6718    nir_opt_if_optimize_phi_true_false = (1 << 0),
6719    nir_opt_if_avoid_64bit_phis = (1 << 1),
6720 } nir_opt_if_options;
6721 
6722 bool nir_opt_if(nir_shader *shader, nir_opt_if_options options);
6723 
6724 bool nir_opt_intrinsics(nir_shader *shader);
6725 
6726 bool nir_opt_large_constants(nir_shader *shader,
6727                              glsl_type_size_align_func size_align,
6728                              unsigned threshold);
6729 
6730 bool nir_opt_licm(nir_shader *shader);
6731 bool nir_opt_loop(nir_shader *shader);
6732 
6733 bool nir_opt_loop_unroll(nir_shader *shader);
6734 
6735 typedef enum {
6736    nir_move_const_undef = (1 << 0),
6737    nir_move_load_ubo = (1 << 1),
6738    nir_move_load_input = (1 << 2),
6739    nir_move_comparisons = (1 << 3),
6740    nir_move_copies = (1 << 4),
6741    nir_move_load_ssbo = (1 << 5),
6742    nir_move_load_uniform = (1 << 6),
6743    nir_move_alu = (1 << 7),
6744 } nir_move_options;
6745 
6746 bool nir_can_move_instr(nir_instr *instr, nir_move_options options);
6747 
6748 bool nir_opt_sink(nir_shader *shader, nir_move_options options);
6749 
6750 bool nir_opt_move(nir_shader *shader, nir_move_options options);
6751 
6752 typedef struct {
6753    /** nir_load_uniform max base offset */
6754    uint32_t uniform_max;
6755 
6756    /** nir_load_ubo_vec4 max base offset */
6757    uint32_t ubo_vec4_max;
6758 
6759    /** nir_var_mem_shared max base offset */
6760    uint32_t shared_max;
6761 
6762    /** nir_load/store_buffer_amd max base offset */
6763    uint32_t buffer_max;
6764 
6765    /**
6766     * Callback to get the max base offset for instructions for which the
6767     * corresponding value above is zero.
6768     */
6769    uint32_t (*max_offset_cb)(nir_intrinsic_instr *intr, const void *data);
6770 
6771    /** Data to pass to max_offset_cb. */
6772    const void *max_offset_data;
6773 
6774    /**
6775     * Allow the offset calculation to wrap. If false, constant additions that
6776     * might wrap will not be folded into the offset.
6777     */
6778    bool allow_offset_wrap;
6779 } nir_opt_offsets_options;
6780 
6781 bool nir_opt_offsets(nir_shader *shader, const nir_opt_offsets_options *options);
6782 
6783 bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
6784                              bool indirect_load_ok, bool expensive_alu_ok);
6785 
6786 bool nir_opt_reassociate_bfi(nir_shader *shader);
6787 
6788 bool nir_opt_rematerialize_compares(nir_shader *shader);
6789 
6790 bool nir_opt_remove_phis(nir_shader *shader);
6791 bool nir_opt_remove_phis_block(nir_block *block);
6792 
6793 bool nir_opt_phi_precision(nir_shader *shader);
6794 
6795 bool nir_opt_shrink_stores(nir_shader *shader, bool shrink_image_store);
6796 
6797 bool nir_opt_shrink_vectors(nir_shader *shader, bool shrink_start);
6798 
6799 bool nir_opt_undef(nir_shader *shader);
6800 
6801 bool nir_lower_undef_to_zero(nir_shader *shader);
6802 
6803 bool nir_opt_uniform_atomics(nir_shader *shader, bool fs_atomics_predicated);
6804 
6805 bool nir_opt_uniform_subgroup(nir_shader *shader,
6806                               const nir_lower_subgroups_options *);
6807 
6808 bool nir_opt_vectorize(nir_shader *shader, nir_vectorize_cb filter,
6809                        void *data);
6810 bool nir_opt_vectorize_io(nir_shader *shader, nir_variable_mode modes);
6811 
6812 bool nir_opt_conditional_discard(nir_shader *shader);
6813 bool nir_opt_move_discards_to_top(nir_shader *shader);
6814 
6815 bool nir_opt_ray_queries(nir_shader *shader);
6816 
6817 bool nir_opt_ray_query_ranges(nir_shader *shader);
6818 
6819 bool nir_opt_reuse_constants(nir_shader *shader);
6820 
6821 void nir_sweep(nir_shader *shader);
6822 
6823 void nir_remap_dual_slot_attributes(nir_shader *shader,
6824                                     uint64_t *dual_slot_inputs);
6825 uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
6826 
6827 nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
6828 gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
6829 
6830 static inline bool
nir_variable_is_in_ubo(const nir_variable * var)6831 nir_variable_is_in_ubo(const nir_variable *var)
6832 {
6833    return (var->data.mode == nir_var_mem_ubo &&
6834            var->interface_type != NULL);
6835 }
6836 
6837 static inline bool
nir_variable_is_in_ssbo(const nir_variable * var)6838 nir_variable_is_in_ssbo(const nir_variable *var)
6839 {
6840    return (var->data.mode == nir_var_mem_ssbo &&
6841            var->interface_type != NULL);
6842 }
6843 
6844 static inline bool
nir_variable_is_in_block(const nir_variable * var)6845 nir_variable_is_in_block(const nir_variable *var)
6846 {
6847    return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
6848 }
6849 
6850 static inline unsigned
nir_variable_count_slots(const nir_variable * var,const struct glsl_type * type)6851 nir_variable_count_slots(const nir_variable *var, const struct glsl_type *type)
6852 {
6853    return var->data.compact ? DIV_ROUND_UP(var->data.location_frac + glsl_get_length(type), 4) : glsl_count_attribute_slots(type, false);
6854 }
6855 
6856 static inline unsigned
nir_deref_count_slots(nir_deref_instr * deref,nir_variable * var)6857 nir_deref_count_slots(nir_deref_instr *deref, nir_variable *var)
6858 {
6859    if (var->data.compact) {
6860       switch (deref->deref_type) {
6861       case nir_deref_type_array:
6862          return 1;
6863       case nir_deref_type_var:
6864          return nir_variable_count_slots(var, deref->type);
6865       default:
6866          unreachable("illegal deref type");
6867       }
6868    }
6869    return glsl_count_attribute_slots(deref->type, false);
6870 }
6871 
6872 /* See default_ub_config in nir_range_analysis.c for documentation. */
6873 typedef struct nir_unsigned_upper_bound_config {
6874    unsigned min_subgroup_size;
6875    unsigned max_subgroup_size;
6876    unsigned max_workgroup_invocations;
6877    unsigned max_workgroup_count[3];
6878    unsigned max_workgroup_size[3];
6879 
6880    uint32_t vertex_attrib_max[32];
6881 } nir_unsigned_upper_bound_config;
6882 
6883 uint32_t
6884 nir_unsigned_upper_bound(nir_shader *shader, struct hash_table *range_ht,
6885                          nir_scalar scalar,
6886                          const nir_unsigned_upper_bound_config *config);
6887 
6888 bool
6889 nir_addition_might_overflow(nir_shader *shader, struct hash_table *range_ht,
6890                             nir_scalar ssa, unsigned const_val,
6891                             const nir_unsigned_upper_bound_config *config);
6892 
6893 typedef struct {
6894    /* True if gl_DrawID is considered uniform, i.e. if the preamble is run
6895     * at least once per "internal" draw rather than per user-visible draw.
6896     */
6897    bool drawid_uniform;
6898 
6899    /* True if the subgroup size is uniform. */
6900    bool subgroup_size_uniform;
6901 
6902    /* True if load_workgroup_size is supported in the preamble. */
6903    bool load_workgroup_size_allowed;
6904 
6905    /* size/align for load/store_preamble. */
6906    void (*def_size)(nir_def *def, unsigned *size, unsigned *align);
6907 
6908    /* Total available size for load/store_preamble storage, in units
6909     * determined by def_size.
6910     */
6911    unsigned preamble_storage_size;
6912 
6913    /* Give the cost for an instruction. nir_opt_preamble will prioritize
6914     * instructions with higher costs. Instructions with cost 0 may still be
6915     * lifted, but only when required to lift other instructions with non-0
6916     * cost (e.g. a load_const source of an expression).
6917     */
6918    float (*instr_cost_cb)(nir_instr *instr, const void *data);
6919 
6920    /* Give the cost of rewriting the instruction to use load_preamble. This
6921     * may happen from inserting move instructions, etc. If the benefit doesn't
6922     * exceed the cost here then we won't rewrite it.
6923     */
6924    float (*rewrite_cost_cb)(nir_def *def, const void *data);
6925 
6926    /* Instructions whose definitions should not be rewritten. These could
6927     * still be moved to the preamble, but they shouldn't be the root of a
6928     * replacement expression. Instructions with cost 0 and derefs are
6929     * automatically included by the pass.
6930     */
6931    nir_instr_filter_cb avoid_instr_cb;
6932 
6933    const void *cb_data;
6934 } nir_opt_preamble_options;
6935 
6936 bool
6937 nir_opt_preamble(nir_shader *shader,
6938                  const nir_opt_preamble_options *options,
6939                  unsigned *size);
6940 
6941 nir_function_impl *nir_shader_get_preamble(nir_shader *shader);
6942 
6943 bool nir_lower_point_smooth(nir_shader *shader);
6944 bool nir_lower_poly_line_smooth(nir_shader *shader, unsigned num_smooth_aa_sample);
6945 
6946 bool nir_mod_analysis(nir_scalar val, nir_alu_type val_type, unsigned div, unsigned *mod);
6947 
6948 bool
6949 nir_remove_tex_shadow(nir_shader *shader, unsigned textures_bitmask);
6950 
6951 void
6952 nir_trivialize_registers(nir_shader *s);
6953 
6954 unsigned
6955 nir_static_workgroup_size(const nir_shader *s);
6956 
6957 static inline nir_intrinsic_instr *
nir_reg_get_decl(nir_def * reg)6958 nir_reg_get_decl(nir_def *reg)
6959 {
6960    assert(reg->parent_instr->type == nir_instr_type_intrinsic);
6961    nir_intrinsic_instr *decl = nir_instr_as_intrinsic(reg->parent_instr);
6962    assert(decl->intrinsic == nir_intrinsic_decl_reg);
6963 
6964    return decl;
6965 }
6966 
6967 static inline nir_intrinsic_instr *
nir_next_decl_reg(nir_intrinsic_instr * prev,nir_function_impl * impl)6968 nir_next_decl_reg(nir_intrinsic_instr *prev, nir_function_impl *impl)
6969 {
6970    nir_instr *start;
6971    if (prev != NULL)
6972       start = nir_instr_next(&prev->instr);
6973    else if (impl != NULL)
6974       start = nir_block_first_instr(nir_start_block(impl));
6975    else
6976       return NULL;
6977 
6978    for (nir_instr *instr = start; instr; instr = nir_instr_next(instr)) {
6979       if (instr->type != nir_instr_type_intrinsic)
6980          continue;
6981 
6982       nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6983       if (intrin->intrinsic == nir_intrinsic_decl_reg)
6984          return intrin;
6985    }
6986 
6987    return NULL;
6988 }
6989 
6990 #define nir_foreach_reg_decl(reg, impl)                           \
6991    for (nir_intrinsic_instr *reg = nir_next_decl_reg(NULL, impl); \
6992         reg; reg = nir_next_decl_reg(reg, NULL))
6993 
6994 #define nir_foreach_reg_decl_safe(reg, impl)                       \
6995    for (nir_intrinsic_instr *reg = nir_next_decl_reg(NULL, impl),  \
6996                             *next_ = nir_next_decl_reg(reg, NULL); \
6997         reg; reg = next_, next_ = nir_next_decl_reg(next_, NULL))
6998 
6999 static inline nir_cursor
nir_after_reg_decls(nir_function_impl * impl)7000 nir_after_reg_decls(nir_function_impl *impl)
7001 {
7002    nir_intrinsic_instr *last_reg_decl = NULL;
7003    nir_foreach_reg_decl(reg_decl, impl)
7004       last_reg_decl = reg_decl;
7005 
7006    if (last_reg_decl != NULL)
7007       return nir_after_instr(&last_reg_decl->instr);
7008    return nir_before_impl(impl);
7009 }
7010 
7011 static inline bool
nir_is_load_reg(nir_intrinsic_instr * intr)7012 nir_is_load_reg(nir_intrinsic_instr *intr)
7013 {
7014    return intr->intrinsic == nir_intrinsic_load_reg ||
7015           intr->intrinsic == nir_intrinsic_load_reg_indirect;
7016 }
7017 
7018 static inline bool
nir_is_store_reg(nir_intrinsic_instr * intr)7019 nir_is_store_reg(nir_intrinsic_instr *intr)
7020 {
7021    return intr->intrinsic == nir_intrinsic_store_reg ||
7022           intr->intrinsic == nir_intrinsic_store_reg_indirect;
7023 }
7024 
7025 #define nir_foreach_reg_load(load, reg)              \
7026    assert(reg->intrinsic == nir_intrinsic_decl_reg); \
7027                                                      \
7028    nir_foreach_use(load, &reg->def)             \
7029       if (nir_is_load_reg(nir_instr_as_intrinsic(nir_src_parent_instr(load))))
7030 
7031 #define nir_foreach_reg_load_safe(load, reg)         \
7032    assert(reg->intrinsic == nir_intrinsic_decl_reg); \
7033                                                      \
7034    nir_foreach_use_safe(load, &reg->def)             \
7035       if (nir_is_load_reg(nir_instr_as_intrinsic(nir_src_parent_instr(load))))
7036 
7037 #define nir_foreach_reg_store(store, reg)            \
7038    assert(reg->intrinsic == nir_intrinsic_decl_reg); \
7039                                                      \
7040    nir_foreach_use(store, &reg->def)            \
7041       if (nir_is_store_reg(nir_instr_as_intrinsic(nir_src_parent_instr(store))))
7042 
7043 #define nir_foreach_reg_store_safe(store, reg)       \
7044    assert(reg->intrinsic == nir_intrinsic_decl_reg); \
7045                                                      \
7046    nir_foreach_use_safe(store, &reg->def)            \
7047       if (nir_is_store_reg(nir_instr_as_intrinsic(nir_src_parent_instr(store))))
7048 
7049 static inline nir_intrinsic_instr *
nir_load_reg_for_def(const nir_def * def)7050 nir_load_reg_for_def(const nir_def *def)
7051 {
7052    if (def->parent_instr->type != nir_instr_type_intrinsic)
7053       return NULL;
7054 
7055    nir_intrinsic_instr *intr = nir_instr_as_intrinsic(def->parent_instr);
7056    if (!nir_is_load_reg(intr))
7057       return NULL;
7058 
7059    return intr;
7060 }
7061 
7062 static inline nir_intrinsic_instr *
nir_store_reg_for_def(const nir_def * def)7063 nir_store_reg_for_def(const nir_def *def)
7064 {
7065    /* Look for the trivial store: single use of our destination by a
7066     * store_register intrinsic.
7067     */
7068    if (!list_is_singular(&def->uses))
7069       return NULL;
7070 
7071    nir_src *src = list_first_entry(&def->uses, nir_src, use_link);
7072    if (nir_src_is_if(src))
7073       return NULL;
7074 
7075    nir_instr *parent = nir_src_parent_instr(src);
7076    if (parent->type != nir_instr_type_intrinsic)
7077       return NULL;
7078 
7079    nir_intrinsic_instr *intr = nir_instr_as_intrinsic(parent);
7080    if (!nir_is_store_reg(intr))
7081       return NULL;
7082 
7083    /* The first value is data. Third is indirect index, ignore that one. */
7084    if (&intr->src[0] != src)
7085       return NULL;
7086 
7087    return intr;
7088 }
7089 
7090 struct nir_use_dominance_state;
7091 
7092 struct nir_use_dominance_state *
7093 nir_calc_use_dominance_impl(nir_function_impl *impl, bool post_dominance);
7094 
7095 nir_instr *
7096 nir_get_immediate_use_dominator(struct nir_use_dominance_state *state,
7097                                 nir_instr *instr);
7098 nir_instr *nir_use_dominance_lca(struct nir_use_dominance_state *state,
7099                                  nir_instr *i1, nir_instr *i2);
7100 bool nir_instr_dominates_use(struct nir_use_dominance_state *state,
7101                              nir_instr *parent, nir_instr *child);
7102 void nir_print_use_dominators(struct nir_use_dominance_state *state,
7103                               nir_instr **instructions,
7104                               unsigned num_instructions);
7105 
7106 #include "nir_inline_helpers.h"
7107 
7108 #ifdef __cplusplus
7109 } /* extern "C" */
7110 #endif
7111 
7112 #endif /* NIR_H */
7113