1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #ifndef IR_H
26 #define IR_H
27
28 #include <stdio.h>
29 #include <stdlib.h>
30
31 #include "util/ralloc.h"
32 #include "util/format/u_format.h"
33 #include "util/half_float.h"
34 #include "compiler/glsl_types.h"
35 #include "list.h"
36 #include "ir_visitor.h"
37 #include "ir_hierarchical_visitor.h"
38 #include "util/glheader.h"
39
40 #ifdef __cplusplus
41 extern "C" {
42 #endif
43
44 struct _mesa_glsl_parse_state;
45 struct gl_shader_program;
46 struct gl_builtin_uniform_desc;
47
48 #ifdef __cplusplus
49 }
50 #endif
51
52 #ifdef __cplusplus
53
54 /**
55 * \defgroup IR Intermediate representation nodes
56 *
57 * @{
58 */
59
60 /**
61 * Class tags
62 *
63 * Each concrete class derived from \c ir_instruction has a value in this
64 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
65 * by the constructor. While using type tags is not very C++, it is extremely
66 * convenient. For example, during debugging you can simply inspect
67 * \c ir_instruction::ir_type to find out the actual type of the object.
68 *
69 * In addition, it is possible to use a switch-statement based on \c
70 * \c ir_instruction::ir_type to select different behavior for different object
71 * types. For functions that have only slight differences for several object
72 * types, this allows writing very straightforward, readable code.
73 */
74 enum ir_node_type {
75 ir_type_dereference_array,
76 ir_type_dereference_record,
77 ir_type_dereference_variable,
78 ir_type_constant,
79 ir_type_expression,
80 ir_type_swizzle,
81 ir_type_texture,
82 ir_type_variable,
83 ir_type_assignment,
84 ir_type_call,
85 ir_type_function,
86 ir_type_function_signature,
87 ir_type_if,
88 ir_type_loop,
89 ir_type_loop_jump,
90 ir_type_return,
91 ir_type_discard,
92 ir_type_demote,
93 ir_type_emit_vertex,
94 ir_type_end_primitive,
95 ir_type_barrier,
96 ir_type_max, /**< maximum ir_type enum number, for validation */
97 ir_type_unset = ir_type_max,
98 ir_type_error
99 };
100
101
102 /**
103 * Base class of all IR instructions
104 */
105 class ir_instruction : public exec_node {
106 public:
107 enum ir_node_type ir_type;
108
109 /**
110 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
111 * there's a virtual destructor present. Because we almost
112 * universally use ralloc for our memory management of
113 * ir_instructions, the destructor doesn't need to do any work.
114 */
~ir_instruction()115 virtual ~ir_instruction()
116 {
117 }
118
119 /** ir_print_visitor helper for debugging. */
120 void print(void) const;
121 void fprint(FILE *f) const;
122
123 virtual void accept(ir_visitor *) = 0;
124 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
125 virtual ir_instruction *clone(void *mem_ctx,
126 struct hash_table *ht) const = 0;
127
is_rvalue()128 bool is_rvalue() const
129 {
130 return ir_type == ir_type_dereference_array ||
131 ir_type == ir_type_dereference_record ||
132 ir_type == ir_type_dereference_variable ||
133 ir_type == ir_type_constant ||
134 ir_type == ir_type_expression ||
135 ir_type == ir_type_swizzle ||
136 ir_type == ir_type_texture ||
137 ir_type == ir_type_error;
138 }
139
is_dereference()140 bool is_dereference() const
141 {
142 return ir_type == ir_type_dereference_array ||
143 ir_type == ir_type_dereference_record ||
144 ir_type == ir_type_dereference_variable;
145 }
146
is_jump()147 bool is_jump() const
148 {
149 return ir_type == ir_type_loop_jump ||
150 ir_type == ir_type_return ||
151 ir_type == ir_type_discard;
152 }
153
154 /**
155 * \name IR instruction downcast functions
156 *
157 * These functions either cast the object to a derived class or return
158 * \c NULL if the object's type does not match the specified derived class.
159 * Additional downcast functions will be added as needed.
160 */
161 /*@{*/
162 #define AS_BASE(TYPE) \
163 class ir_##TYPE *as_##TYPE() \
164 { \
165 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
166 } \
167 const class ir_##TYPE *as_##TYPE() const \
168 { \
169 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
170 }
171
172 AS_BASE(rvalue)
173 AS_BASE(dereference)
174 AS_BASE(jump)
175 #undef AS_BASE
176
177 #define AS_CHILD(TYPE) \
178 class ir_##TYPE * as_##TYPE() \
179 { \
180 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
181 } \
182 const class ir_##TYPE * as_##TYPE() const \
183 { \
184 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
185 }
186 AS_CHILD(variable)
187 AS_CHILD(function)
188 AS_CHILD(dereference_array)
189 AS_CHILD(dereference_variable)
190 AS_CHILD(dereference_record)
191 AS_CHILD(expression)
192 AS_CHILD(loop)
193 AS_CHILD(assignment)
194 AS_CHILD(call)
195 AS_CHILD(return)
196 AS_CHILD(if)
197 AS_CHILD(swizzle)
198 AS_CHILD(texture)
199 AS_CHILD(constant)
200 AS_CHILD(discard)
201 #undef AS_CHILD
202 /*@}*/
203
204 /**
205 * IR equality method: Return true if the referenced instruction would
206 * return the same value as this one.
207 *
208 * This intended to be used for CSE and algebraic optimizations, on rvalues
209 * in particular. No support for other instruction types (assignments,
210 * jumps, calls, etc.) is planned.
211 */
212 virtual bool equals(const ir_instruction *ir,
213 enum ir_node_type ignore = ir_type_unset) const;
214
215 protected:
ir_instruction(enum ir_node_type t)216 ir_instruction(enum ir_node_type t)
217 : ir_type(t)
218 {
219 }
220
221 private:
ir_instruction()222 ir_instruction()
223 {
224 assert(!"Should not get here.");
225 }
226 };
227
228
229 /**
230 * The base class for all "values"/expression trees.
231 */
232 class ir_rvalue : public ir_instruction {
233 public:
234 const struct glsl_type *type;
235
236 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
237
accept(ir_visitor * v)238 virtual void accept(ir_visitor *v)
239 {
240 v->visit(this);
241 }
242
243 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
244
245 virtual ir_constant *constant_expression_value(void *mem_ctx,
246 struct hash_table *variable_context = NULL);
247
248 virtual bool is_lvalue(const struct _mesa_glsl_parse_state * = NULL) const
249 {
250 return false;
251 }
252
253 /**
254 * Get the variable that is ultimately referenced by an r-value
255 */
variable_referenced()256 virtual ir_variable *variable_referenced() const
257 {
258 return NULL;
259 }
260
261
262 /**
263 * If an r-value is a reference to a whole variable, get that variable
264 *
265 * \return
266 * Pointer to a variable that is completely dereferenced by the r-value. If
267 * the r-value is not a dereference or the dereference does not access the
268 * entire variable (i.e., it's just one array element, struct field), \c NULL
269 * is returned.
270 */
whole_variable_referenced()271 virtual ir_variable *whole_variable_referenced()
272 {
273 return NULL;
274 }
275
276 /**
277 * Determine if an r-value has the value zero
278 *
279 * The base implementation of this function always returns \c false. The
280 * \c ir_constant class over-rides this function to return \c true \b only
281 * for vector and scalar types that have all elements set to the value
282 * zero (or \c false for booleans).
283 *
284 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
285 */
286 virtual bool is_zero() const;
287
288 /**
289 * Determine if an r-value has the value one
290 *
291 * The base implementation of this function always returns \c false. The
292 * \c ir_constant class over-rides this function to return \c true \b only
293 * for vector and scalar types that have all elements set to the value
294 * one (or \c true for booleans).
295 *
296 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
297 */
298 virtual bool is_one() const;
299
300 /**
301 * Determine if an r-value has the value negative one
302 *
303 * The base implementation of this function always returns \c false. The
304 * \c ir_constant class over-rides this function to return \c true \b only
305 * for vector and scalar types that have all elements set to the value
306 * negative one. For boolean types, the result is always \c false.
307 *
308 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
309 */
310 virtual bool is_negative_one() const;
311
312 /**
313 * Determine if an r-value is an unsigned integer constant which can be
314 * stored in 16 bits.
315 *
316 * \sa ir_constant::is_uint16_constant.
317 */
is_uint16_constant()318 virtual bool is_uint16_constant() const { return false; }
319
320 /**
321 * Return a generic value of error_type.
322 *
323 * Allocation will be performed with 'mem_ctx' as ralloc owner.
324 */
325 static ir_rvalue *error_value(void *mem_ctx);
326
327 protected:
328 ir_rvalue(enum ir_node_type t);
329 };
330
331
332 /**
333 * Variable storage classes
334 */
335 enum ir_variable_mode {
336 ir_var_auto = 0, /**< Function local variables and globals. */
337 ir_var_uniform, /**< Variable declared as a uniform. */
338 ir_var_shader_storage, /**< Variable declared as an ssbo. */
339 ir_var_shader_shared, /**< Variable declared as shared. */
340 ir_var_shader_in,
341 ir_var_shader_out,
342 ir_var_function_in,
343 ir_var_function_out,
344 ir_var_function_inout,
345 ir_var_const_in, /**< "in" param that must be a constant expression */
346 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
347 ir_var_temporary, /**< Temporary variable generated during compilation. */
348 ir_var_mode_count /**< Number of variable modes */
349 };
350
351 /**
352 * Enum keeping track of how a variable was declared. For error checking of
353 * the gl_PerVertex redeclaration rules.
354 */
355 enum ir_var_declaration_type {
356 /**
357 * Normal declaration (for most variables, this means an explicit
358 * declaration. Exception: temporaries are always implicitly declared, but
359 * they still use ir_var_declared_normally).
360 *
361 * Note: an ir_variable that represents a named interface block uses
362 * ir_var_declared_normally.
363 */
364 ir_var_declared_normally = 0,
365
366 /**
367 * Variable was explicitly declared (or re-declared) in an unnamed
368 * interface block.
369 */
370 ir_var_declared_in_block,
371
372 /**
373 * Variable is an implicitly declared built-in that has not been explicitly
374 * re-declared by the shader.
375 */
376 ir_var_declared_implicitly,
377
378 /**
379 * Variable is implicitly generated by the compiler and should not be
380 * visible via the API.
381 */
382 ir_var_hidden,
383 };
384
385 /**
386 * \brief Layout qualifiers for gl_FragDepth.
387 *
388 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
389 * with a layout qualifier.
390 */
391 enum ir_depth_layout {
392 ir_depth_layout_none, /**< No depth layout is specified. */
393 ir_depth_layout_any,
394 ir_depth_layout_greater,
395 ir_depth_layout_less,
396 ir_depth_layout_unchanged
397 };
398
399 /**
400 * \brief Convert depth layout qualifier to string.
401 */
402 const char*
403 depth_layout_string(ir_depth_layout layout);
404
405 /**
406 * Description of built-in state associated with a uniform
407 *
408 * \sa ir_variable::state_slots
409 */
410 struct ir_state_slot {
411 gl_state_index16 tokens[STATE_LENGTH];
412 };
413
414
415 class ir_variable : public ir_instruction {
416 public:
417 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
418
419 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
420
accept(ir_visitor * v)421 virtual void accept(ir_visitor *v)
422 {
423 v->visit(this);
424 }
425
426 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
427
428
429 /**
430 * Determine whether or not a variable is part of a uniform or
431 * shader storage block.
432 */
is_in_buffer_block()433 inline bool is_in_buffer_block() const
434 {
435 return (this->data.mode == ir_var_uniform ||
436 this->data.mode == ir_var_shader_storage) &&
437 this->interface_type != NULL;
438 }
439
440 /**
441 * Determine whether or not a variable is part of a shader storage block.
442 */
is_in_shader_storage_block()443 inline bool is_in_shader_storage_block() const
444 {
445 return this->data.mode == ir_var_shader_storage &&
446 this->interface_type != NULL;
447 }
448
449 /**
450 * Determine whether or not a variable is the declaration of an interface
451 * block
452 *
453 * For the first declaration below, there will be an \c ir_variable named
454 * "instance" whose type and whose instance_type will be the same
455 * \c glsl_type. For the second declaration, there will be an \c ir_variable
456 * named "f" whose type is float and whose instance_type is B2.
457 *
458 * "instance" is an interface instance variable, but "f" is not.
459 *
460 * uniform B1 {
461 * float f;
462 * } instance;
463 *
464 * uniform B2 {
465 * float f;
466 * };
467 */
is_interface_instance()468 inline bool is_interface_instance() const
469 {
470 return glsl_without_array(this->type) == this->interface_type;
471 }
472
473 /**
474 * Return whether this variable contains a bindless sampler/image.
475 */
contains_bindless()476 inline bool contains_bindless() const
477 {
478 if (!glsl_contains_sampler(this->type) && !glsl_type_contains_image(this->type))
479 return false;
480
481 return this->data.bindless || this->data.mode != ir_var_uniform;
482 }
483
484 /**
485 * Set this->interface_type on a newly created variable.
486 */
init_interface_type(const struct glsl_type * type)487 void init_interface_type(const struct glsl_type *type)
488 {
489 assert(this->interface_type == NULL);
490 this->interface_type = type;
491 if (this->is_interface_instance()) {
492 this->u.max_ifc_array_access =
493 ralloc_array(this, int, type->length);
494 for (unsigned i = 0; i < type->length; i++) {
495 this->u.max_ifc_array_access[i] = -1;
496 }
497 }
498 }
499
500 /**
501 * Change this->interface_type on a variable that previously had a
502 * different, but compatible, interface_type. This is used during linking
503 * to set the size of arrays in interface blocks.
504 */
change_interface_type(const struct glsl_type * type)505 void change_interface_type(const struct glsl_type *type)
506 {
507 if (this->u.max_ifc_array_access != NULL) {
508 /* max_ifc_array_access has already been allocated, so make sure the
509 * new interface has the same number of fields as the old one.
510 */
511 assert(this->interface_type->length == type->length);
512 }
513 this->interface_type = type;
514 }
515
516 /**
517 * Change this->interface_type on a variable that previously had a
518 * different, and incompatible, interface_type. This is used during
519 * compilation to handle redeclaration of the built-in gl_PerVertex
520 * interface block.
521 */
reinit_interface_type(const struct glsl_type * type)522 void reinit_interface_type(const struct glsl_type *type)
523 {
524 if (this->u.max_ifc_array_access != NULL) {
525 #ifndef NDEBUG
526 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
527 * it defines have been accessed yet; so it's safe to throw away the
528 * old max_ifc_array_access pointer, since all of its values are
529 * zero.
530 */
531 for (unsigned i = 0; i < this->interface_type->length; i++)
532 assert(this->u.max_ifc_array_access[i] == -1);
533 #endif
534 ralloc_free(this->u.max_ifc_array_access);
535 this->u.max_ifc_array_access = NULL;
536 }
537 this->interface_type = NULL;
538 init_interface_type(type);
539 }
540
get_interface_type()541 const glsl_type *get_interface_type() const
542 {
543 return this->interface_type;
544 }
545
get_interface_type_packing()546 enum glsl_interface_packing get_interface_type_packing() const
547 {
548 return glsl_get_ifc_packing(this->interface_type);
549 }
550 /**
551 * Get the max_ifc_array_access pointer
552 *
553 * A "set" function is not needed because the array is dynamically allocated
554 * as necessary.
555 */
get_max_ifc_array_access()556 inline int *get_max_ifc_array_access()
557 {
558 assert(this->data._num_state_slots == 0);
559 return this->u.max_ifc_array_access;
560 }
561
get_num_state_slots()562 inline unsigned get_num_state_slots() const
563 {
564 assert(!this->is_interface_instance()
565 || this->data._num_state_slots == 0);
566 return this->data._num_state_slots;
567 }
568
set_num_state_slots(unsigned n)569 inline void set_num_state_slots(unsigned n)
570 {
571 assert(!this->is_interface_instance()
572 || n == 0);
573 this->data._num_state_slots = n;
574 }
575
get_state_slots()576 inline ir_state_slot *get_state_slots()
577 {
578 return this->is_interface_instance() ? NULL : this->u.state_slots;
579 }
580
get_state_slots()581 inline const ir_state_slot *get_state_slots() const
582 {
583 return this->is_interface_instance() ? NULL : this->u.state_slots;
584 }
585
allocate_state_slots(unsigned n)586 inline ir_state_slot *allocate_state_slots(unsigned n)
587 {
588 assert(!this->is_interface_instance());
589
590 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
591 this->data._num_state_slots = 0;
592
593 if (this->u.state_slots != NULL)
594 this->data._num_state_slots = n;
595
596 return this->u.state_slots;
597 }
598
is_interpolation_flat()599 inline bool is_interpolation_flat() const
600 {
601 return this->data.interpolation == INTERP_MODE_FLAT ||
602 glsl_contains_integer(this->type) ||
603 glsl_contains_double(this->type);
604 }
605
is_name_ralloced()606 inline bool is_name_ralloced() const
607 {
608 return this->name != ir_variable::tmp_name &&
609 this->name != this->name_storage;
610 }
611
is_fb_fetch_color_output()612 inline bool is_fb_fetch_color_output() const
613 {
614 return this->data.fb_fetch_output &&
615 this->data.location != FRAG_RESULT_DEPTH &&
616 this->data.location != FRAG_RESULT_STENCIL;
617 }
618
619 /**
620 * Enable emitting extension warnings for this variable
621 */
622 void enable_extension_warning(const char *extension);
623
624 /**
625 * Get the extension warning string for this variable
626 *
627 * If warnings are not enabled, \c NULL is returned.
628 */
629 const char *get_extension_warning() const;
630
631 /**
632 * Declared type of the variable
633 */
634 const struct glsl_type *type;
635
636 /**
637 * Declared name of the variable
638 */
639 const char *name;
640
641 private:
642 /**
643 * If the name length fits into name_storage, it's used, otherwise
644 * the name is ralloc'd. shader-db mining showed that 70% of variables
645 * fit here. This is a win over ralloc where only ralloc_header has
646 * 20 bytes on 64-bit (28 bytes with debug), and we can also skip malloc.
647 */
648 char name_storage[16];
649
650 public:
651 struct ir_variable_data {
652
653 /**
654 * Is the variable read-only?
655 *
656 * This is set for variables declared as \c const, shader inputs,
657 * and uniforms.
658 */
659 unsigned read_only:1;
660 unsigned centroid:1;
661 unsigned sample:1;
662 unsigned patch:1;
663 /**
664 * Was an 'invariant' qualifier explicitly set in the shader?
665 *
666 * This is used to cross validate qualifiers.
667 */
668 unsigned explicit_invariant:1;
669 /**
670 * Is the variable invariant?
671 *
672 * It can happen either by having the 'invariant' qualifier
673 * explicitly set in the shader or by being used in calculations
674 * of other invariant variables.
675 */
676 unsigned invariant:1;
677 unsigned precise:1;
678
679 /**
680 * Has this variable been used for reading or writing?
681 *
682 * Several GLSL semantic checks require knowledge of whether or not a
683 * variable has been used. For example, it is an error to redeclare a
684 * variable as invariant after it has been used.
685 *
686 * This is maintained in the ast_to_hir.cpp path and during linking,
687 * but not in Mesa's fixed function or ARB program paths.
688 */
689 unsigned used:1;
690
691 /**
692 * Has this variable been statically assigned?
693 *
694 * This answers whether the variable was assigned in any path of
695 * the shader during ast_to_hir. This doesn't answer whether it is
696 * still written after dead code removal, nor is it maintained in
697 * non-ast_to_hir.cpp (GLSL parsing) paths.
698 */
699 unsigned assigned:1;
700
701 /**
702 * Enum indicating how the variable was declared. See
703 * ir_var_declaration_type.
704 *
705 * This is used to detect certain kinds of illegal variable redeclarations.
706 */
707 unsigned how_declared:2;
708
709 /**
710 * Storage class of the variable.
711 *
712 * \sa ir_variable_mode
713 */
714 unsigned mode:4;
715
716 /**
717 * Interpolation mode for shader inputs / outputs
718 *
719 * \sa glsl_interp_mode
720 */
721 unsigned interpolation:2;
722
723 /**
724 * Was the location explicitly set in the shader?
725 *
726 * If the location is explicitly set in the shader, it \b cannot be changed
727 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
728 * no effect).
729 */
730 unsigned explicit_location:1;
731 unsigned explicit_index:1;
732
733 /**
734 * Was an initial binding explicitly set in the shader?
735 *
736 * If so, constant_value contains an integer ir_constant representing the
737 * initial binding point.
738 */
739 unsigned explicit_binding:1;
740
741 /**
742 * Was an initial component explicitly set in the shader?
743 */
744 unsigned explicit_component:1;
745
746 /**
747 * Does this variable have an initializer?
748 *
749 * This is used by the linker to cross-validiate initializers of global
750 * variables.
751 */
752 unsigned has_initializer:1;
753
754 /**
755 * Is the initializer created by the compiler (glsl_zero_init)
756 */
757 unsigned is_implicit_initializer:1;
758
759 /**
760 * Is this varying used by transform feedback?
761 *
762 * This is used by the linker to decide if it's safe to pack the varying.
763 */
764 unsigned is_xfb:1;
765
766 /**
767 * Is this varying used only by transform feedback?
768 *
769 * This is used by the linker to decide if its safe to pack the varying.
770 */
771 unsigned is_xfb_only:1;
772
773 /**
774 * Was a transform feedback buffer set in the shader?
775 */
776 unsigned explicit_xfb_buffer:1;
777
778 /**
779 * Was a transform feedback offset set in the shader?
780 */
781 unsigned explicit_xfb_offset:1;
782
783 /**
784 * Was a transform feedback stride set in the shader?
785 */
786 unsigned explicit_xfb_stride:1;
787
788 /**
789 * If non-zero, then this variable may be packed along with other variables
790 * into a single varying slot, so this offset should be applied when
791 * accessing components. For example, an offset of 1 means that the x
792 * component of this variable is actually stored in component y of the
793 * location specified by \c location.
794 */
795 unsigned location_frac:2;
796
797 /**
798 * Layout of the matrix. Uses glsl_matrix_layout values.
799 */
800 unsigned matrix_layout:2;
801
802 /**
803 * Non-zero if this variable was created by lowering a named interface
804 * block.
805 */
806 unsigned from_named_ifc_block:1;
807
808 /**
809 * Non-zero if the variable must be a shader input. This is useful for
810 * constraints on function parameters.
811 */
812 unsigned must_be_shader_input:1;
813
814 /**
815 * Output index for dual source blending.
816 *
817 * \note
818 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
819 * source blending.
820 */
821 unsigned index:1;
822
823 /**
824 * Precision qualifier.
825 *
826 * In desktop GLSL we do not care about precision qualifiers at all, in
827 * fact, the spec says that precision qualifiers are ignored.
828 *
829 * To make things easy, we make it so that this field is always
830 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
831 * have the same precision value and the checks we add in the compiler
832 * for this field will never break a desktop shader compile.
833 */
834 unsigned precision:2;
835
836 /**
837 * \brief Layout qualifier for gl_FragDepth.
838 *
839 * This is not equal to \c ir_depth_layout_none if and only if this
840 * variable is \c gl_FragDepth and a layout qualifier is specified.
841 */
842 unsigned depth_layout:3; /*ir_depth_layout*/
843
844 /**
845 * Memory qualifiers.
846 */
847 unsigned memory_read_only:1; /**< "readonly" qualifier. */
848 unsigned memory_write_only:1; /**< "writeonly" qualifier. */
849 unsigned memory_coherent:1;
850 unsigned memory_volatile:1;
851 unsigned memory_restrict:1;
852
853 /**
854 * ARB_shader_storage_buffer_object
855 */
856 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
857
858 unsigned implicit_sized_array:1;
859
860 /**
861 * Whether this is a fragment shader output implicitly initialized with
862 * the previous contents of the specified render target at the
863 * framebuffer location corresponding to this shader invocation.
864 */
865 unsigned fb_fetch_output:1;
866
867 /**
868 * Non-zero if this variable is considered bindless as defined by
869 * ARB_bindless_texture.
870 */
871 unsigned bindless:1;
872
873 /**
874 * Non-zero if this variable is considered bound as defined by
875 * ARB_bindless_texture.
876 */
877 unsigned bound:1;
878
879 /**
880 * Non-zero if the variable shall not be implicitly converted during
881 * functions matching.
882 */
883 unsigned implicit_conversion_prohibited:1;
884
885 /**
886 * Emit a warning if this variable is accessed.
887 */
888 private:
889 uint8_t warn_extension_index;
890
891 public:
892 /**
893 * Image internal format if specified explicitly, otherwise
894 * PIPE_FORMAT_NONE.
895 */
896 enum pipe_format image_format;
897
898 private:
899 /**
900 * Number of state slots used
901 *
902 * \note
903 * This could be stored in as few as 7-bits, if necessary. If it is made
904 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
905 * be safe.
906 */
907 uint16_t _num_state_slots;
908
909 public:
910 /**
911 * Initial binding point for a sampler, atomic, or UBO.
912 *
913 * For array types, this represents the binding point for the first element.
914 */
915 uint16_t binding;
916
917 /**
918 * Storage location of the base of this variable
919 *
920 * The precise meaning of this field depends on the nature of the variable.
921 *
922 * - Vertex shader input: one of the values from \c gl_vert_attrib.
923 * - Vertex shader output: one of the values from \c gl_varying_slot.
924 * - Geometry shader input: one of the values from \c gl_varying_slot.
925 * - Geometry shader output: one of the values from \c gl_varying_slot.
926 * - Fragment shader input: one of the values from \c gl_varying_slot.
927 * - Fragment shader output: one of the values from \c gl_frag_result.
928 * - Uniforms: Per-stage uniform slot number for default uniform block.
929 * - Uniforms: Index within the uniform block definition for UBO members.
930 * - Non-UBO Uniforms: explicit location until linking then reused to
931 * store uniform slot number.
932 * - Other: This field is not currently used.
933 *
934 * If the variable is a uniform, shader input, or shader output, and the
935 * slot has not been assigned, the value will be -1.
936 */
937 int location;
938
939 /**
940 * for glsl->tgsi/mesa IR we need to store the index into the
941 * parameters for uniforms, initially the code overloaded location
942 * but this causes problems with indirect samplers and AoA.
943 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
944 */
945 int param_index;
946
947 /**
948 * Vertex stream output identifier.
949 *
950 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
951 * stream of the i-th component.
952 */
953 unsigned stream;
954
955 /**
956 * Atomic, transform feedback or block member offset.
957 */
958 unsigned offset;
959
960 /**
961 * Highest element accessed with a constant expression array index
962 *
963 * Not used for non-array variables. -1 is never accessed.
964 */
965 int max_array_access;
966
967 /**
968 * Transform feedback buffer.
969 */
970 unsigned xfb_buffer;
971
972 /**
973 * Transform feedback stride.
974 */
975 unsigned xfb_stride;
976
977 /**
978 * Allow (only) ir_variable direct access private members.
979 */
980 friend class ir_variable;
981 } data;
982
983 /**
984 * Value assigned in the initializer of a variable declared "const"
985 */
986 ir_constant *constant_value;
987
988 /**
989 * Constant expression assigned in the initializer of the variable
990 *
991 * \warning
992 * This field and \c ::constant_value are distinct. Even if the two fields
993 * refer to constants with the same value, they must point to separate
994 * objects.
995 */
996 ir_constant *constant_initializer;
997
998 private:
999 static const char *const warn_extension_table[];
1000
1001 union {
1002 /**
1003 * For variables which satisfy the is_interface_instance() predicate,
1004 * this points to an array of integers such that if the ith member of
1005 * the interface block is an array, max_ifc_array_access[i] is the
1006 * maximum array element of that member that has been accessed. If the
1007 * ith member of the interface block is not an array,
1008 * max_ifc_array_access[i] is unused.
1009 *
1010 * For variables whose type is not an interface block, this pointer is
1011 * NULL.
1012 */
1013 int *max_ifc_array_access;
1014
1015 /**
1016 * Built-in state that backs this uniform
1017 *
1018 * Once set at variable creation, \c state_slots must remain invariant.
1019 *
1020 * If the variable is not a uniform, \c _num_state_slots will be zero
1021 * and \c state_slots will be \c NULL.
1022 */
1023 ir_state_slot *state_slots;
1024 } u;
1025
1026 /**
1027 * For variables that are in an interface block or are an instance of an
1028 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
1029 *
1030 * \sa ir_variable::location
1031 */
1032 const glsl_type *interface_type;
1033
1034 /**
1035 * Name used for anonymous compiler temporaries
1036 */
1037 static const char tmp_name[];
1038
1039 public:
1040 /**
1041 * Should the construct keep names for ir_var_temporary variables?
1042 *
1043 * When this global is false, names passed to the constructor for
1044 * \c ir_var_temporary variables will be dropped. Instead, the variable will
1045 * be named "compiler_temp". This name will be in static storage.
1046 *
1047 * \warning
1048 * \b NEVER change the mode of an \c ir_var_temporary.
1049 *
1050 * \warning
1051 * This variable is \b not thread-safe. It is global, \b not
1052 * per-context. It begins life false. A context can, at some point, make
1053 * it true. From that point on, it will be true forever. This should be
1054 * okay since it will only be set true while debugging.
1055 */
1056 static bool temporaries_allocate_names;
1057 };
1058
1059 /**
1060 * A function that returns whether a built-in function is available in the
1061 * current shading language (based on version, ES or desktop, and extensions).
1062 */
1063 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1064
1065 enum ir_intrinsic_id {
1066 ir_intrinsic_invalid = 0,
1067
1068 /**
1069 * \name Generic intrinsics
1070 *
1071 * Each of these intrinsics has a specific version for shared variables and
1072 * SSBOs.
1073 */
1074 /*@{*/
1075 ir_intrinsic_generic_load,
1076 ir_intrinsic_generic_store,
1077 ir_intrinsic_generic_atomic_add,
1078 ir_intrinsic_generic_atomic_and,
1079 ir_intrinsic_generic_atomic_or,
1080 ir_intrinsic_generic_atomic_xor,
1081 ir_intrinsic_generic_atomic_min,
1082 ir_intrinsic_generic_atomic_max,
1083 ir_intrinsic_generic_atomic_exchange,
1084 ir_intrinsic_generic_atomic_comp_swap,
1085 /*@}*/
1086
1087 ir_intrinsic_atomic_counter_read,
1088 ir_intrinsic_atomic_counter_increment,
1089 ir_intrinsic_atomic_counter_predecrement,
1090 ir_intrinsic_atomic_counter_add,
1091 ir_intrinsic_atomic_counter_and,
1092 ir_intrinsic_atomic_counter_or,
1093 ir_intrinsic_atomic_counter_xor,
1094 ir_intrinsic_atomic_counter_min,
1095 ir_intrinsic_atomic_counter_max,
1096 ir_intrinsic_atomic_counter_exchange,
1097 ir_intrinsic_atomic_counter_comp_swap,
1098
1099 ir_intrinsic_image_load,
1100 ir_intrinsic_image_store,
1101 ir_intrinsic_image_atomic_add,
1102 ir_intrinsic_image_atomic_and,
1103 ir_intrinsic_image_atomic_or,
1104 ir_intrinsic_image_atomic_xor,
1105 ir_intrinsic_image_atomic_min,
1106 ir_intrinsic_image_atomic_max,
1107 ir_intrinsic_image_atomic_exchange,
1108 ir_intrinsic_image_atomic_comp_swap,
1109 ir_intrinsic_image_size,
1110 ir_intrinsic_image_samples,
1111 ir_intrinsic_image_atomic_inc_wrap,
1112 ir_intrinsic_image_atomic_dec_wrap,
1113 ir_intrinsic_image_sparse_load,
1114
1115 ir_intrinsic_memory_barrier,
1116 ir_intrinsic_shader_clock,
1117 ir_intrinsic_group_memory_barrier,
1118 ir_intrinsic_memory_barrier_atomic_counter,
1119 ir_intrinsic_memory_barrier_buffer,
1120 ir_intrinsic_memory_barrier_image,
1121 ir_intrinsic_memory_barrier_shared,
1122 ir_intrinsic_begin_invocation_interlock,
1123 ir_intrinsic_end_invocation_interlock,
1124
1125 ir_intrinsic_vote_all,
1126 ir_intrinsic_vote_any,
1127 ir_intrinsic_vote_eq,
1128 ir_intrinsic_ballot,
1129 ir_intrinsic_inverse_ballot,
1130 ir_intrinsic_ballot_bit_extract,
1131 ir_intrinsic_ballot_bit_count,
1132 ir_intrinsic_ballot_inclusive_bit_count,
1133 ir_intrinsic_ballot_exclusive_bit_count,
1134 ir_intrinsic_ballot_find_lsb,
1135 ir_intrinsic_ballot_find_msb,
1136 ir_intrinsic_read_invocation,
1137 ir_intrinsic_read_first_invocation,
1138
1139 ir_intrinsic_helper_invocation,
1140
1141 ir_intrinsic_is_sparse_texels_resident,
1142
1143 ir_intrinsic_subgroup_barrier,
1144 ir_intrinsic_subgroup_memory_barrier,
1145 ir_intrinsic_subgroup_memory_barrier_buffer,
1146 ir_intrinsic_subgroup_memory_barrier_shared,
1147 ir_intrinsic_subgroup_memory_barrier_image,
1148 ir_intrinsic_elect,
1149
1150 ir_intrinsic_shuffle,
1151 ir_intrinsic_shuffle_xor,
1152 ir_intrinsic_shuffle_up,
1153 ir_intrinsic_shuffle_down,
1154
1155 ir_intrinsic_reduce_add,
1156 ir_intrinsic_reduce_mul,
1157 ir_intrinsic_reduce_min,
1158 ir_intrinsic_reduce_max,
1159 ir_intrinsic_reduce_and,
1160 ir_intrinsic_reduce_or,
1161 ir_intrinsic_reduce_xor,
1162
1163 ir_intrinsic_inclusive_add,
1164 ir_intrinsic_inclusive_mul,
1165 ir_intrinsic_inclusive_min,
1166 ir_intrinsic_inclusive_max,
1167 ir_intrinsic_inclusive_and,
1168 ir_intrinsic_inclusive_or,
1169 ir_intrinsic_inclusive_xor,
1170
1171 ir_intrinsic_exclusive_add,
1172 ir_intrinsic_exclusive_mul,
1173 ir_intrinsic_exclusive_min,
1174 ir_intrinsic_exclusive_max,
1175 ir_intrinsic_exclusive_and,
1176 ir_intrinsic_exclusive_or,
1177 ir_intrinsic_exclusive_xor,
1178
1179 ir_intrinsic_clustered_add,
1180 ir_intrinsic_clustered_mul,
1181 ir_intrinsic_clustered_min,
1182 ir_intrinsic_clustered_max,
1183 ir_intrinsic_clustered_and,
1184 ir_intrinsic_clustered_or,
1185 ir_intrinsic_clustered_xor,
1186
1187 ir_intrinsic_quad_broadcast,
1188 ir_intrinsic_quad_swap_horizontal,
1189 ir_intrinsic_quad_swap_vertical,
1190 ir_intrinsic_quad_swap_diagonal,
1191 };
1192
1193 /*@{*/
1194 /**
1195 * The representation of a function instance; may be the full definition or
1196 * simply a prototype.
1197 */
1198 class ir_function_signature : public ir_instruction {
1199 /* An ir_function_signature will be part of the list of signatures in
1200 * an ir_function.
1201 */
1202 public:
1203 ir_function_signature(const glsl_type *return_type,
1204 builtin_available_predicate builtin_avail = NULL);
1205
1206 virtual ir_function_signature *clone(void *mem_ctx,
1207 struct hash_table *ht) const;
1208 ir_function_signature *clone_prototype(void *mem_ctx,
1209 struct hash_table *ht) const;
1210
accept(ir_visitor * v)1211 virtual void accept(ir_visitor *v)
1212 {
1213 v->visit(this);
1214 }
1215
1216 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1217
1218 /**
1219 * Attempt to evaluate this function as a constant expression,
1220 * given a list of the actual parameters and the variable context.
1221 * Returns NULL for non-built-ins.
1222 */
1223 ir_constant *constant_expression_value(void *mem_ctx,
1224 exec_list *actual_parameters,
1225 struct hash_table *variable_context);
1226
1227 /**
1228 * Get the name of the function for which this is a signature
1229 */
1230 const char *function_name() const;
1231
1232 /**
1233 * Get a handle to the function for which this is a signature
1234 *
1235 * There is no setter function, this function returns a \c const pointer,
1236 * and \c ir_function_signature::_function is private for a reason. The
1237 * only way to make a connection between a function and function signature
1238 * is via \c ir_function::add_signature. This helps ensure that certain
1239 * invariants (i.e., a function signature is in the list of signatures for
1240 * its \c _function) are met.
1241 *
1242 * \sa ir_function::add_signature
1243 */
function()1244 inline const class ir_function *function() const
1245 {
1246 return this->_function;
1247 }
1248
1249 /**
1250 * Check whether the qualifiers match between this signature's parameters
1251 * and the supplied parameter list. If not, returns the name of the first
1252 * parameter with mismatched qualifiers (for use in error messages).
1253 */
1254 const char *qualifiers_match(exec_list *params);
1255
1256 /**
1257 * Replace the current parameter list with the given one. This is useful
1258 * if the current information came from a prototype, and either has invalid
1259 * or missing parameter names.
1260 */
1261 void replace_parameters(exec_list *new_params);
1262
1263 /**
1264 * Function return type.
1265 *
1266 * \note The precision qualifier is stored separately in return_precision.
1267 */
1268 const struct glsl_type *return_type;
1269
1270 /**
1271 * List of ir_variable of function parameters.
1272 *
1273 * This represents the storage. The paramaters passed in a particular
1274 * call will be in ir_call::actual_paramaters.
1275 */
1276 struct exec_list parameters;
1277
1278 /** Whether or not this function has a body (which may be empty). */
1279 unsigned is_defined:1;
1280
1281 /*
1282 * Precision qualifier for the return type.
1283 *
1284 * See the comment for ir_variable_data::precision for more details.
1285 */
1286 unsigned return_precision:2;
1287
1288 /** Whether or not this function signature is a built-in. */
1289 bool is_builtin() const;
1290
1291 /**
1292 * Whether or not this function is an intrinsic to be implemented
1293 * by the driver.
1294 */
is_intrinsic()1295 inline bool is_intrinsic() const
1296 {
1297 return intrinsic_id != ir_intrinsic_invalid;
1298 }
1299
1300 /** Identifier for this intrinsic. */
1301 enum ir_intrinsic_id intrinsic_id;
1302
1303 /** Whether or not a built-in is available for this shader. */
1304 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1305
1306 /** Body of instructions in the function. */
1307 struct exec_list body;
1308
1309 private:
1310 /**
1311 * A function pointer to a predicate that answers whether a built-in
1312 * function is available in the current shader. NULL if not a built-in.
1313 */
1314 builtin_available_predicate builtin_avail;
1315
1316 /** Function of which this signature is one overload. */
1317 class ir_function *_function;
1318
1319 /** Function signature of which this one is a prototype clone */
1320 const ir_function_signature *origin;
1321
1322 friend class ir_function;
1323
1324 /**
1325 * Helper function to run a list of instructions for constant
1326 * expression evaluation.
1327 *
1328 * The hash table represents the values of the visible variables.
1329 * There are no scoping issues because the table is indexed on
1330 * ir_variable pointers, not variable names.
1331 *
1332 * Returns false if the expression is not constant, true otherwise,
1333 * and the value in *result if result is non-NULL.
1334 */
1335 bool constant_expression_evaluate_expression_list(void *mem_ctx,
1336 const struct exec_list &body,
1337 struct hash_table *variable_context,
1338 ir_constant **result);
1339 };
1340
1341
1342 /**
1343 * Header for tracking multiple overloaded functions with the same name.
1344 * Contains a list of ir_function_signatures representing each of the
1345 * actual functions.
1346 */
1347 class ir_function : public ir_instruction {
1348 public:
1349 ir_function(const char *name);
1350
1351 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1352
accept(ir_visitor * v)1353 virtual void accept(ir_visitor *v)
1354 {
1355 v->visit(this);
1356 }
1357
1358 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1359
add_signature(ir_function_signature * sig)1360 void add_signature(ir_function_signature *sig)
1361 {
1362 sig->_function = this;
1363 this->signatures.push_tail(sig);
1364 }
1365
1366 /**
1367 * Find a signature that matches a set of actual parameters, taking implicit
1368 * conversions into account. Also flags whether the match was exact.
1369 */
1370 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1371 const exec_list *actual_param,
1372 bool has_implicit_conversions,
1373 bool has_implicit_int_to_uint_conversion,
1374 bool allow_builtins,
1375 bool *match_is_exact);
1376
1377 /**
1378 * Find a signature that matches a set of actual parameters, taking implicit
1379 * conversions into account.
1380 */
1381 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1382 const exec_list *actual_param,
1383 bool has_implicit_conversions,
1384 bool has_implicit_int_to_uint_conversion,
1385 bool allow_builtins);
1386
1387 /**
1388 * Find a signature that exactly matches a set of actual parameters without
1389 * any implicit type conversions.
1390 */
1391 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1392 const exec_list *actual_ps);
1393
1394 /**
1395 * Name of the function.
1396 */
1397 const char *name;
1398
1399 /** Whether or not this function has a signature that isn't a built-in. */
1400 bool has_user_signature();
1401
1402 /**
1403 * List of ir_function_signature for each overloaded function with this name.
1404 */
1405 struct exec_list signatures;
1406
1407 /**
1408 * is this function a subroutine type declaration
1409 * e.g. subroutine void type1(float arg1);
1410 */
1411 bool is_subroutine;
1412
1413 /**
1414 * is this function associated to a subroutine type
1415 * e.g. subroutine (type1, type2) function_name { function_body };
1416 * would have num_subroutine_types 2,
1417 * and pointers to the type1 and type2 types.
1418 */
1419 int num_subroutine_types;
1420 const struct glsl_type **subroutine_types;
1421
1422 int subroutine_index;
1423 };
1424
function_name()1425 inline const char *ir_function_signature::function_name() const
1426 {
1427 return this->_function->name;
1428 }
1429 /*@}*/
1430
1431
1432 /**
1433 * IR instruction representing high-level if-statements
1434 */
1435 class ir_if : public ir_instruction {
1436 public:
ir_if(ir_rvalue * condition)1437 ir_if(ir_rvalue *condition)
1438 : ir_instruction(ir_type_if), condition(condition)
1439 {
1440 }
1441
1442 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1443
accept(ir_visitor * v)1444 virtual void accept(ir_visitor *v)
1445 {
1446 v->visit(this);
1447 }
1448
1449 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1450
1451 ir_rvalue *condition;
1452 /** List of ir_instruction for the body of the then branch */
1453 exec_list then_instructions;
1454 /** List of ir_instruction for the body of the else branch */
1455 exec_list else_instructions;
1456 };
1457
1458
1459 /**
1460 * IR instruction representing a high-level loop structure.
1461 */
1462 class ir_loop : public ir_instruction {
1463 public:
1464 ir_loop();
1465
1466 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1467
accept(ir_visitor * v)1468 virtual void accept(ir_visitor *v)
1469 {
1470 v->visit(this);
1471 }
1472
1473 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1474
1475 /** List of ir_instruction that make up the body of the loop. */
1476 exec_list body_instructions;
1477 };
1478
1479
1480 class ir_assignment : public ir_instruction {
1481 public:
1482 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs);
1483
1484 /**
1485 * Construct an assignment with an explicit write mask
1486 *
1487 * \note
1488 * Since a write mask is supplied, the LHS must already be a bare
1489 * \c ir_dereference. The cannot be any swizzles in the LHS.
1490 */
1491 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, unsigned write_mask);
1492
1493 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1494
1495 virtual ir_constant *constant_expression_value(void *mem_ctx,
1496 struct hash_table *variable_context = NULL);
1497
accept(ir_visitor * v)1498 virtual void accept(ir_visitor *v)
1499 {
1500 v->visit(this);
1501 }
1502
1503 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1504
1505 /**
1506 * Get a whole variable written by an assignment
1507 *
1508 * If the LHS of the assignment writes a whole variable, the variable is
1509 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1510 * assignment are:
1511 *
1512 * - Assigning to a scalar
1513 * - Assigning to all components of a vector
1514 * - Whole array (or matrix) assignment
1515 * - Whole structure assignment
1516 */
1517 ir_variable *whole_variable_written();
1518
1519 /**
1520 * Set the LHS of an assignment
1521 */
1522 void set_lhs(ir_rvalue *lhs);
1523
1524 /**
1525 * Left-hand side of the assignment.
1526 *
1527 * This should be treated as read only. If you need to set the LHS of an
1528 * assignment, use \c ir_assignment::set_lhs.
1529 */
1530 ir_dereference *lhs;
1531
1532 /**
1533 * Value being assigned
1534 */
1535 ir_rvalue *rhs;
1536
1537 /**
1538 * Component mask written
1539 *
1540 * For non-vector types in the LHS, this field will be zero. For vector
1541 * types, a bit will be set for each component that is written. Note that
1542 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1543 *
1544 * A partially-set write mask means that each enabled channel gets
1545 * the value from a consecutive channel of the rhs. For example,
1546 * to write just .xyw of gl_FrontColor with color:
1547 *
1548 * (assign (constant bool (1)) (xyw)
1549 * (var_ref gl_FragColor)
1550 * (swiz xyw (var_ref color)))
1551 */
1552 unsigned write_mask:4;
1553 };
1554
1555 #include "ir_expression_operation.h"
1556
1557 extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
1558 extern const char *const ir_expression_operation_enum_strings[ir_last_opcode + 1];
1559
1560 class ir_expression : public ir_rvalue {
1561 public:
1562 ir_expression(int op, const struct glsl_type *type,
1563 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1564 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1565
1566 /**
1567 * Constructor for unary operation expressions
1568 */
1569 ir_expression(int op, ir_rvalue *);
1570
1571 /**
1572 * Constructor for binary operation expressions
1573 */
1574 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1575
1576 /**
1577 * Constructor for ternary operation expressions
1578 */
1579 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1580
1581 virtual bool equals(const ir_instruction *ir,
1582 enum ir_node_type ignore = ir_type_unset) const;
1583
1584 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1585
1586 /**
1587 * Attempt to constant-fold the expression
1588 *
1589 * The "variable_context" hash table links ir_variable * to ir_constant *
1590 * that represent the variables' values. \c NULL represents an empty
1591 * context.
1592 *
1593 * If the expression cannot be constant folded, this method will return
1594 * \c NULL.
1595 */
1596 virtual ir_constant *constant_expression_value(void *mem_ctx,
1597 struct hash_table *variable_context = NULL);
1598
1599 /**
1600 * This is only here for ir_reader to used for testing purposes please use
1601 * the precomputed num_operands field if you need the number of operands.
1602 */
1603 static unsigned get_num_operands(ir_expression_operation);
1604
1605 /**
1606 * Return whether the expression operates on vectors horizontally.
1607 */
is_horizontal()1608 bool is_horizontal() const
1609 {
1610 return operation == ir_binop_all_equal ||
1611 operation == ir_binop_any_nequal ||
1612 operation == ir_binop_dot ||
1613 operation == ir_binop_vector_extract ||
1614 operation == ir_triop_vector_insert ||
1615 operation == ir_quadop_vector;
1616 }
1617
1618 /**
1619 * Do a reverse-lookup to translate the given string into an operator.
1620 */
1621 static ir_expression_operation get_operator(const char *);
1622
accept(ir_visitor * v)1623 virtual void accept(ir_visitor *v)
1624 {
1625 v->visit(this);
1626 }
1627
1628 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1629
1630 virtual ir_variable *variable_referenced() const;
1631
1632 /**
1633 * Determine the number of operands used by an expression
1634 */
init_num_operands()1635 void init_num_operands()
1636 {
1637 if (operation == ir_quadop_vector) {
1638 num_operands = this->type->vector_elements;
1639 } else {
1640 num_operands = get_num_operands(operation);
1641 }
1642 }
1643
1644 ir_expression_operation operation;
1645 ir_rvalue *operands[4];
1646 uint8_t num_operands;
1647 };
1648
1649
1650 /**
1651 * HIR instruction representing a high-level function call, containing a list
1652 * of parameters and returning a value in the supplied temporary.
1653 */
1654 class ir_call : public ir_instruction {
1655 public:
ir_call(ir_function_signature * callee,ir_dereference_variable * return_deref,exec_list * actual_parameters)1656 ir_call(ir_function_signature *callee,
1657 ir_dereference_variable *return_deref,
1658 exec_list *actual_parameters)
1659 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1660 {
1661 assert(callee->return_type != NULL);
1662 actual_parameters->move_nodes_to(& this->actual_parameters);
1663 }
1664
ir_call(ir_function_signature * callee,ir_dereference_variable * return_deref,exec_list * actual_parameters,ir_variable * var,ir_rvalue * array_idx)1665 ir_call(ir_function_signature *callee,
1666 ir_dereference_variable *return_deref,
1667 exec_list *actual_parameters,
1668 ir_variable *var, ir_rvalue *array_idx)
1669 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1670 {
1671 assert(callee->return_type != NULL);
1672 actual_parameters->move_nodes_to(& this->actual_parameters);
1673 }
1674
1675 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1676
1677 virtual ir_constant *constant_expression_value(void *mem_ctx,
1678 struct hash_table *variable_context = NULL);
1679
accept(ir_visitor * v)1680 virtual void accept(ir_visitor *v)
1681 {
1682 v->visit(this);
1683 }
1684
1685 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1686
1687 /**
1688 * Get the name of the function being called.
1689 */
callee_name()1690 const char *callee_name() const
1691 {
1692 return callee->function_name();
1693 }
1694
1695 /**
1696 * Generates an inline version of the function before @ir,
1697 * storing the return value in return_deref.
1698 */
1699 void generate_inline(ir_instruction *ir);
1700
1701 /**
1702 * Storage for the function's return value.
1703 * This must be NULL if the return type is void.
1704 */
1705 ir_dereference_variable *return_deref;
1706
1707 /**
1708 * The specific function signature being called.
1709 */
1710 ir_function_signature *callee;
1711
1712 /* List of ir_rvalue of paramaters passed in this call. */
1713 exec_list actual_parameters;
1714
1715 /*
1716 * ARB_shader_subroutine support -
1717 * the subroutine uniform variable and array index
1718 * rvalue to be used in the lowering pass later.
1719 */
1720 ir_variable *sub_var;
1721 ir_rvalue *array_idx;
1722 };
1723
1724
1725 /**
1726 * \name Jump-like IR instructions.
1727 *
1728 * These include \c break, \c continue, \c return, and \c discard.
1729 */
1730 /*@{*/
1731 class ir_jump : public ir_instruction {
1732 protected:
ir_jump(enum ir_node_type t)1733 ir_jump(enum ir_node_type t)
1734 : ir_instruction(t)
1735 {
1736 }
1737 };
1738
1739 class ir_return : public ir_jump {
1740 public:
ir_return()1741 ir_return()
1742 : ir_jump(ir_type_return), value(NULL)
1743 {
1744 }
1745
ir_return(ir_rvalue * value)1746 ir_return(ir_rvalue *value)
1747 : ir_jump(ir_type_return), value(value)
1748 {
1749 }
1750
1751 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1752
get_value()1753 ir_rvalue *get_value() const
1754 {
1755 return value;
1756 }
1757
accept(ir_visitor * v)1758 virtual void accept(ir_visitor *v)
1759 {
1760 v->visit(this);
1761 }
1762
1763 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1764
1765 ir_rvalue *value;
1766 };
1767
1768
1769 /**
1770 * Jump instructions used inside loops
1771 *
1772 * These include \c break and \c continue. The \c break within a loop is
1773 * different from the \c break within a switch-statement.
1774 *
1775 * \sa ir_switch_jump
1776 */
1777 class ir_loop_jump : public ir_jump {
1778 public:
1779 enum jump_mode {
1780 jump_break,
1781 jump_continue
1782 };
1783
ir_loop_jump(jump_mode mode)1784 ir_loop_jump(jump_mode mode)
1785 : ir_jump(ir_type_loop_jump)
1786 {
1787 this->mode = mode;
1788 }
1789
1790 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1791
accept(ir_visitor * v)1792 virtual void accept(ir_visitor *v)
1793 {
1794 v->visit(this);
1795 }
1796
1797 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1798
is_break()1799 bool is_break() const
1800 {
1801 return mode == jump_break;
1802 }
1803
is_continue()1804 bool is_continue() const
1805 {
1806 return mode == jump_continue;
1807 }
1808
1809 /** Mode selector for the jump instruction. */
1810 enum jump_mode mode;
1811 };
1812
1813 /**
1814 * IR instruction representing discard statements.
1815 */
1816 class ir_discard : public ir_jump {
1817 public:
ir_discard()1818 ir_discard()
1819 : ir_jump(ir_type_discard)
1820 {
1821 this->condition = NULL;
1822 }
1823
ir_discard(ir_rvalue * cond)1824 ir_discard(ir_rvalue *cond)
1825 : ir_jump(ir_type_discard)
1826 {
1827 this->condition = cond;
1828 }
1829
1830 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1831
accept(ir_visitor * v)1832 virtual void accept(ir_visitor *v)
1833 {
1834 v->visit(this);
1835 }
1836
1837 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1838
1839 ir_rvalue *condition;
1840 };
1841 /*@}*/
1842
1843
1844 /**
1845 * IR instruction representing demote statements from
1846 * GL_EXT_demote_to_helper_invocation.
1847 */
1848 class ir_demote : public ir_instruction {
1849 public:
ir_demote()1850 ir_demote()
1851 : ir_instruction(ir_type_demote)
1852 {
1853 }
1854
1855 virtual ir_demote *clone(void *mem_ctx, struct hash_table *ht) const;
1856
accept(ir_visitor * v)1857 virtual void accept(ir_visitor *v)
1858 {
1859 v->visit(this);
1860 }
1861
1862 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1863 };
1864
1865
1866 /**
1867 * Texture sampling opcodes used in ir_texture
1868 */
1869 enum ir_texture_opcode {
1870 ir_tex, /**< Regular texture look-up */
1871 ir_txb, /**< Texture look-up with LOD bias */
1872 ir_txl, /**< Texture look-up with explicit LOD */
1873 ir_txd, /**< Texture look-up with partial derivatives */
1874 ir_txf, /**< Texel fetch with explicit LOD */
1875 ir_txf_ms, /**< Multisample texture fetch */
1876 ir_txs, /**< Texture size */
1877 ir_lod, /**< Texture lod query */
1878 ir_tg4, /**< Texture gather */
1879 ir_query_levels, /**< Texture levels query */
1880 ir_texture_samples, /**< Texture samples query */
1881 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1882 };
1883
1884
1885 /**
1886 * IR instruction to sample a texture
1887 *
1888 * The specific form of the IR instruction depends on the \c mode value
1889 * selected from \c ir_texture_opcodes. In the printed IR, these will
1890 * appear as:
1891 *
1892 * Texel offset (0 or an expression)
1893 * | Projection divisor
1894 * | | Shadow comparator
1895 * | | | Lod clamp
1896 * | | | |
1897 * v v v v
1898 * (tex <type> <sampler> <coordinate> <sparse> 0 1 ( ) ( ))
1899 * (txb <type> <sampler> <coordinate> <sparse> 0 1 ( ) ( ) <bias>)
1900 * (txl <type> <sampler> <coordinate> <sparse> 0 1 ( ) <lod>)
1901 * (txd <type> <sampler> <coordinate> <sparse> 0 1 ( ) ( ) (dPdx dPdy))
1902 * (txf <type> <sampler> <coordinate> <sparse> 0 <lod>)
1903 * (txf_ms
1904 * <type> <sampler> <coordinate> <sparse> <sample_index>)
1905 * (txs <type> <sampler> <lod>)
1906 * (lod <type> <sampler> <coordinate>)
1907 * (tg4 <type> <sampler> <coordinate> <sparse> <offset> <component>)
1908 * (query_levels <type> <sampler>)
1909 * (samples_identical <sampler> <coordinate>)
1910 */
1911 class ir_texture : public ir_rvalue {
1912 public:
1913 ir_texture(enum ir_texture_opcode op, bool sparse = false)
ir_rvalue(ir_type_texture)1914 : ir_rvalue(ir_type_texture),
1915 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1916 shadow_comparator(NULL), offset(NULL), clamp(NULL),
1917 is_sparse(sparse)
1918 {
1919 memset(&lod_info, 0, sizeof(lod_info));
1920 }
1921
1922 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1923
1924 virtual ir_constant *constant_expression_value(void *mem_ctx,
1925 struct hash_table *variable_context = NULL);
1926
accept(ir_visitor * v)1927 virtual void accept(ir_visitor *v)
1928 {
1929 v->visit(this);
1930 }
1931
1932 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1933
1934 virtual bool equals(const ir_instruction *ir,
1935 enum ir_node_type ignore = ir_type_unset) const;
1936
1937 /**
1938 * Return a string representing the ir_texture_opcode.
1939 */
1940 const char *opcode_string();
1941
1942 /** Set the sampler and type. */
1943 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1944
1945 /**
1946 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1947 */
1948 static ir_texture_opcode get_opcode(const char *);
1949
1950 enum ir_texture_opcode op;
1951
1952 /** Sampler to use for the texture access. */
1953 ir_dereference *sampler;
1954
1955 /** Texture coordinate to sample */
1956 ir_rvalue *coordinate;
1957
1958 /**
1959 * Value used for projective divide.
1960 *
1961 * If there is no projective divide (the common case), this will be
1962 * \c NULL. Optimization passes should check for this to point to a constant
1963 * of 1.0 and replace that with \c NULL.
1964 */
1965 ir_rvalue *projector;
1966
1967 /**
1968 * Coordinate used for comparison on shadow look-ups.
1969 *
1970 * If there is no shadow comparison, this will be \c NULL. For the
1971 * \c ir_txf opcode, this *must* be \c NULL.
1972 */
1973 ir_rvalue *shadow_comparator;
1974
1975 /** Texel offset. */
1976 ir_rvalue *offset;
1977
1978 /** Lod clamp. */
1979 ir_rvalue *clamp;
1980
1981 union {
1982 ir_rvalue *lod; /**< Floating point LOD */
1983 ir_rvalue *bias; /**< Floating point LOD bias */
1984 ir_rvalue *sample_index; /**< MSAA sample index */
1985 ir_rvalue *component; /**< Gather component selector */
1986 struct {
1987 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1988 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1989 } grad;
1990 } lod_info;
1991
1992 /* Whether a sparse texture */
1993 bool is_sparse;
1994 };
1995
1996
1997 struct ir_swizzle_mask {
1998 unsigned x:2;
1999 unsigned y:2;
2000 unsigned z:2;
2001 unsigned w:2;
2002
2003 /**
2004 * Number of components in the swizzle.
2005 */
2006 unsigned num_components:3;
2007
2008 /**
2009 * Does the swizzle contain duplicate components?
2010 *
2011 * L-value swizzles cannot contain duplicate components.
2012 */
2013 unsigned has_duplicates:1;
2014 };
2015
2016
2017 class ir_swizzle : public ir_rvalue {
2018 public:
2019 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
2020 unsigned count);
2021
2022 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
2023
2024 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
2025
2026 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
2027
2028 virtual ir_constant *constant_expression_value(void *mem_ctx,
2029 struct hash_table *variable_context = NULL);
2030
2031 /**
2032 * Construct an ir_swizzle from the textual representation. Can fail.
2033 */
2034 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2035
accept(ir_visitor * v)2036 virtual void accept(ir_visitor *v)
2037 {
2038 v->visit(this);
2039 }
2040
2041 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2042
2043 virtual bool equals(const ir_instruction *ir,
2044 enum ir_node_type ignore = ir_type_unset) const;
2045
is_lvalue(const struct _mesa_glsl_parse_state * state)2046 bool is_lvalue(const struct _mesa_glsl_parse_state *state) const
2047 {
2048 return val->is_lvalue(state) && !mask.has_duplicates;
2049 }
2050
2051 /**
2052 * Get the variable that is ultimately referenced by an r-value
2053 */
2054 virtual ir_variable *variable_referenced() const;
2055
2056 ir_rvalue *val;
2057 ir_swizzle_mask mask;
2058
2059 private:
2060 /**
2061 * Initialize the mask component of a swizzle
2062 *
2063 * This is used by the \c ir_swizzle constructors.
2064 */
2065 void init_mask(const unsigned *components, unsigned count);
2066 };
2067
2068
2069 class ir_dereference : public ir_rvalue {
2070 public:
2071 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2072
2073 bool is_lvalue(const struct _mesa_glsl_parse_state *state) const;
2074
2075 /**
2076 * Get the variable that is ultimately referenced by an r-value
2077 */
2078 virtual ir_variable *variable_referenced() const = 0;
2079
2080 /**
2081 * Get the precision. This can either come from the eventual variable that
2082 * is dereferenced, or from a record member.
2083 */
2084 virtual int precision() const = 0;
2085
2086 protected:
ir_dereference(enum ir_node_type t)2087 ir_dereference(enum ir_node_type t)
2088 : ir_rvalue(t)
2089 {
2090 }
2091 };
2092
2093
2094 class ir_dereference_variable : public ir_dereference {
2095 public:
2096 ir_dereference_variable(ir_variable *var);
2097
2098 virtual ir_dereference_variable *clone(void *mem_ctx,
2099 struct hash_table *) const;
2100
2101 virtual ir_constant *constant_expression_value(void *mem_ctx,
2102 struct hash_table *variable_context = NULL);
2103
2104 virtual bool equals(const ir_instruction *ir,
2105 enum ir_node_type ignore = ir_type_unset) const;
2106
2107 /**
2108 * Get the variable that is ultimately referenced by an r-value
2109 */
variable_referenced()2110 virtual ir_variable *variable_referenced() const
2111 {
2112 return this->var;
2113 }
2114
precision()2115 virtual int precision() const
2116 {
2117 return this->var->data.precision;
2118 }
2119
whole_variable_referenced()2120 virtual ir_variable *whole_variable_referenced()
2121 {
2122 /* ir_dereference_variable objects always dereference the entire
2123 * variable. However, if this dereference is dereferenced by anything
2124 * else, the complete dereference chain is not a whole-variable
2125 * dereference. This method should only be called on the top most
2126 * ir_rvalue in a dereference chain.
2127 */
2128 return this->var;
2129 }
2130
accept(ir_visitor * v)2131 virtual void accept(ir_visitor *v)
2132 {
2133 v->visit(this);
2134 }
2135
2136 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2137
2138 /**
2139 * Object being dereferenced.
2140 */
2141 ir_variable *var;
2142 };
2143
2144
2145 class ir_dereference_array : public ir_dereference {
2146 public:
2147 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2148
2149 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2150
2151 virtual ir_dereference_array *clone(void *mem_ctx,
2152 struct hash_table *) const;
2153
2154 virtual ir_constant *constant_expression_value(void *mem_ctx,
2155 struct hash_table *variable_context = NULL);
2156
2157 virtual bool equals(const ir_instruction *ir,
2158 enum ir_node_type ignore = ir_type_unset) const;
2159
2160 /**
2161 * Get the variable that is ultimately referenced by an r-value
2162 */
variable_referenced()2163 virtual ir_variable *variable_referenced() const
2164 {
2165 return this->array->variable_referenced();
2166 }
2167
precision()2168 virtual int precision() const
2169 {
2170 ir_dereference *deref = this->array->as_dereference();
2171
2172 if (deref == NULL)
2173 return GLSL_PRECISION_NONE;
2174 else
2175 return deref->precision();
2176 }
2177
accept(ir_visitor * v)2178 virtual void accept(ir_visitor *v)
2179 {
2180 v->visit(this);
2181 }
2182
2183 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2184
2185 ir_rvalue *array;
2186 ir_rvalue *array_index;
2187
2188 private:
2189 void set_array(ir_rvalue *value);
2190 };
2191
2192
2193 class ir_dereference_record : public ir_dereference {
2194 public:
2195 ir_dereference_record(ir_rvalue *value, const char *field);
2196
2197 ir_dereference_record(ir_variable *var, const char *field);
2198
2199 virtual ir_dereference_record *clone(void *mem_ctx,
2200 struct hash_table *) const;
2201
2202 virtual ir_constant *constant_expression_value(void *mem_ctx,
2203 struct hash_table *variable_context = NULL);
2204
2205 /**
2206 * Get the variable that is ultimately referenced by an r-value
2207 */
variable_referenced()2208 virtual ir_variable *variable_referenced() const
2209 {
2210 return this->record->variable_referenced();
2211 }
2212
precision()2213 virtual int precision() const
2214 {
2215 const glsl_struct_field *field = record->type->fields.structure + field_idx;
2216
2217 return field->precision;
2218 }
2219
accept(ir_visitor * v)2220 virtual void accept(ir_visitor *v)
2221 {
2222 v->visit(this);
2223 }
2224
2225 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2226
2227 ir_rvalue *record;
2228 int field_idx;
2229 };
2230
2231
2232 /**
2233 * Data stored in an ir_constant
2234 */
2235 union ir_constant_data {
2236 unsigned u[16];
2237 int i[16];
2238 float f[16];
2239 bool b[16];
2240 double d[16];
2241 uint16_t f16[16];
2242 uint16_t u16[16];
2243 int16_t i16[16];
2244 uint64_t u64[16];
2245 int64_t i64[16];
2246 };
2247
2248
2249 class ir_constant : public ir_rvalue {
2250 public:
2251 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2252 ir_constant(bool b, unsigned vector_elements=1);
2253 ir_constant(int16_t i16, unsigned vector_elements=1);
2254 ir_constant(uint16_t u16, unsigned vector_elements=1);
2255 ir_constant(unsigned int u, unsigned vector_elements=1);
2256 ir_constant(int i, unsigned vector_elements=1);
2257 ir_constant(float16_t f16, unsigned vector_elements=1);
2258 ir_constant(float f, unsigned vector_elements=1);
2259 ir_constant(double d, unsigned vector_elements=1);
2260 ir_constant(uint64_t u64, unsigned vector_elements=1);
2261 ir_constant(int64_t i64, unsigned vector_elements=1);
2262
2263 /**
2264 * Construct an ir_constant from a list of ir_constant values
2265 */
2266 ir_constant(const struct glsl_type *type, exec_list *values);
2267
2268 /**
2269 * Construct an ir_constant from a scalar component of another ir_constant
2270 *
2271 * The new \c ir_constant inherits the type of the component from the
2272 * source constant.
2273 *
2274 * \note
2275 * In the case of a matrix constant, the new constant is a scalar, \b not
2276 * a vector.
2277 */
2278 ir_constant(const ir_constant *c, unsigned i);
2279
2280 /**
2281 * Return a new ir_constant of the specified type containing all zeros.
2282 */
2283 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2284
2285 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2286
2287 virtual ir_constant *constant_expression_value(void *mem_ctx,
2288 struct hash_table *variable_context = NULL);
2289
accept(ir_visitor * v)2290 virtual void accept(ir_visitor *v)
2291 {
2292 v->visit(this);
2293 }
2294
2295 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2296
2297 virtual bool equals(const ir_instruction *ir,
2298 enum ir_node_type ignore = ir_type_unset) const;
2299
2300 /**
2301 * Get a particular component of a constant as a specific type
2302 *
2303 * This is useful, for example, to get a value from an integer constant
2304 * as a float or bool. This appears frequently when constructors are
2305 * called with all constant parameters.
2306 */
2307 /*@{*/
2308 bool get_bool_component(unsigned i) const;
2309 float get_float_component(unsigned i) const;
2310 uint16_t get_float16_component(unsigned i) const;
2311 double get_double_component(unsigned i) const;
2312 int16_t get_int16_component(unsigned i) const;
2313 uint16_t get_uint16_component(unsigned i) const;
2314 int get_int_component(unsigned i) const;
2315 unsigned get_uint_component(unsigned i) const;
2316 int64_t get_int64_component(unsigned i) const;
2317 uint64_t get_uint64_component(unsigned i) const;
2318 /*@}*/
2319
2320 ir_constant *get_array_element(unsigned i) const;
2321
2322 ir_constant *get_record_field(int idx);
2323
2324 /**
2325 * Copy the values on another constant at a given offset.
2326 *
2327 * The offset is ignored for array or struct copies, it's only for
2328 * scalars or vectors into vectors or matrices.
2329 *
2330 * With identical types on both sides and zero offset it's clone()
2331 * without creating a new object.
2332 */
2333
2334 void copy_offset(ir_constant *src, int offset);
2335
2336 /**
2337 * Copy the values on another constant at a given offset and
2338 * following an assign-like mask.
2339 *
2340 * The mask is ignored for scalars.
2341 *
2342 * Note that this function only handles what assign can handle,
2343 * i.e. at most a vector as source and a column of a matrix as
2344 * destination.
2345 */
2346
2347 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2348
2349 /**
2350 * Determine whether a constant has the same value as another constant
2351 *
2352 * \sa ir_constant::is_zero, ir_constant::is_one,
2353 * ir_constant::is_negative_one
2354 */
2355 bool has_value(const ir_constant *) const;
2356
2357 /**
2358 * Return true if this ir_constant represents the given value.
2359 *
2360 * For vectors, this checks that each component is the given value.
2361 */
2362 virtual bool is_value(float f, int i) const;
2363 virtual bool is_zero() const;
2364 virtual bool is_one() const;
2365 virtual bool is_negative_one() const;
2366
2367 /**
2368 * Return true for constants that could be stored as 16-bit unsigned values.
2369 *
2370 * Note that this will return true even for signed integer ir_constants, as
2371 * long as the value is non-negative and fits in 16-bits.
2372 */
2373 virtual bool is_uint16_constant() const;
2374
2375 /**
2376 * Value of the constant.
2377 *
2378 * The field used to back the values supplied by the constant is determined
2379 * by the type associated with the \c ir_instruction. Constants may be
2380 * scalars, vectors, or matrices.
2381 */
2382 union ir_constant_data value;
2383
2384 /* Array elements and structure fields */
2385 ir_constant **const_elements;
2386
2387 private:
2388 /**
2389 * Parameterless constructor only used by the clone method
2390 */
2391 ir_constant(void);
2392 };
2393
2394 /**
2395 * IR instruction to emit a vertex in a geometry shader.
2396 */
2397 class ir_emit_vertex : public ir_instruction {
2398 public:
ir_emit_vertex(ir_rvalue * stream)2399 ir_emit_vertex(ir_rvalue *stream)
2400 : ir_instruction(ir_type_emit_vertex),
2401 stream(stream)
2402 {
2403 assert(stream);
2404 }
2405
accept(ir_visitor * v)2406 virtual void accept(ir_visitor *v)
2407 {
2408 v->visit(this);
2409 }
2410
clone(void * mem_ctx,struct hash_table * ht)2411 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2412 {
2413 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2414 }
2415
2416 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2417
stream_id()2418 int stream_id() const
2419 {
2420 return stream->as_constant()->value.i[0];
2421 }
2422
2423 ir_rvalue *stream;
2424 };
2425
2426 /**
2427 * IR instruction to complete the current primitive and start a new one in a
2428 * geometry shader.
2429 */
2430 class ir_end_primitive : public ir_instruction {
2431 public:
ir_end_primitive(ir_rvalue * stream)2432 ir_end_primitive(ir_rvalue *stream)
2433 : ir_instruction(ir_type_end_primitive),
2434 stream(stream)
2435 {
2436 assert(stream);
2437 }
2438
accept(ir_visitor * v)2439 virtual void accept(ir_visitor *v)
2440 {
2441 v->visit(this);
2442 }
2443
clone(void * mem_ctx,struct hash_table * ht)2444 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2445 {
2446 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2447 }
2448
2449 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2450
stream_id()2451 int stream_id() const
2452 {
2453 return stream->as_constant()->value.i[0];
2454 }
2455
2456 ir_rvalue *stream;
2457 };
2458
2459 /**
2460 * IR instruction for tessellation control and compute shader barrier.
2461 */
2462 class ir_barrier : public ir_instruction {
2463 public:
ir_barrier()2464 ir_barrier()
2465 : ir_instruction(ir_type_barrier)
2466 {
2467 }
2468
accept(ir_visitor * v)2469 virtual void accept(ir_visitor *v)
2470 {
2471 v->visit(this);
2472 }
2473
clone(void * mem_ctx,struct hash_table *)2474 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2475 {
2476 return new(mem_ctx) ir_barrier();
2477 }
2478
2479 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2480 };
2481
2482 /*@}*/
2483
2484 /**
2485 * Apply a visitor to each IR node in a list
2486 */
2487 void
2488 visit_exec_list(exec_list *list, ir_visitor *visitor);
2489
2490 void
2491 visit_exec_list_safe(exec_list *list, ir_visitor *visitor);
2492
2493 /**
2494 * Validate invariants on each IR node in a list
2495 */
2496 void validate_ir_tree(exec_list *instructions);
2497
2498 /**
2499 * Detect whether an unlinked shader contains static recursion
2500 *
2501 * If the list of instructions is determined to contain static recursion,
2502 * \c _mesa_glsl_error will be called to emit error messages for each function
2503 * that is in the recursion cycle.
2504 */
2505 void
2506 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2507 exec_list *instructions);
2508
2509 /**
2510 * Make a clone of each IR instruction in a list
2511 *
2512 * \param in List of IR instructions that are to be cloned
2513 * \param out List to hold the cloned instructions
2514 */
2515 void
2516 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2517
2518 extern void
2519 reparent_ir(exec_list *list, void *mem_ctx);
2520
2521 extern char *
2522 prototype_string(const glsl_type *return_type, const char *name,
2523 exec_list *parameters);
2524
2525 const char *
2526 mode_string(const ir_variable *var);
2527
2528 extern "C" {
2529 #endif /* __cplusplus */
2530
2531 extern void
2532 _mesa_glsl_initialize_types(struct _mesa_glsl_parse_state *state);
2533
2534 extern void
2535 _mesa_glsl_initialize_variables(struct exec_list *instructions,
2536 struct _mesa_glsl_parse_state *state);
2537
2538 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2539 struct _mesa_glsl_parse_state *state);
2540
2541 extern void
2542 fprint_ir(FILE *f, const void *instruction);
2543
2544 extern const struct gl_builtin_uniform_desc *
2545 _mesa_glsl_get_builtin_uniform_desc(const char *name);
2546
2547 #ifdef __cplusplus
2548 } /* extern "C" */
2549 #endif
2550
2551 enum mesa_prim
2552 gl_to_mesa_prim(GLenum prim);
2553
2554 #endif /* IR_H */
2555