xref: /aosp_15_r20/external/mesa3d/src/broadcom/vulkan/v3dv_image.c (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /*
2  * Copyright © 2019 Raspberry Pi Ltd
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "v3dv_private.h"
25 
26 #include "drm-uapi/drm_fourcc.h"
27 #include "util/format/u_format.h"
28 #include "util/u_math.h"
29 #include "vk_util.h"
30 #include "vulkan/wsi/wsi_common.h"
31 #include "vk_android.h"
32 
33 /**
34  * Computes the HW's UIFblock padding for a given height/cpp.
35  *
36  * The goal of the padding is to keep pages of the same color (bank number) at
37  * least half a page away from each other vertically when crossing between
38  * columns of UIF blocks.
39  */
40 static uint32_t
v3d_get_ub_pad(uint32_t cpp,uint32_t height)41 v3d_get_ub_pad(uint32_t cpp, uint32_t height)
42 {
43    uint32_t utile_h = v3d_utile_height(cpp);
44    uint32_t uif_block_h = utile_h * 2;
45    uint32_t height_ub = height / uif_block_h;
46 
47    uint32_t height_offset_in_pc = height_ub % PAGE_CACHE_UB_ROWS;
48 
49    /* For the perfectly-aligned-for-UIF-XOR case, don't add any pad. */
50    if (height_offset_in_pc == 0)
51       return 0;
52 
53    /* Try padding up to where we're offset by at least half a page. */
54    if (height_offset_in_pc < PAGE_UB_ROWS_TIMES_1_5) {
55       /* If we fit entirely in the page cache, don't pad. */
56       if (height_ub < PAGE_CACHE_UB_ROWS)
57          return 0;
58       else
59          return PAGE_UB_ROWS_TIMES_1_5 - height_offset_in_pc;
60    }
61 
62    /* If we're close to being aligned to page cache size, then round up
63     * and rely on XOR.
64     */
65    if (height_offset_in_pc > PAGE_CACHE_MINUS_1_5_UB_ROWS)
66       return PAGE_CACHE_UB_ROWS - height_offset_in_pc;
67 
68    /* Otherwise, we're far enough away (top and bottom) to not need any
69     * padding.
70     */
71    return 0;
72 }
73 
74 /**
75  * Computes the dimension with required padding for mip levels.
76  *
77  * This padding is required for width and height dimensions when the mip
78  * level is greater than 1, and for the depth dimension when the mip level
79  * is greater than 0. This function expects to be passed a mip level >= 1.
80  *
81  * Note: Hardware documentation seems to suggest that the third argument
82  * should be the utile dimensions, but through testing it was found that
83  * the block dimension should be used instead.
84  */
85 static uint32_t
v3d_get_dimension_mpad(uint32_t dimension,uint32_t level,uint32_t block_dimension)86 v3d_get_dimension_mpad(uint32_t dimension, uint32_t level, uint32_t block_dimension)
87 {
88    assert(level >= 1);
89    uint32_t pot_dim = u_minify(dimension, 1);
90    pot_dim = util_next_power_of_two(DIV_ROUND_UP(pot_dim, block_dimension));
91    uint32_t padded_dim = block_dimension * pot_dim;
92    return u_minify(padded_dim, level - 1);
93 }
94 
95 static bool
v3d_setup_plane_slices(struct v3dv_image * image,uint8_t plane,uint32_t plane_offset,const VkSubresourceLayout * plane_layouts)96 v3d_setup_plane_slices(struct v3dv_image *image, uint8_t plane,
97                        uint32_t plane_offset,
98                        const VkSubresourceLayout *plane_layouts)
99 {
100    assert(image->planes[plane].cpp > 0);
101 
102    uint32_t width = image->planes[plane].width;
103    uint32_t height = image->planes[plane].height;
104    uint32_t depth = image->vk.extent.depth;
105 
106    uint32_t utile_w = v3d_utile_width(image->planes[plane].cpp);
107    uint32_t utile_h = v3d_utile_height(image->planes[plane].cpp);
108    uint32_t uif_block_w = utile_w * 2;
109    uint32_t uif_block_h = utile_h * 2;
110 
111    uint32_t block_width = vk_format_get_blockwidth(image->vk.format);
112    uint32_t block_height = vk_format_get_blockheight(image->vk.format);
113 
114    /* Note that power-of-two padding is based on level 1.  These are not
115     * equivalent to just util_next_power_of_two(dimension), because at a
116     * level 0 dimension of 9, the level 1 power-of-two padded value is 4,
117     * not 8. Additionally the pot padding is based on the block size.
118     */
119    uint32_t pot_width = 2 * v3d_get_dimension_mpad(width,
120                                                    1,
121                                                    block_width);
122    uint32_t pot_height = 2 * v3d_get_dimension_mpad(height,
123                                                     1,
124                                                     block_height);
125    uint32_t pot_depth = 2 * v3d_get_dimension_mpad(depth,
126                                                    1,
127                                                    1);
128 
129    assert(image->vk.samples == VK_SAMPLE_COUNT_1_BIT ||
130           image->vk.samples == VK_SAMPLE_COUNT_4_BIT);
131    bool msaa = image->vk.samples != VK_SAMPLE_COUNT_1_BIT;
132 
133    bool uif_top = msaa;
134 
135    assert(image->vk.array_layers > 0);
136    assert(depth > 0);
137    assert(image->vk.mip_levels >= 1);
138 
139    /* Texture Base Address needs to be 64-byte aligned. If we have an explicit
140     * plane layout we will return false to fail image creation with appropriate
141     * error code.
142     */
143    uint32_t offset;
144    if (plane_layouts) {
145       offset = plane_layouts[plane].offset;
146       if (offset % 64 != 0)
147          return false;
148    } else {
149       offset = plane_offset;
150    }
151    assert(plane_offset % 64 == 0);
152 
153    for (int32_t i = image->vk.mip_levels - 1; i >= 0; i--) {
154       struct v3d_resource_slice *slice = &image->planes[plane].slices[i];
155 
156       slice->width = u_minify(width, i);
157       slice->height = u_minify(height, i);
158 
159       uint32_t level_width, level_height, level_depth;
160       if (i < 2) {
161          level_width = slice->width;
162          level_height = slice->height;
163       } else {
164          level_width = u_minify(pot_width, i);
165          level_height = u_minify(pot_height, i);
166       }
167 
168       if (i < 1)
169          level_depth = u_minify(depth, i);
170       else
171          level_depth = u_minify(pot_depth, i);
172 
173       if (msaa) {
174          level_width *= 2;
175          level_height *= 2;
176       }
177 
178       level_width = DIV_ROUND_UP(level_width, block_width);
179       level_height = DIV_ROUND_UP(level_height, block_height);
180 
181       if (!image->tiled) {
182          slice->tiling = V3D_TILING_RASTER;
183          if (image->vk.image_type == VK_IMAGE_TYPE_1D)
184             level_width = align(level_width, 64 / image->planes[plane].cpp);
185       } else {
186          if ((i != 0 || !uif_top) &&
187              (level_width <= utile_w || level_height <= utile_h)) {
188             slice->tiling = V3D_TILING_LINEARTILE;
189             level_width = align(level_width, utile_w);
190             level_height = align(level_height, utile_h);
191          } else if ((i != 0 || !uif_top) && level_width <= uif_block_w) {
192             slice->tiling = V3D_TILING_UBLINEAR_1_COLUMN;
193             level_width = align(level_width, uif_block_w);
194             level_height = align(level_height, uif_block_h);
195          } else if ((i != 0 || !uif_top) && level_width <= 2 * uif_block_w) {
196             slice->tiling = V3D_TILING_UBLINEAR_2_COLUMN;
197             level_width = align(level_width, 2 * uif_block_w);
198             level_height = align(level_height, uif_block_h);
199          } else {
200             /* We align the width to a 4-block column of UIF blocks, but we
201              * only align height to UIF blocks.
202              */
203             level_width = align(level_width, 4 * uif_block_w);
204             level_height = align(level_height, uif_block_h);
205 
206             slice->ub_pad = v3d_get_ub_pad(image->planes[plane].cpp,
207                                            level_height);
208             level_height += slice->ub_pad * uif_block_h;
209 
210             /* If the padding set us to to be aligned to the page cache size,
211              * then the HW will use the XOR bit on odd columns to get us
212              * perfectly misaligned.
213              */
214             if ((level_height / uif_block_h) %
215                 (V3D_PAGE_CACHE_SIZE / V3D_UIFBLOCK_ROW_SIZE) == 0) {
216                slice->tiling = V3D_TILING_UIF_XOR;
217             } else {
218                slice->tiling = V3D_TILING_UIF_NO_XOR;
219             }
220          }
221       }
222 
223       slice->offset = offset;
224       slice->stride = level_width * image->planes[plane].cpp;
225 
226       /* We assume that rowPitch in the plane layout refers to level 0 */
227       if (plane_layouts && i == 0) {
228          if (plane_layouts[plane].rowPitch < slice->stride)
229             return false;
230          if (plane_layouts[plane].rowPitch % image->planes[plane].cpp)
231             return false;
232          if (image->tiled && (plane_layouts[plane].rowPitch % (4 * uif_block_w)))
233             return false;
234          slice->stride = plane_layouts[plane].rowPitch;
235       }
236 
237       slice->padded_height = level_height;
238       if (slice->tiling == V3D_TILING_UIF_NO_XOR ||
239           slice->tiling == V3D_TILING_UIF_XOR) {
240          slice->padded_height_of_output_image_in_uif_blocks =
241             slice->padded_height /
242                (2 * v3d_utile_height(image->planes[plane].cpp));
243       }
244 
245       slice->size = level_height * slice->stride;
246       uint32_t slice_total_size = slice->size * level_depth;
247 
248       /* The HW aligns level 1's base to a page if any of level 1 or
249        * below could be UIF XOR.  The lower levels then inherit the
250        * alignment for as long as necessary, thanks to being power of
251        * two aligned.
252        */
253       if (i == 1 &&
254           level_width > 4 * uif_block_w &&
255           level_height > PAGE_CACHE_MINUS_1_5_UB_ROWS * uif_block_h) {
256          slice_total_size = align(slice_total_size, V3D_UIFCFG_PAGE_SIZE);
257       }
258 
259       offset += slice_total_size;
260    }
261 
262    image->planes[plane].size = offset - plane_offset;
263 
264    /* UIF/UBLINEAR levels need to be aligned to UIF-blocks, and LT only
265     * needs to be aligned to utile boundaries.  Since tiles are laid out
266     * from small to big in memory, we need to align the later UIF slices
267     * to UIF blocks, if they were preceded by non-UIF-block-aligned LT
268     * slices.
269     *
270     * We additionally align to 4k, which improves UIF XOR performance.
271     *
272     * Finally, because the Texture Base Address field must be 64-byte aligned,
273     * we also need to align linear images to 64 if the image is going to be
274     * used for transfer.
275     */
276    if (image->tiled) {
277       image->planes[plane].alignment = 4096;
278    } else {
279       image->planes[plane].alignment =
280          (image->vk.usage & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) ?
281             64 : image->planes[plane].cpp;
282    }
283 
284    uint32_t align_offset =
285       align(image->planes[plane].slices[0].offset,
286             image->planes[plane].alignment) -
287             image->planes[plane].slices[0].offset;
288    if (align_offset) {
289       image->planes[plane].size += align_offset;
290       for (int i = 0; i < image->vk.mip_levels; i++)
291          image->planes[plane].slices[i].offset += align_offset;
292    }
293 
294    /* Arrays and cube textures have a stride which is the distance from
295     * one full mipmap tree to the next (64b aligned).  For 3D textures,
296     * we need to program the stride between slices of miplevel 0.
297     */
298    if (image->vk.image_type != VK_IMAGE_TYPE_3D) {
299       image->planes[plane].cube_map_stride =
300          align(image->planes[plane].slices[0].offset +
301                image->planes[plane].slices[0].size, 64);
302 
303       if (plane_layouts && image->vk.array_layers > 1) {
304          if (plane_layouts[plane].arrayPitch % 64 != 0)
305             return false;
306          if (plane_layouts[plane].arrayPitch <
307              image->planes[plane].cube_map_stride) {
308             return false;
309          }
310          image->planes[plane].cube_map_stride = plane_layouts[plane].arrayPitch;
311       }
312 
313       image->planes[plane].size += image->planes[plane].cube_map_stride *
314                                    (image->vk.array_layers - 1);
315    } else {
316       image->planes[plane].cube_map_stride = image->planes[plane].slices[0].size;
317       if (plane_layouts) {
318          /* We assume that depthPitch in the plane layout refers to level 0 */
319          if (plane_layouts[plane].depthPitch !=
320              image->planes[plane].slices[0].size) {
321                return false;
322          }
323       }
324    }
325 
326    return true;
327 }
328 
329 static VkResult
v3d_setup_slices(struct v3dv_image * image,bool disjoint,const VkSubresourceLayout * plane_layouts)330 v3d_setup_slices(struct v3dv_image *image, bool disjoint,
331                  const VkSubresourceLayout *plane_layouts)
332 {
333    if (disjoint && image->plane_count == 1)
334       disjoint = false;
335 
336    uint64_t offset = 0;
337    for (uint8_t plane = 0; plane < image->plane_count; plane++) {
338       offset = disjoint ? 0 : offset;
339       if (!v3d_setup_plane_slices(image, plane, offset, plane_layouts)) {
340          assert(plane_layouts);
341          return VK_ERROR_INVALID_DRM_FORMAT_MODIFIER_PLANE_LAYOUT_EXT;
342       }
343       offset += align64(image->planes[plane].size, 64);
344    }
345 
346    /* From the Vulkan spec:
347     *
348     *   "If the size of the resultant image would exceed maxResourceSize, then
349     *    vkCreateImage must fail and return VK_ERROR_OUT_OF_DEVICE_MEMORY. This
350     *    failure may occur even when all image creation parameters satisfy their
351     *    valid usage requirements."
352     */
353    if (offset > 0xffffffff)
354       return VK_ERROR_OUT_OF_DEVICE_MEMORY;
355 
356    image->non_disjoint_size = disjoint ? 0 : offset;
357    return VK_SUCCESS;
358 }
359 
360 uint32_t
v3dv_layer_offset(const struct v3dv_image * image,uint32_t level,uint32_t layer,uint8_t plane)361 v3dv_layer_offset(const struct v3dv_image *image, uint32_t level, uint32_t layer,
362                   uint8_t plane)
363 {
364    const struct v3d_resource_slice *slice = &image->planes[plane].slices[level];
365 
366    if (image->vk.image_type == VK_IMAGE_TYPE_3D)
367       return image->planes[plane].mem_offset + slice->offset + layer * slice->size;
368    else
369       return image->planes[plane].mem_offset + slice->offset +
370          layer * image->planes[plane].cube_map_stride;
371 }
372 
373 VkResult
v3dv_update_image_layout(struct v3dv_device * device,struct v3dv_image * image,uint64_t modifier,bool disjoint,const VkImageDrmFormatModifierExplicitCreateInfoEXT * explicit_mod_info)374 v3dv_update_image_layout(struct v3dv_device *device,
375                          struct v3dv_image *image,
376                          uint64_t modifier,
377                          bool disjoint,
378                          const VkImageDrmFormatModifierExplicitCreateInfoEXT *explicit_mod_info)
379 {
380    assert(!explicit_mod_info ||
381           image->plane_count == explicit_mod_info->drmFormatModifierPlaneCount);
382 
383    assert(!explicit_mod_info ||
384           modifier == explicit_mod_info->drmFormatModifier);
385 
386    image->tiled = modifier != DRM_FORMAT_MOD_LINEAR;
387 
388    image->vk.drm_format_mod = modifier;
389 
390    return v3d_setup_slices(image, disjoint,
391                            explicit_mod_info ? explicit_mod_info->pPlaneLayouts :
392                                                NULL);
393 }
394 
395 VkResult
v3dv_image_init(struct v3dv_device * device,const VkImageCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,struct v3dv_image * image)396 v3dv_image_init(struct v3dv_device *device,
397                 const VkImageCreateInfo *pCreateInfo,
398                 const VkAllocationCallbacks *pAllocator,
399                 struct v3dv_image *image)
400 {
401    /* When using the simulator the WSI common code will see that our
402     * driver wsi device doesn't match the display device and because of that
403     * it will not attempt to present directly from the swapchain images,
404     * instead it will use the prime blit path (use_buffer_blit flag in
405     * struct wsi_swapchain), where it copies the contents of the swapchain
406     * images to a linear buffer with appropriate row stride for presentation.
407     * As a result, on that path, swapchain images do not have any special
408     * requirements and are not created with the pNext structs below.
409     */
410    VkImageTiling tiling = pCreateInfo->tiling;
411    uint64_t modifier = DRM_FORMAT_MOD_INVALID;
412    const VkImageDrmFormatModifierListCreateInfoEXT *mod_info = NULL;
413    const VkImageDrmFormatModifierExplicitCreateInfoEXT *explicit_mod_info = NULL;
414 
415    /* This section is removed by the optimizer for non-ANDROID builds */
416    VkImageDrmFormatModifierExplicitCreateInfoEXT eci;
417    VkSubresourceLayout a_plane_layouts[V3DV_MAX_PLANE_COUNT];
418    if (vk_image_is_android_native_buffer(&image->vk)) {
419       VkResult result = vk_android_get_anb_layout(
420          pCreateInfo, &eci, a_plane_layouts, V3DV_MAX_PLANE_COUNT);
421       if (result != VK_SUCCESS)
422          return result;
423 
424       explicit_mod_info = &eci;
425       modifier = eci.drmFormatModifier;
426    }
427 
428    if (tiling == VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT) {
429       mod_info =
430          vk_find_struct_const(pCreateInfo->pNext,
431                               IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT);
432       explicit_mod_info =
433          vk_find_struct_const(pCreateInfo->pNext,
434                               IMAGE_DRM_FORMAT_MODIFIER_EXPLICIT_CREATE_INFO_EXT);
435       assert(mod_info || explicit_mod_info);
436 
437       if (mod_info) {
438          for (uint32_t i = 0; i < mod_info->drmFormatModifierCount; i++) {
439             switch (mod_info->pDrmFormatModifiers[i]) {
440             case DRM_FORMAT_MOD_LINEAR:
441                if (modifier == DRM_FORMAT_MOD_INVALID)
442                   modifier = DRM_FORMAT_MOD_LINEAR;
443                break;
444             case DRM_FORMAT_MOD_BROADCOM_UIF:
445                modifier = DRM_FORMAT_MOD_BROADCOM_UIF;
446                break;
447             }
448          }
449       } else {
450          modifier = explicit_mod_info->drmFormatModifier;
451       }
452       assert(modifier == DRM_FORMAT_MOD_LINEAR ||
453              modifier == DRM_FORMAT_MOD_BROADCOM_UIF);
454    } else if (pCreateInfo->imageType == VK_IMAGE_TYPE_1D ||
455               image->vk.wsi_legacy_scanout) {
456       tiling = VK_IMAGE_TILING_LINEAR;
457    }
458 
459    if (modifier == DRM_FORMAT_MOD_INVALID)
460       modifier = (tiling == VK_IMAGE_TILING_OPTIMAL) ? DRM_FORMAT_MOD_BROADCOM_UIF
461                                                      : DRM_FORMAT_MOD_LINEAR;
462 
463    const struct v3dv_format *format =
464       v3dv_X(device, get_format)(image->vk.format);
465    v3dv_assert(format != NULL && format->plane_count);
466 
467    assert(pCreateInfo->samples == VK_SAMPLE_COUNT_1_BIT ||
468           pCreateInfo->samples == VK_SAMPLE_COUNT_4_BIT);
469 
470    image->format = format;
471 
472    image->plane_count = vk_format_get_plane_count(image->vk.format);
473 
474    const struct vk_format_ycbcr_info *ycbcr_info =
475       vk_format_get_ycbcr_info(image->vk.format);
476 
477    for (uint8_t plane = 0; plane < image->plane_count; plane++) {
478       VkFormat plane_format =
479          vk_format_get_plane_format(image->vk.format, plane);
480       image->planes[plane].cpp =
481          vk_format_get_blocksize(plane_format);
482       image->planes[plane].vk_format = plane_format;
483 
484       image->planes[plane].width = image->vk.extent.width;
485       image->planes[plane].height = image->vk.extent.height;
486 
487       if (ycbcr_info) {
488          image->planes[plane].width /=
489             ycbcr_info->planes[plane].denominator_scales[0];
490 
491          image->planes[plane].height /=
492             ycbcr_info->planes[plane].denominator_scales[1];
493       }
494    }
495 
496    /* Our meta paths can create image views with compatible formats for any
497     * image, so always set this flag to keep the common Vulkan image code
498     * happy.
499     */
500    image->vk.create_flags |= VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT;
501 
502    /* At this time, an AHB handle is not yet provided.
503     * Image layout will be filled up during vkBindImageMemory2
504     * This section is removed by the optimizer for non-ANDROID builds
505     */
506    if (vk_image_is_android_hardware_buffer(&image->vk))
507       return VK_SUCCESS;
508 
509    bool disjoint = image->vk.create_flags & VK_IMAGE_CREATE_DISJOINT_BIT;
510 
511    return v3dv_update_image_layout(device, image, modifier, disjoint,
512                                    explicit_mod_info);
513 }
514 
515 static VkResult
516 create_image_from_swapchain(struct v3dv_device *device,
517                             const VkImageCreateInfo *pCreateInfo,
518                             const VkImageSwapchainCreateInfoKHR *swapchain_info,
519                             const VkAllocationCallbacks *pAllocator,
520                             VkImage *pImage);
521 
522 static VkResult
create_image(struct v3dv_device * device,const VkImageCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkImage * pImage)523 create_image(struct v3dv_device *device,
524              const VkImageCreateInfo *pCreateInfo,
525              const VkAllocationCallbacks *pAllocator,
526              VkImage *pImage)
527 {
528 #if DETECT_OS_ANDROID
529    /* VkImageSwapchainCreateInfoKHR is not useful at all */
530    const VkImageSwapchainCreateInfoKHR *swapchain_info = NULL;
531 #else
532    const VkImageSwapchainCreateInfoKHR *swapchain_info =
533       vk_find_struct_const(pCreateInfo->pNext, IMAGE_SWAPCHAIN_CREATE_INFO_KHR);
534 #endif
535 
536    if (swapchain_info && swapchain_info->swapchain != VK_NULL_HANDLE)
537       return create_image_from_swapchain(device, pCreateInfo, swapchain_info,
538                                          pAllocator, pImage);
539 
540    VkResult result;
541    struct v3dv_image *image = NULL;
542 
543    image = vk_image_create(&device->vk, pCreateInfo, pAllocator, sizeof(*image));
544    if (image == NULL)
545       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
546 
547    result = v3dv_image_init(device, pCreateInfo, pAllocator, image);
548    if (result != VK_SUCCESS)
549       goto fail;
550 
551    /* This section is removed by the optimizer for non-ANDROID builds */
552    if (vk_image_is_android_native_buffer(&image->vk)) {
553       result = vk_android_import_anb(&device->vk, pCreateInfo, pAllocator,
554                                      &image->vk);
555       if (result != VK_SUCCESS)
556          goto fail;
557    }
558 
559    *pImage = v3dv_image_to_handle(image);
560 
561    return VK_SUCCESS;
562 
563 fail:
564    vk_image_destroy(&device->vk, pAllocator, &image->vk);
565    return result;
566 }
567 
568 static VkResult
create_image_from_swapchain(struct v3dv_device * device,const VkImageCreateInfo * pCreateInfo,const VkImageSwapchainCreateInfoKHR * swapchain_info,const VkAllocationCallbacks * pAllocator,VkImage * pImage)569 create_image_from_swapchain(struct v3dv_device *device,
570                             const VkImageCreateInfo *pCreateInfo,
571                             const VkImageSwapchainCreateInfoKHR *swapchain_info,
572                             const VkAllocationCallbacks *pAllocator,
573                             VkImage *pImage)
574 {
575    struct v3dv_image *swapchain_image =
576       v3dv_wsi_get_image_from_swapchain(swapchain_info->swapchain, 0);
577    assert(swapchain_image);
578 
579    VkImageCreateInfo local_create_info = *pCreateInfo;
580    local_create_info.pNext = NULL;
581 
582    /* Added by wsi code. */
583    local_create_info.usage |= VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
584 
585    /* The spec requires TILING_OPTIMAL as input, but the swapchain image may
586     * privately use a different tiling.  See spec anchor
587     * #swapchain-wsi-image-create-info .
588     */
589    assert(local_create_info.tiling == VK_IMAGE_TILING_OPTIMAL);
590    local_create_info.tiling = swapchain_image->vk.tiling;
591 
592    VkImageDrmFormatModifierListCreateInfoEXT local_modifier_info = {
593       .sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT,
594       .drmFormatModifierCount = 1,
595       .pDrmFormatModifiers = &swapchain_image->vk.drm_format_mod,
596    };
597 
598    if (swapchain_image->vk.drm_format_mod != DRM_FORMAT_MOD_INVALID)
599       __vk_append_struct(&local_create_info, &local_modifier_info);
600 
601    assert(swapchain_image->vk.image_type == local_create_info.imageType);
602    assert(swapchain_image->vk.format == local_create_info.format);
603    assert(swapchain_image->vk.extent.width == local_create_info.extent.width);
604    assert(swapchain_image->vk.extent.height == local_create_info.extent.height);
605    assert(swapchain_image->vk.extent.depth == local_create_info.extent.depth);
606    assert(swapchain_image->vk.array_layers == local_create_info.arrayLayers);
607    assert(swapchain_image->vk.samples == local_create_info.samples);
608    assert(swapchain_image->vk.tiling == local_create_info.tiling);
609    assert((swapchain_image->vk.usage & local_create_info.usage) ==
610           local_create_info.usage);
611 
612    return create_image(device, &local_create_info, pAllocator, pImage);
613 }
614 
615 VKAPI_ATTR VkResult VKAPI_CALL
v3dv_CreateImage(VkDevice _device,const VkImageCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkImage * pImage)616 v3dv_CreateImage(VkDevice _device,
617                  const VkImageCreateInfo *pCreateInfo,
618                  const VkAllocationCallbacks *pAllocator,
619                  VkImage *pImage)
620 {
621    V3DV_FROM_HANDLE(v3dv_device, device, _device);
622    return create_image(device, pCreateInfo, pAllocator, pImage);
623 }
624 
625 static void
get_image_subresource_layout(struct v3dv_device * device,struct v3dv_image * image,const VkImageSubresource2KHR * subresource2,VkSubresourceLayout2KHR * layout2)626 get_image_subresource_layout(struct v3dv_device *device,
627                              struct v3dv_image *image,
628                              const VkImageSubresource2KHR *subresource2,
629                              VkSubresourceLayout2KHR *layout2)
630 {
631    const VkImageSubresource *subresource = &subresource2->imageSubresource;
632    VkSubresourceLayout *layout = &layout2->subresourceLayout;
633 
634    uint8_t plane = v3dv_plane_from_aspect(subresource->aspectMask);
635    const struct v3d_resource_slice *slice =
636       &image->planes[plane].slices[subresource->mipLevel];
637 
638    /* About why the offset below works for both disjoint and non-disjoint
639     * cases, from the Vulkan spec:
640     *
641     *   "If the image is disjoint, then the offset is relative to the base
642     *    address of the plane."
643     *
644     *   "If the image is non-disjoint, then the offset is relative to the base
645     *    address of the image."
646     *
647     * In our case, the per-plane mem_offset for non-disjoint images is the
648     * same for all planes and matches the base address of the image.
649     */
650    layout->offset =
651       v3dv_layer_offset(image, subresource->mipLevel, subresource->arrayLayer,
652                         plane) - image->planes[plane].mem_offset;
653    layout->rowPitch = slice->stride;
654    layout->depthPitch = image->vk.image_type == VK_IMAGE_TYPE_3D ?
655                         image->planes[plane].cube_map_stride : 0;
656    layout->arrayPitch = image->vk.array_layers > 1 ?
657                         image->planes[plane].cube_map_stride : 0;
658 
659    if (image->vk.image_type != VK_IMAGE_TYPE_3D) {
660       layout->size = slice->size;
661    } else {
662       /* For 3D images, the size of the slice represents the size of a 2D slice
663        * in the 3D image, so we have to multiply by the depth extent of the
664        * miplevel. For levels other than the first, we just compute the size
665        * as the distance between consecutive levels (notice that mip levels are
666        * arranged in memory from last to first).
667        */
668       if (subresource->mipLevel == 0) {
669          layout->size = slice->size * image->vk.extent.depth;
670       } else {
671             const struct v3d_resource_slice *prev_slice =
672                &image->planes[plane].slices[subresource->mipLevel - 1];
673             layout->size = prev_slice->offset - slice->offset;
674       }
675    }
676 }
677 
678 VKAPI_ATTR void VKAPI_CALL
v3dv_GetImageSubresourceLayout2KHR(VkDevice _device,VkImage _image,const VkImageSubresource2KHR * subresource2,VkSubresourceLayout2KHR * layout2)679 v3dv_GetImageSubresourceLayout2KHR(VkDevice _device,
680                                    VkImage _image,
681                                    const VkImageSubresource2KHR *subresource2,
682                                    VkSubresourceLayout2KHR *layout2)
683 {
684    V3DV_FROM_HANDLE(v3dv_device, device, _device);
685    V3DV_FROM_HANDLE(v3dv_image, image, _image);
686    get_image_subresource_layout(device, image, subresource2, layout2);
687 }
688 
689 VKAPI_ATTR void VKAPI_CALL
v3dv_GetDeviceImageSubresourceLayoutKHR(VkDevice vk_device,const VkDeviceImageSubresourceInfoKHR * pInfo,VkSubresourceLayout2KHR * pLayout)690 v3dv_GetDeviceImageSubresourceLayoutKHR(VkDevice vk_device,
691                                         const VkDeviceImageSubresourceInfoKHR *pInfo,
692                                         VkSubresourceLayout2KHR *pLayout)
693 {
694    V3DV_FROM_HANDLE(v3dv_device, device, vk_device);
695 
696    memset(&pLayout->subresourceLayout, 0, sizeof(pLayout->subresourceLayout));
697 
698    VkImage vk_image = VK_NULL_HANDLE;
699    VkResult result = create_image(device, pInfo->pCreateInfo, NULL, &vk_image);
700    if (result != VK_SUCCESS)
701       return;
702 
703    struct v3dv_image *image = v3dv_image_from_handle(vk_image);
704    get_image_subresource_layout(device, image, pInfo->pSubresource, pLayout);
705 
706    v3dv_DestroyImage(vk_device, vk_image, NULL);
707 }
708 
709 VKAPI_ATTR void VKAPI_CALL
v3dv_DestroyImage(VkDevice _device,VkImage _image,const VkAllocationCallbacks * pAllocator)710 v3dv_DestroyImage(VkDevice _device,
711                   VkImage _image,
712                   const VkAllocationCallbacks* pAllocator)
713 {
714    V3DV_FROM_HANDLE(v3dv_device, device, _device);
715    V3DV_FROM_HANDLE(v3dv_image, image, _image);
716 
717    if (image == NULL)
718       return;
719 
720    /* If we have created a shadow tiled image for this image we must also free
721     * it (along with its memory allocation).
722     */
723    if (image->shadow) {
724       bool disjoint = image->vk.create_flags & VK_IMAGE_CREATE_DISJOINT_BIT;
725       for (int i = 0; i < (disjoint ? image->plane_count : 1); i++) {
726          if (image->shadow->planes[i].mem) {
727             v3dv_FreeMemory(_device,
728                             v3dv_device_memory_to_handle(image->shadow->planes[i].mem),
729                             pAllocator);
730          }
731       }
732       v3dv_DestroyImage(_device, v3dv_image_to_handle(image->shadow),
733                         pAllocator);
734       image->shadow = NULL;
735    }
736 
737    vk_image_destroy(&device->vk, pAllocator, &image->vk);
738 }
739 
740 VkImageViewType
v3dv_image_type_to_view_type(VkImageType type)741 v3dv_image_type_to_view_type(VkImageType type)
742 {
743    switch (type) {
744    case VK_IMAGE_TYPE_1D: return VK_IMAGE_VIEW_TYPE_1D;
745    case VK_IMAGE_TYPE_2D: return VK_IMAGE_VIEW_TYPE_2D;
746    case VK_IMAGE_TYPE_3D: return VK_IMAGE_VIEW_TYPE_3D;
747    default:
748       unreachable("Invalid image type");
749    }
750 }
751 
752 static VkResult
create_image_view(struct v3dv_device * device,bool driver_internal,const VkImageViewCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkImageView * pView)753 create_image_view(struct v3dv_device *device,
754                   bool driver_internal,
755                   const VkImageViewCreateInfo *pCreateInfo,
756                   const VkAllocationCallbacks *pAllocator,
757                   VkImageView *pView)
758 {
759    V3DV_FROM_HANDLE(v3dv_image, image, pCreateInfo->image);
760    struct v3dv_image_view *iview;
761 
762    iview = vk_image_view_create(&device->vk, driver_internal, pCreateInfo,
763                                 pAllocator, sizeof(*iview));
764    if (iview == NULL)
765       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
766 
767    const VkImageAspectFlagBits any_plane_aspect =
768       VK_IMAGE_ASPECT_PLANE_0_BIT |
769       VK_IMAGE_ASPECT_PLANE_1_BIT |
770       VK_IMAGE_ASPECT_PLANE_2_BIT;
771 
772    if (image->vk.aspects & any_plane_aspect) {
773       assert((image->vk.aspects & ~any_plane_aspect) == 0);
774       iview->plane_count = 0;
775       static const VkImageAspectFlagBits plane_aspects[]= {
776          VK_IMAGE_ASPECT_PLANE_0_BIT,
777          VK_IMAGE_ASPECT_PLANE_1_BIT,
778          VK_IMAGE_ASPECT_PLANE_2_BIT
779       };
780       for (uint8_t plane = 0; plane < V3DV_MAX_PLANE_COUNT; plane++) {
781          if (iview->vk.aspects & plane_aspects[plane])
782             iview->planes[iview->plane_count++].image_plane = plane;
783       }
784    } else {
785       iview->plane_count = 1;
786       iview->planes[0].image_plane = 0;
787    }
788    /* At this point we should have at least one plane */
789    assert(iview->plane_count > 0);
790 
791    const VkImageSubresourceRange *range = &pCreateInfo->subresourceRange;
792 
793    /* If we have D24S8 format but the view only selects the stencil aspect
794     * we want to re-interpret the format as RGBA8_UINT, then map our stencil
795     * data reads to the R component and ignore the GBA channels that contain
796     * the depth aspect data.
797     *
798     * FIXME: thwe code belows calls vk_component_mapping_to_pipe_swizzle
799     * only so it can then call util_format_compose_swizzles later. Maybe it
800     * makes sense to implement swizzle composition using VkSwizzle directly.
801     */
802    VkFormat format;
803    if (image->vk.format == VK_FORMAT_D24_UNORM_S8_UINT &&
804        range->aspectMask == VK_IMAGE_ASPECT_STENCIL_BIT) {
805       format = VK_FORMAT_R8G8B8A8_UINT;
806       uint8_t stencil_aspect_swizzle[4] = {
807          PIPE_SWIZZLE_X, PIPE_SWIZZLE_0, PIPE_SWIZZLE_0, PIPE_SWIZZLE_1,
808       };
809       uint8_t view_swizzle[4];
810       vk_component_mapping_to_pipe_swizzle(iview->vk.swizzle, view_swizzle);
811 
812       util_format_compose_swizzles(stencil_aspect_swizzle, view_swizzle,
813                                    iview->view_swizzle);
814    } else {
815       format = iview->vk.format;
816       vk_component_mapping_to_pipe_swizzle(iview->vk.swizzle,
817                                            iview->view_swizzle);
818    }
819 
820    iview->vk.view_format = format;
821    iview->format = v3dv_X(device, get_format)(format);
822    assert(iview->format && iview->format->plane_count);
823 
824    for (uint8_t plane = 0; plane < iview->plane_count; plane++) {
825       iview->planes[plane].offset = v3dv_layer_offset(image,
826                                                       iview->vk.base_mip_level,
827                                                       iview->vk.base_array_layer,
828                                                       plane);
829 
830       if (vk_format_is_depth_or_stencil(iview->vk.view_format)) {
831          iview->planes[plane].internal_type =
832             v3dv_X(device, get_internal_depth_type)(iview->vk.view_format);
833       } else {
834          v3dv_X(device, get_internal_type_bpp_for_output_format)
835             (iview->format->planes[plane].rt_type,
836              &iview->planes[plane].internal_type,
837              &iview->planes[plane].internal_bpp);
838       }
839 
840       const uint8_t *format_swizzle =
841          v3dv_get_format_swizzle(device, format, plane);
842       util_format_compose_swizzles(format_swizzle, iview->view_swizzle,
843                                    iview->planes[plane].swizzle);
844 
845       iview->planes[plane].swap_rb = v3dv_format_swizzle_needs_rb_swap(format_swizzle);
846       iview->planes[plane].channel_reverse = v3dv_format_swizzle_needs_reverse(format_swizzle);
847    }
848 
849    v3dv_X(device, pack_texture_shader_state)(device, iview);
850 
851    *pView = v3dv_image_view_to_handle(iview);
852 
853    return VK_SUCCESS;
854 }
855 
856 VkResult
v3dv_create_image_view(struct v3dv_device * device,const VkImageViewCreateInfo * pCreateInfo,VkImageView * pView)857 v3dv_create_image_view(struct v3dv_device *device,
858                        const VkImageViewCreateInfo *pCreateInfo,
859                        VkImageView *pView)
860 {
861    return create_image_view(device, true, pCreateInfo, NULL, pView);
862 }
863 
864 VKAPI_ATTR VkResult VKAPI_CALL
v3dv_CreateImageView(VkDevice _device,const VkImageViewCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkImageView * pView)865 v3dv_CreateImageView(VkDevice _device,
866                      const VkImageViewCreateInfo *pCreateInfo,
867                      const VkAllocationCallbacks *pAllocator,
868                      VkImageView *pView)
869 {
870    V3DV_FROM_HANDLE(v3dv_device, device, _device);
871 
872    return create_image_view(device, false, pCreateInfo, pAllocator, pView);
873 }
874 
875 VKAPI_ATTR void VKAPI_CALL
v3dv_DestroyImageView(VkDevice _device,VkImageView imageView,const VkAllocationCallbacks * pAllocator)876 v3dv_DestroyImageView(VkDevice _device,
877                       VkImageView imageView,
878                       const VkAllocationCallbacks* pAllocator)
879 {
880    V3DV_FROM_HANDLE(v3dv_device, device, _device);
881    V3DV_FROM_HANDLE(v3dv_image_view, image_view, imageView);
882 
883    if (image_view == NULL)
884       return;
885 
886    if (image_view->shadow) {
887       v3dv_DestroyImageView(_device,
888                             v3dv_image_view_to_handle(image_view->shadow),
889                             pAllocator);
890       image_view->shadow = NULL;
891    }
892 
893    vk_image_view_destroy(&device->vk, pAllocator, &image_view->vk);
894 }
895 
896 VKAPI_ATTR VkResult VKAPI_CALL
v3dv_CreateBufferView(VkDevice _device,const VkBufferViewCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkBufferView * pView)897 v3dv_CreateBufferView(VkDevice _device,
898                       const VkBufferViewCreateInfo *pCreateInfo,
899                       const VkAllocationCallbacks *pAllocator,
900                       VkBufferView *pView)
901 {
902    V3DV_FROM_HANDLE(v3dv_device, device, _device);
903 
904    struct v3dv_buffer *buffer =
905       v3dv_buffer_from_handle(pCreateInfo->buffer);
906 
907    struct v3dv_buffer_view *view =
908       vk_object_zalloc(&device->vk, pAllocator, sizeof(*view),
909                        VK_OBJECT_TYPE_BUFFER_VIEW);
910    if (!view)
911       return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);
912 
913    uint32_t range;
914    if (pCreateInfo->range == VK_WHOLE_SIZE)
915       range = buffer->size - pCreateInfo->offset;
916    else
917       range = pCreateInfo->range;
918 
919    enum pipe_format pipe_format = vk_format_to_pipe_format(pCreateInfo->format);
920    uint32_t num_elements = range / util_format_get_blocksize(pipe_format);
921 
922    view->buffer = buffer;
923    view->offset = pCreateInfo->offset;
924    view->size = view->offset + range;
925    view->num_elements = num_elements;
926    view->vk_format = pCreateInfo->format;
927    view->format = v3dv_X(device, get_format)(view->vk_format);
928 
929    /* We don't support multi-plane formats for buffer views */
930    assert(view->format->plane_count == 1);
931    v3dv_X(device, get_internal_type_bpp_for_output_format)
932       (view->format->planes[0].rt_type, &view->internal_type, &view->internal_bpp);
933 
934    const VkBufferUsageFlags2CreateInfoKHR *flags2 =
935       vk_find_struct_const(pCreateInfo->pNext,
936                            BUFFER_USAGE_FLAGS_2_CREATE_INFO_KHR);
937 
938    VkBufferUsageFlags2KHR usage;
939    if (flags2)
940       usage = flags2->usage;
941    else
942       usage = buffer->usage;
943 
944    if (usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT ||
945        usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT)
946       v3dv_X(device, pack_texture_shader_state_from_buffer_view)(device, view);
947 
948    *pView = v3dv_buffer_view_to_handle(view);
949 
950    return VK_SUCCESS;
951 }
952 
953 VKAPI_ATTR void VKAPI_CALL
v3dv_DestroyBufferView(VkDevice _device,VkBufferView bufferView,const VkAllocationCallbacks * pAllocator)954 v3dv_DestroyBufferView(VkDevice _device,
955                        VkBufferView bufferView,
956                        const VkAllocationCallbacks *pAllocator)
957 {
958    V3DV_FROM_HANDLE(v3dv_device, device, _device);
959    V3DV_FROM_HANDLE(v3dv_buffer_view, buffer_view, bufferView);
960 
961    if (buffer_view == NULL)
962       return;
963 
964    vk_object_free(&device->vk, pAllocator, buffer_view);
965 }
966