1 /*
2 * Copyright © 2021 Valve Corporation
3 *
4 * SPDX-License-Identifier: MIT
5 */
6
7 #include "aco_builder.h"
8 #include "aco_ir.h"
9
10 #include <algorithm>
11 #include <array>
12 #include <bitset>
13 #include <vector>
14
15 namespace aco {
16 namespace {
17
18 constexpr const size_t max_reg_cnt = 512;
19 constexpr const size_t max_sgpr_cnt = 128;
20 constexpr const size_t min_vgpr = 256;
21 constexpr const size_t max_vgpr_cnt = 256;
22
23 struct Idx {
operator ==aco::__anon2425c1930111::Idx24 bool operator==(const Idx& other) const { return block == other.block && instr == other.instr; }
operator !=aco::__anon2425c1930111::Idx25 bool operator!=(const Idx& other) const { return !operator==(other); }
26
foundaco::__anon2425c1930111::Idx27 bool found() const { return block != UINT32_MAX; }
28
29 uint32_t block;
30 uint32_t instr;
31 };
32
33 /** Indicates that a register was not yet written in the shader. */
34 Idx not_written_yet{UINT32_MAX, 0};
35
36 /** Indicates that an operand is constant or undefined, not written by any instruction. */
37 Idx const_or_undef{UINT32_MAX, 2};
38
39 /** Indicates that a register was overwritten by different instructions in previous blocks. */
40 Idx overwritten_untrackable{UINT32_MAX, 3};
41
42 /** Indicates that there isn't a clear single writer, for example due to subdword operations. */
43 Idx overwritten_unknown_instr{UINT32_MAX, 4};
44
45 struct pr_opt_ctx {
46 using Idx_array = std::array<Idx, max_reg_cnt>;
47
48 Program* program;
49 Block* current_block;
50 uint32_t current_instr_idx;
51 std::vector<uint16_t> uses;
52 std::unique_ptr<Idx_array[]> instr_idx_by_regs;
53
pr_opt_ctxaco::__anon2425c1930111::pr_opt_ctx54 pr_opt_ctx(Program* p)
55 : program(p), current_block(nullptr), current_instr_idx(0), uses(dead_code_analysis(p)),
56 instr_idx_by_regs(std::unique_ptr<Idx_array[]>{new Idx_array[p->blocks.size()]})
57 {}
58
reset_block_regsaco::__anon2425c1930111::pr_opt_ctx59 ALWAYS_INLINE void reset_block_regs(const Block::edge_vec& preds, const unsigned block_index,
60 const unsigned min_reg, const unsigned num_regs)
61 {
62 const unsigned num_preds = preds.size();
63 const unsigned first_pred = preds[0];
64
65 /* Copy information from the first predecessor. */
66 memcpy(&instr_idx_by_regs[block_index][min_reg], &instr_idx_by_regs[first_pred][min_reg],
67 num_regs * sizeof(Idx));
68
69 /* Mark overwritten if it doesn't match with other predecessors. */
70 const unsigned until_reg = min_reg + num_regs;
71 for (unsigned i = 1; i < num_preds; ++i) {
72 unsigned pred = preds[i];
73 for (unsigned reg = min_reg; reg < until_reg; ++reg) {
74 Idx& idx = instr_idx_by_regs[block_index][reg];
75 if (idx == overwritten_untrackable)
76 continue;
77
78 if (idx != instr_idx_by_regs[pred][reg])
79 idx = overwritten_untrackable;
80 }
81 }
82 }
83
reset_blockaco::__anon2425c1930111::pr_opt_ctx84 void reset_block(Block* block)
85 {
86 current_block = block;
87 current_instr_idx = 0;
88
89 if (block->linear_preds.empty()) {
90 std::fill(instr_idx_by_regs[block->index].begin(), instr_idx_by_regs[block->index].end(),
91 not_written_yet);
92 } else if (block->kind & block_kind_loop_header) {
93 /* Instructions inside the loop may overwrite registers of temporaries that are
94 * not live inside the loop, but we can't detect that because we haven't processed
95 * the blocks in the loop yet. As a workaround, mark all registers as untrackable.
96 * TODO: Consider improving this in the future.
97 */
98 std::fill(instr_idx_by_regs[block->index].begin(), instr_idx_by_regs[block->index].end(),
99 overwritten_untrackable);
100 } else {
101 reset_block_regs(block->linear_preds, block->index, 0, max_sgpr_cnt);
102 reset_block_regs(block->linear_preds, block->index, 251, 3);
103
104 if (!block->logical_preds.empty()) {
105 /* We assume that VGPRs are only read by blocks which have a logical predecessor,
106 * ie. any block that reads any VGPR has at least 1 logical predecessor.
107 */
108 reset_block_regs(block->logical_preds, block->index, min_vgpr, max_vgpr_cnt);
109 } else {
110 /* If a block has no logical predecessors, it is not part of the
111 * logical CFG and therefore it also won't have any logical successors.
112 * Such a block does not write any VGPRs ever.
113 */
114 assert(block->logical_succs.empty());
115 }
116 }
117 }
118
getaco::__anon2425c1930111::pr_opt_ctx119 Instruction* get(Idx idx) { return program->blocks[idx.block].instructions[idx.instr].get(); }
120 };
121
122 void
save_reg_writes(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)123 save_reg_writes(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
124 {
125 for (const Definition& def : instr->definitions) {
126 assert(def.regClass().type() != RegType::sgpr || def.physReg().reg() <= 255);
127 assert(def.regClass().type() != RegType::vgpr || def.physReg().reg() >= 256);
128
129 unsigned dw_size = DIV_ROUND_UP(def.bytes(), 4u);
130 unsigned r = def.physReg().reg();
131 Idx idx{ctx.current_block->index, ctx.current_instr_idx};
132
133 if (def.regClass().is_subdword())
134 idx = overwritten_unknown_instr;
135
136 assert((r + dw_size) <= max_reg_cnt);
137 assert(def.size() == dw_size || def.regClass().is_subdword());
138 std::fill(ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r,
139 ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r + dw_size, idx);
140 }
141 if (instr->isPseudo() && instr->pseudo().needs_scratch_reg) {
142 if (!instr->pseudo().tmp_in_scc)
143 ctx.instr_idx_by_regs[ctx.current_block->index][scc] = overwritten_unknown_instr;
144 ctx.instr_idx_by_regs[ctx.current_block->index][instr->pseudo().scratch_sgpr] =
145 overwritten_unknown_instr;
146 }
147 }
148
149 Idx
last_writer_idx(pr_opt_ctx & ctx,PhysReg physReg,RegClass rc)150 last_writer_idx(pr_opt_ctx& ctx, PhysReg physReg, RegClass rc)
151 {
152 /* Verify that all of the operand's registers are written by the same instruction. */
153 assert(physReg.reg() < max_reg_cnt);
154 Idx instr_idx = ctx.instr_idx_by_regs[ctx.current_block->index][physReg.reg()];
155 unsigned dw_size = DIV_ROUND_UP(rc.bytes(), 4u);
156 unsigned r = physReg.reg();
157 bool all_same =
158 std::all_of(ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r,
159 ctx.instr_idx_by_regs[ctx.current_block->index].begin() + r + dw_size,
160 [instr_idx](Idx i) { return i == instr_idx; });
161
162 return all_same ? instr_idx : overwritten_untrackable;
163 }
164
165 Idx
last_writer_idx(pr_opt_ctx & ctx,const Operand & op)166 last_writer_idx(pr_opt_ctx& ctx, const Operand& op)
167 {
168 if (op.isConstant() || op.isUndefined())
169 return const_or_undef;
170
171 return last_writer_idx(ctx, op.physReg(), op.regClass());
172 }
173
174 /**
175 * Check whether a register has been overwritten since the given location.
176 * This is an important part of checking whether certain optimizations are
177 * valid.
178 * Note that the decision is made based on registers and not on SSA IDs.
179 */
180 bool
is_overwritten_since(pr_opt_ctx & ctx,PhysReg reg,RegClass rc,const Idx & since_idx,bool inclusive=false)181 is_overwritten_since(pr_opt_ctx& ctx, PhysReg reg, RegClass rc, const Idx& since_idx,
182 bool inclusive = false)
183 {
184 /* If we didn't find an instruction, assume that the register is overwritten. */
185 if (!since_idx.found())
186 return true;
187
188 /* TODO: We currently can't keep track of subdword registers. */
189 if (rc.is_subdword())
190 return true;
191
192 unsigned begin_reg = reg.reg();
193 unsigned end_reg = begin_reg + rc.size();
194 unsigned current_block_idx = ctx.current_block->index;
195
196 for (unsigned r = begin_reg; r < end_reg; ++r) {
197 Idx& i = ctx.instr_idx_by_regs[current_block_idx][r];
198 if (i == overwritten_untrackable && current_block_idx > since_idx.block)
199 return true;
200 else if (i == overwritten_untrackable || i == not_written_yet)
201 continue;
202 else if (i == overwritten_unknown_instr)
203 return true;
204
205 assert(i.found());
206
207 bool since_instr = inclusive ? i.instr >= since_idx.instr : i.instr > since_idx.instr;
208 if (i.block > since_idx.block || (i.block == since_idx.block && since_instr))
209 return true;
210 }
211
212 return false;
213 }
214
215 bool
is_overwritten_since(pr_opt_ctx & ctx,const Definition & def,const Idx & idx,bool inclusive=false)216 is_overwritten_since(pr_opt_ctx& ctx, const Definition& def, const Idx& idx, bool inclusive = false)
217 {
218 return is_overwritten_since(ctx, def.physReg(), def.regClass(), idx, inclusive);
219 }
220
221 bool
is_overwritten_since(pr_opt_ctx & ctx,const Operand & op,const Idx & idx,bool inclusive=false)222 is_overwritten_since(pr_opt_ctx& ctx, const Operand& op, const Idx& idx, bool inclusive = false)
223 {
224 if (op.isConstant())
225 return false;
226
227 return is_overwritten_since(ctx, op.physReg(), op.regClass(), idx, inclusive);
228 }
229
230 void
try_apply_branch_vcc(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)231 try_apply_branch_vcc(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
232 {
233 /* We are looking for the following pattern:
234 *
235 * vcc = ... ; last_vcc_wr
236 * sX, scc = s_and_bXX vcc, exec ; op0_instr
237 * (...vcc and exec must not be overwritten inbetween...)
238 * s_cbranch_XX scc ; instr
239 *
240 * If possible, the above is optimized into:
241 *
242 * vcc = ... ; last_vcc_wr
243 * s_cbranch_XX vcc ; instr modified to use vcc
244 */
245
246 /* Don't try to optimize this on GFX6-7 because SMEM may corrupt the vccz bit. */
247 if (ctx.program->gfx_level < GFX8)
248 return;
249
250 if (instr->format != Format::PSEUDO_BRANCH || instr->operands.size() == 0 ||
251 instr->operands[0].physReg() != scc)
252 return;
253
254 Idx op0_instr_idx = last_writer_idx(ctx, instr->operands[0]);
255 Idx last_vcc_wr_idx = last_writer_idx(ctx, vcc, ctx.program->lane_mask);
256
257 /* We need to make sure:
258 * - the instructions that wrote the operand register and VCC are both found
259 * - the operand register used by the branch, and VCC were both written in the current block
260 * - EXEC hasn't been overwritten since the last VCC write
261 * - VCC hasn't been overwritten since the operand register was written
262 * (ie. the last VCC writer precedes the op0 writer)
263 */
264 if (!op0_instr_idx.found() || !last_vcc_wr_idx.found() ||
265 op0_instr_idx.block != ctx.current_block->index ||
266 last_vcc_wr_idx.block != ctx.current_block->index ||
267 is_overwritten_since(ctx, exec, ctx.program->lane_mask, last_vcc_wr_idx) ||
268 is_overwritten_since(ctx, vcc, ctx.program->lane_mask, op0_instr_idx))
269 return;
270
271 Instruction* op0_instr = ctx.get(op0_instr_idx);
272 Instruction* last_vcc_wr = ctx.get(last_vcc_wr_idx);
273
274 if ((op0_instr->opcode != aco_opcode::s_and_b64 /* wave64 */ &&
275 op0_instr->opcode != aco_opcode::s_and_b32 /* wave32 */) ||
276 op0_instr->operands[0].physReg() != vcc || op0_instr->operands[1].physReg() != exec ||
277 !last_vcc_wr->isVOPC())
278 return;
279
280 assert(last_vcc_wr->definitions[0].tempId() == op0_instr->operands[0].tempId());
281
282 /* Reduce the uses of the SCC def */
283 ctx.uses[instr->operands[0].tempId()]--;
284 /* Use VCC instead of SCC in the branch */
285 instr->operands[0] = op0_instr->operands[0];
286 }
287
288 void
try_optimize_scc_nocompare(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)289 try_optimize_scc_nocompare(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
290 {
291 /* We are looking for the following pattern:
292 *
293 * s_bfe_u32 s0, s3, 0x40018 ; outputs SGPR and SCC if the SGPR != 0
294 * s_cmp_eq_i32 s0, 0 ; comparison between the SGPR and 0
295 * s_cbranch_scc0 BB3 ; use the result of the comparison, eg. branch or cselect
296 *
297 * If possible, the above is optimized into:
298 *
299 * s_bfe_u32 s0, s3, 0x40018 ; original instruction
300 * s_cbranch_scc1 BB3 ; modified to use SCC directly rather than the SGPR with comparison
301 *
302 */
303
304 if (!instr->isSALU() && !instr->isBranch())
305 return;
306
307 if (instr->isSOPC() &&
308 (instr->opcode == aco_opcode::s_cmp_eq_u32 || instr->opcode == aco_opcode::s_cmp_eq_i32 ||
309 instr->opcode == aco_opcode::s_cmp_lg_u32 || instr->opcode == aco_opcode::s_cmp_lg_i32 ||
310 instr->opcode == aco_opcode::s_cmp_eq_u64 || instr->opcode == aco_opcode::s_cmp_lg_u64) &&
311 (instr->operands[0].constantEquals(0) || instr->operands[1].constantEquals(0)) &&
312 (instr->operands[0].isTemp() || instr->operands[1].isTemp())) {
313 /* Make sure the constant is always in operand 1 */
314 if (instr->operands[0].isConstant())
315 std::swap(instr->operands[0], instr->operands[1]);
316
317 /* Find the writer instruction of Operand 0. */
318 Idx wr_idx = last_writer_idx(ctx, instr->operands[0]);
319 if (!wr_idx.found())
320 return;
321
322 Instruction* wr_instr = ctx.get(wr_idx);
323 if (!wr_instr->isSALU() || wr_instr->definitions.size() < 2 ||
324 wr_instr->definitions[1].physReg() != scc)
325 return;
326
327 /* Look for instructions which set SCC := (D != 0) */
328 switch (wr_instr->opcode) {
329 case aco_opcode::s_bfe_i32:
330 case aco_opcode::s_bfe_i64:
331 case aco_opcode::s_bfe_u32:
332 case aco_opcode::s_bfe_u64:
333 case aco_opcode::s_and_b32:
334 case aco_opcode::s_and_b64:
335 case aco_opcode::s_andn2_b32:
336 case aco_opcode::s_andn2_b64:
337 case aco_opcode::s_or_b32:
338 case aco_opcode::s_or_b64:
339 case aco_opcode::s_orn2_b32:
340 case aco_opcode::s_orn2_b64:
341 case aco_opcode::s_xor_b32:
342 case aco_opcode::s_xor_b64:
343 case aco_opcode::s_not_b32:
344 case aco_opcode::s_not_b64:
345 case aco_opcode::s_nor_b32:
346 case aco_opcode::s_nor_b64:
347 case aco_opcode::s_xnor_b32:
348 case aco_opcode::s_xnor_b64:
349 case aco_opcode::s_nand_b32:
350 case aco_opcode::s_nand_b64:
351 case aco_opcode::s_lshl_b32:
352 case aco_opcode::s_lshl_b64:
353 case aco_opcode::s_lshr_b32:
354 case aco_opcode::s_lshr_b64:
355 case aco_opcode::s_ashr_i32:
356 case aco_opcode::s_ashr_i64:
357 case aco_opcode::s_abs_i32:
358 case aco_opcode::s_absdiff_i32: break;
359 default: return;
360 }
361
362 /* Check whether both SCC and Operand 0 are written by the same instruction. */
363 Idx sccwr_idx = last_writer_idx(ctx, scc, s1);
364 if (wr_idx != sccwr_idx) {
365 /* Check whether the current instruction is the only user of its first operand. */
366 if (ctx.uses[wr_instr->definitions[1].tempId()] ||
367 ctx.uses[wr_instr->definitions[0].tempId()] > 1)
368 return;
369
370 /* Check whether the operands of the writer are overwritten. */
371 for (const Operand& op : wr_instr->operands) {
372 if (is_overwritten_since(ctx, op, wr_idx))
373 return;
374 }
375
376 aco_opcode pulled_opcode = wr_instr->opcode;
377 if (instr->opcode == aco_opcode::s_cmp_eq_u32 ||
378 instr->opcode == aco_opcode::s_cmp_eq_i32 ||
379 instr->opcode == aco_opcode::s_cmp_eq_u64) {
380 /* When s_cmp_eq is used, it effectively inverts the SCC def.
381 * However, we can't simply invert the opcodes here because that
382 * would change the meaning of the program.
383 */
384 return;
385 }
386
387 Definition scc_def = instr->definitions[0];
388 ctx.uses[wr_instr->definitions[0].tempId()]--;
389
390 /* Copy the writer instruction, but use SCC from the current instr.
391 * This means that the original instruction will be eliminated.
392 */
393 if (wr_instr->format == Format::SOP2) {
394 instr.reset(create_instruction(pulled_opcode, Format::SOP2, 2, 2));
395 instr->operands[1] = wr_instr->operands[1];
396 } else if (wr_instr->format == Format::SOP1) {
397 instr.reset(create_instruction(pulled_opcode, Format::SOP1, 1, 2));
398 }
399 instr->definitions[0] = wr_instr->definitions[0];
400 instr->definitions[1] = scc_def;
401 instr->operands[0] = wr_instr->operands[0];
402 return;
403 }
404
405 /* Use the SCC def from wr_instr */
406 ctx.uses[instr->operands[0].tempId()]--;
407 instr->operands[0] = Operand(wr_instr->definitions[1].getTemp(), scc);
408 ctx.uses[instr->operands[0].tempId()]++;
409
410 /* Set the opcode and operand to 32-bit */
411 instr->operands[1] = Operand::zero();
412 instr->opcode =
413 (instr->opcode == aco_opcode::s_cmp_eq_u32 || instr->opcode == aco_opcode::s_cmp_eq_i32 ||
414 instr->opcode == aco_opcode::s_cmp_eq_u64)
415 ? aco_opcode::s_cmp_eq_u32
416 : aco_opcode::s_cmp_lg_u32;
417 } else if ((instr->format == Format::PSEUDO_BRANCH && instr->operands.size() == 1 &&
418 instr->operands[0].physReg() == scc) ||
419 instr->opcode == aco_opcode::s_cselect_b32 ||
420 instr->opcode == aco_opcode::s_cselect_b64) {
421
422 /* For cselect, operand 2 is the SCC condition */
423 unsigned scc_op_idx = 0;
424 if (instr->opcode == aco_opcode::s_cselect_b32 ||
425 instr->opcode == aco_opcode::s_cselect_b64) {
426 scc_op_idx = 2;
427 }
428
429 Idx wr_idx = last_writer_idx(ctx, instr->operands[scc_op_idx]);
430 if (!wr_idx.found())
431 return;
432
433 Instruction* wr_instr = ctx.get(wr_idx);
434
435 /* Check if we found the pattern above. */
436 if (wr_instr->opcode != aco_opcode::s_cmp_eq_u32 &&
437 wr_instr->opcode != aco_opcode::s_cmp_lg_u32)
438 return;
439 if (wr_instr->operands[0].physReg() != scc)
440 return;
441 if (!wr_instr->operands[1].constantEquals(0))
442 return;
443
444 /* The optimization can be unsafe when there are other users. */
445 if (ctx.uses[instr->operands[scc_op_idx].tempId()] > 1)
446 return;
447
448 if (wr_instr->opcode == aco_opcode::s_cmp_eq_u32) {
449 /* Flip the meaning of the instruction to correctly use the SCC. */
450 if (instr->format == Format::PSEUDO_BRANCH)
451 instr->opcode = instr->opcode == aco_opcode::p_cbranch_z ? aco_opcode::p_cbranch_nz
452 : aco_opcode::p_cbranch_z;
453 else if (instr->opcode == aco_opcode::s_cselect_b32 ||
454 instr->opcode == aco_opcode::s_cselect_b64)
455 std::swap(instr->operands[0], instr->operands[1]);
456 else
457 unreachable(
458 "scc_nocompare optimization is only implemented for p_cbranch and s_cselect");
459 }
460
461 /* Use the SCC def from the original instruction, not the comparison */
462 ctx.uses[instr->operands[scc_op_idx].tempId()]--;
463 instr->operands[scc_op_idx] = wr_instr->operands[0];
464 }
465 }
466
467 static bool
is_scc_copy(const Instruction * instr)468 is_scc_copy(const Instruction* instr)
469 {
470 return instr->opcode == aco_opcode::p_parallelcopy && instr->operands.size() == 1 &&
471 instr->operands[0].isTemp() && instr->operands[0].physReg().reg() == scc;
472 }
473
474 void
save_scc_copy_producer(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)475 save_scc_copy_producer(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
476 {
477 if (!is_scc_copy(instr.get()))
478 return;
479
480 Idx wr_idx = last_writer_idx(ctx, instr->operands[0]);
481 if (wr_idx.found() && wr_idx.block == ctx.current_block->index)
482 instr->pass_flags = wr_idx.instr;
483 else
484 instr->pass_flags = UINT32_MAX;
485 }
486
487 void
try_eliminate_scc_copy(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)488 try_eliminate_scc_copy(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
489 {
490 /* Try to eliminate an SCC copy by duplicating the instruction that produced the SCC. */
491
492 if (instr->opcode != aco_opcode::p_parallelcopy || instr->definitions.size() != 1 ||
493 instr->definitions[0].physReg().reg() != scc)
494 return;
495
496 /* Find the instruction that copied SCC into an SGPR. */
497 Idx wr_idx = last_writer_idx(ctx, instr->operands[0]);
498 if (!wr_idx.found())
499 return;
500
501 const Instruction* wr_instr = ctx.get(wr_idx);
502 if (!is_scc_copy(wr_instr) || wr_instr->pass_flags == UINT32_MAX)
503 return;
504
505 Idx producer_idx = {wr_idx.block, wr_instr->pass_flags};
506 Instruction* producer_instr = ctx.get(producer_idx);
507
508 if (!producer_instr || !producer_instr->isSALU())
509 return;
510
511 /* Verify that the operands of the producer instruction haven't been overwritten. */
512 for (const Operand& op : producer_instr->operands) {
513 if (is_overwritten_since(ctx, op, producer_idx, true))
514 return;
515 }
516
517 /* Verify that the definitions (except SCC) of the producer haven't been overwritten. */
518 for (const Definition& def : producer_instr->definitions) {
519 if (def.physReg().reg() == scc)
520 continue;
521 if (is_overwritten_since(ctx, def, producer_idx))
522 return;
523 }
524
525 /* Duplicate the original producer of the SCC */
526 Definition scc_def = instr->definitions[0];
527 instr.reset(create_instruction(producer_instr->opcode, producer_instr->format,
528 producer_instr->operands.size(),
529 producer_instr->definitions.size()));
530 instr->salu().imm = producer_instr->salu().imm;
531
532 /* The copy is no longer needed. */
533 if (--ctx.uses[wr_instr->definitions[0].tempId()] == 0)
534 ctx.uses[wr_instr->operands[0].tempId()]--;
535
536 /* Copy the operands of the original producer. */
537 for (unsigned i = 0; i < producer_instr->operands.size(); ++i) {
538 instr->operands[i] = producer_instr->operands[i];
539 if (producer_instr->operands[i].isTemp() && !is_dead(ctx.uses, producer_instr))
540 ctx.uses[producer_instr->operands[i].tempId()]++;
541 }
542
543 /* Copy the definitions of the original producer,
544 * but mark them as non-temp to keep SSA quasi-intact.
545 */
546 for (unsigned i = 0; i < producer_instr->definitions.size(); ++i)
547 instr->definitions[i] = Definition(producer_instr->definitions[i].physReg(),
548 producer_instr->definitions[i].regClass());
549 instr->definitions.back() = scc_def; /* Keep temporary ID. */
550 }
551
552 void
try_combine_dpp(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)553 try_combine_dpp(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
554 {
555 /* We are looking for the following pattern:
556 *
557 * v_mov_dpp vA, vB, ... ; move instruction with DPP
558 * v_xxx vC, vA, ... ; current instr that uses the result from the move
559 *
560 * If possible, the above is optimized into:
561 *
562 * v_xxx_dpp vC, vB, ... ; current instr modified to use DPP directly
563 *
564 */
565
566 if (!instr->isVALU() || instr->isDPP())
567 return;
568
569 for (unsigned i = 0; i < instr->operands.size(); i++) {
570 Idx op_instr_idx = last_writer_idx(ctx, instr->operands[i]);
571 if (!op_instr_idx.found())
572 continue;
573
574 /* is_overwritten_since only considers active lanes when the register could possibly
575 * have been overwritten from inactive lanes. Restrict this optimization to at most
576 * one block so that there is no possibility for clobbered inactive lanes.
577 */
578 if (ctx.current_block->index - op_instr_idx.block > 1)
579 continue;
580
581 const Instruction* mov = ctx.get(op_instr_idx);
582 if (mov->opcode != aco_opcode::v_mov_b32 || !mov->isDPP())
583 continue;
584
585 /* If we aren't going to remove the v_mov_b32, we have to ensure that it doesn't overwrite
586 * it's own operand before we use it.
587 */
588 if (mov->definitions[0].physReg() == mov->operands[0].physReg() &&
589 (!mov->definitions[0].tempId() || ctx.uses[mov->definitions[0].tempId()] > 1))
590 continue;
591
592 /* Don't propagate DPP if the source register is overwritten since the move. */
593 if (is_overwritten_since(ctx, mov->operands[0], op_instr_idx))
594 continue;
595
596 bool dpp8 = mov->isDPP8();
597
598 /* Fetch-inactive means exec is ignored, which allows us to combine across exec changes. */
599 if (!(dpp8 ? mov->dpp8().fetch_inactive : mov->dpp16().fetch_inactive) &&
600 is_overwritten_since(ctx, Operand(exec, ctx.program->lane_mask), op_instr_idx))
601 continue;
602
603 /* We won't eliminate the DPP mov if the operand is used twice */
604 bool op_used_twice = false;
605 for (unsigned j = 0; j < instr->operands.size(); j++)
606 op_used_twice |= i != j && instr->operands[i] == instr->operands[j];
607 if (op_used_twice)
608 continue;
609
610 bool input_mods = can_use_input_modifiers(ctx.program->gfx_level, instr->opcode, i) &&
611 get_operand_size(instr, i) == 32;
612 bool mov_uses_mods = mov->valu().neg[0] || mov->valu().abs[0];
613 if (((dpp8 && ctx.program->gfx_level < GFX11) || !input_mods) && mov_uses_mods)
614 continue;
615
616 if (i != 0) {
617 if (!can_swap_operands(instr, &instr->opcode, 0, i))
618 continue;
619 instr->valu().swapOperands(0, i);
620 }
621
622 if (!can_use_DPP(ctx.program->gfx_level, instr, dpp8))
623 continue;
624
625 if (!dpp8) /* anything else doesn't make sense in SSA */
626 assert(mov->dpp16().row_mask == 0xf && mov->dpp16().bank_mask == 0xf);
627
628 if (--ctx.uses[mov->definitions[0].tempId()])
629 ctx.uses[mov->operands[0].tempId()]++;
630
631 convert_to_DPP(ctx.program->gfx_level, instr, dpp8);
632
633 instr->operands[0] = mov->operands[0];
634
635 if (dpp8) {
636 DPP8_instruction* dpp = &instr->dpp8();
637 dpp->lane_sel = mov->dpp8().lane_sel;
638 dpp->fetch_inactive = mov->dpp8().fetch_inactive;
639 if (mov_uses_mods)
640 instr->format = asVOP3(instr->format);
641 } else {
642 DPP16_instruction* dpp = &instr->dpp16();
643 dpp->dpp_ctrl = mov->dpp16().dpp_ctrl;
644 dpp->bound_ctrl = true;
645 dpp->fetch_inactive = mov->dpp16().fetch_inactive;
646 }
647 instr->valu().neg[0] ^= mov->valu().neg[0] && !instr->valu().abs[0];
648 instr->valu().abs[0] |= mov->valu().abs[0];
649 return;
650 }
651 }
652
653 unsigned
num_encoded_alu_operands(const aco_ptr<Instruction> & instr)654 num_encoded_alu_operands(const aco_ptr<Instruction>& instr)
655 {
656 if (instr->isSALU()) {
657 if (instr->isSOP2() || instr->isSOPC())
658 return 2;
659 else if (instr->isSOP1())
660 return 1;
661
662 return 0;
663 }
664
665 if (instr->isVALU()) {
666 if (instr->isVOP1())
667 return 1;
668 else if (instr->isVOPC() || instr->isVOP2())
669 return 2;
670 else if (instr->opcode == aco_opcode::v_writelane_b32_e64 ||
671 instr->opcode == aco_opcode::v_writelane_b32)
672 return 2; /* potentially VOP3, but reads VDST as SRC2 */
673 else if (instr->isVOP3() || instr->isVOP3P() || instr->isVINTERP_INREG())
674 return instr->operands.size();
675 }
676
677 return 0;
678 }
679
680 void
try_reassign_split_vector(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)681 try_reassign_split_vector(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
682 {
683 /* Any unused split_vector definition can always use the same register
684 * as the operand. This avoids creating unnecessary copies.
685 */
686 if (instr->opcode == aco_opcode::p_split_vector) {
687 Operand& op = instr->operands[0];
688 if (!op.isTemp() || op.isKill())
689 return;
690
691 PhysReg reg = op.physReg();
692 for (Definition& def : instr->definitions) {
693 if (def.getTemp().type() == op.getTemp().type() && def.isKill())
694 def.setFixed(reg);
695
696 reg = reg.advance(def.bytes());
697 }
698
699 return;
700 }
701
702 /* We are looking for the following pattern:
703 *
704 * sA, sB = p_split_vector s[X:Y]
705 * ... X and Y not overwritten here ...
706 * use sA or sB <--- current instruction
707 *
708 * If possible, we propagate the registers from the p_split_vector
709 * operand into the current instruction and the above is optimized into:
710 *
711 * use sX or sY
712 *
713 * Thereby, we might violate register assignment rules.
714 * This optimization exists because it's too difficult to solve it
715 * in RA, and should be removed after we solved this in RA.
716 */
717
718 if (!instr->isVALU() && !instr->isSALU())
719 return;
720
721 for (unsigned i = 0; i < num_encoded_alu_operands(instr); i++) {
722 /* Find the instruction that writes the current operand. */
723 const Operand& op = instr->operands[i];
724 Idx op_instr_idx = last_writer_idx(ctx, op);
725 if (!op_instr_idx.found())
726 continue;
727
728 /* Check if the operand is written by p_split_vector. */
729 Instruction* split_vec = ctx.get(op_instr_idx);
730 if (split_vec->opcode != aco_opcode::p_split_vector &&
731 split_vec->opcode != aco_opcode::p_extract_vector)
732 continue;
733
734 Operand& split_op = split_vec->operands[0];
735
736 /* Don't do anything if the p_split_vector operand is not a temporary
737 * or is killed by the p_split_vector.
738 * In this case the definitions likely already reuse the same registers as the operand.
739 */
740 if (!split_op.isTemp() || split_op.isKill())
741 continue;
742
743 /* Only propagate operands of the same type */
744 if (split_op.getTemp().type() != op.getTemp().type())
745 continue;
746
747 /* Check if the p_split_vector operand's registers are overwritten. */
748 if (is_overwritten_since(ctx, split_op, op_instr_idx))
749 continue;
750
751 PhysReg reg = split_op.physReg();
752 if (split_vec->opcode == aco_opcode::p_extract_vector) {
753 reg =
754 reg.advance(split_vec->definitions[0].bytes() * split_vec->operands[1].constantValue());
755 }
756 for (Definition& def : split_vec->definitions) {
757 if (def.getTemp() != op.getTemp()) {
758 reg = reg.advance(def.bytes());
759 continue;
760 }
761
762 /* Don't propagate misaligned SGPRs.
763 * Note: No ALU instruction can take a variable larger than 64bit.
764 */
765 if (op.regClass() == s2 && reg.reg() % 2 != 0)
766 break;
767
768 /* Sub dword operands might need updates to SDWA/opsel,
769 * but we only track full register writes at the moment.
770 */
771 assert(op.physReg().byte() == reg.byte());
772
773 /* If there is only one use (left), recolor the split_vector definition */
774 if (ctx.uses[op.tempId()] == 1)
775 def.setFixed(reg);
776 else
777 ctx.uses[op.tempId()]--;
778
779 /* Use the p_split_vector operand register directly.
780 *
781 * Note: this might violate register assignment rules to some extend
782 * in case the definition does not get recolored, eventually.
783 */
784 instr->operands[i].setFixed(reg);
785 break;
786 }
787 }
788 }
789
790 void
try_convert_fma_to_vop2(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)791 try_convert_fma_to_vop2(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
792 {
793 /* We convert v_fma_f32 with inline constant to fmamk/fmaak.
794 * This is only benefical if it allows more VOPD.
795 */
796 if (ctx.program->gfx_level < GFX11 || ctx.program->wave_size != 32 ||
797 instr->opcode != aco_opcode::v_fma_f32 || instr->usesModifiers())
798 return;
799
800 int constant_idx = -1;
801 int vgpr_idx = -1;
802 for (int i = 0; i < 3; i++) {
803 const Operand& op = instr->operands[i];
804 if (op.isConstant() && !op.isLiteral())
805 constant_idx = i;
806 else if (op.isOfType(RegType::vgpr))
807 vgpr_idx = i;
808 else
809 return;
810 }
811
812 if (constant_idx < 0 || vgpr_idx < 0)
813 return;
814
815 std::swap(instr->operands[constant_idx], instr->operands[2]);
816 if (constant_idx == 0 || vgpr_idx == 0)
817 std::swap(instr->operands[0], instr->operands[1]);
818 instr->operands[2] = Operand::literal32(instr->operands[2].constantValue());
819 instr->opcode = constant_idx == 2 ? aco_opcode::v_fmaak_f32 : aco_opcode::v_fmamk_f32;
820 instr->format = Format::VOP2;
821 }
822
823 void
process_instruction(pr_opt_ctx & ctx,aco_ptr<Instruction> & instr)824 process_instruction(pr_opt_ctx& ctx, aco_ptr<Instruction>& instr)
825 {
826 /* Don't try to optimize instructions which are already dead. */
827 if (!instr || is_dead(ctx.uses, instr.get())) {
828 instr.reset();
829 ctx.current_instr_idx++;
830 return;
831 }
832
833 try_apply_branch_vcc(ctx, instr);
834
835 try_optimize_scc_nocompare(ctx, instr);
836
837 try_combine_dpp(ctx, instr);
838
839 try_reassign_split_vector(ctx, instr);
840
841 try_convert_fma_to_vop2(ctx, instr);
842
843 try_eliminate_scc_copy(ctx, instr);
844
845 save_scc_copy_producer(ctx, instr);
846
847 save_reg_writes(ctx, instr);
848
849 ctx.current_instr_idx++;
850 }
851
852 } // namespace
853
854 void
optimize_postRA(Program * program)855 optimize_postRA(Program* program)
856 {
857 pr_opt_ctx ctx(program);
858
859 /* Forward pass
860 * Goes through each instruction exactly once, and can transform
861 * instructions or adjust the use counts of temps.
862 */
863 for (auto& block : program->blocks) {
864 ctx.reset_block(&block);
865
866 for (aco_ptr<Instruction>& instr : block.instructions)
867 process_instruction(ctx, instr);
868
869 /* SCC might get overwritten by copies or swaps from parallelcopies
870 * inserted by SSA-elimination for linear phis.
871 */
872 if (!block.scc_live_out)
873 ctx.instr_idx_by_regs[block.index][scc] = overwritten_unknown_instr;
874 }
875
876 /* Cleanup pass
877 * Gets rid of instructions which are manually deleted or
878 * no longer have any uses.
879 */
880 for (auto& block : program->blocks) {
881 std::vector<aco_ptr<Instruction>> instructions;
882 instructions.reserve(block.instructions.size());
883
884 for (aco_ptr<Instruction>& instr : block.instructions) {
885 if (!instr || is_dead(ctx.uses, instr.get()))
886 continue;
887
888 instructions.emplace_back(std::move(instr));
889 }
890
891 block.instructions = std::move(instructions);
892 }
893 }
894
895 } // namespace aco
896