1 /*
2 * Copyright © 2021 Valve Corporation
3 *
4 * SPDX-License-Identifier: MIT
5 */
6
7 #include "ac_nir.h"
8 #include "ac_nir_helpers.h"
9 #include "amdgfxregs.h"
10 #include "nir_builder.h"
11 #include "nir_xfb_info.h"
12 #include "util/u_math.h"
13 #include "util/u_vector.h"
14
15 #define SPECIAL_MS_OUT_MASK \
16 (BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_COUNT) | \
17 BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_INDICES) | \
18 BITFIELD64_BIT(VARYING_SLOT_CULL_PRIMITIVE))
19
20 #define MS_PRIM_ARG_EXP_MASK \
21 (VARYING_BIT_LAYER | \
22 VARYING_BIT_VIEWPORT | \
23 VARYING_BIT_PRIMITIVE_SHADING_RATE)
24
25 #define MS_VERT_ARG_EXP_MASK \
26 (VARYING_BIT_CULL_DIST0 | \
27 VARYING_BIT_CULL_DIST1 | \
28 VARYING_BIT_CLIP_DIST0 | \
29 VARYING_BIT_CLIP_DIST1 | \
30 VARYING_BIT_PSIZ)
31
32 enum {
33 nggc_passflag_used_by_pos = 1,
34 nggc_passflag_used_by_other = 2,
35 nggc_passflag_used_by_both = nggc_passflag_used_by_pos | nggc_passflag_used_by_other,
36 };
37
38 typedef struct
39 {
40 nir_def *ssa;
41 nir_variable *var;
42 } reusable_nondeferred_variable;
43
44 typedef struct
45 {
46 gl_varying_slot slot;
47 nir_def *chan[4];
48 } vs_output;
49
50 typedef struct
51 {
52 const ac_nir_lower_ngg_options *options;
53
54 nir_variable *position_value_var;
55 nir_variable *prim_exp_arg_var;
56 nir_variable *es_accepted_var;
57 nir_variable *gs_accepted_var;
58 nir_variable *gs_exported_var;
59 nir_variable *gs_vtx_indices_vars[3];
60
61 nir_def *vtx_addr[3];
62
63 struct u_vector reusable_nondeferred_variables;
64
65 bool early_prim_export;
66 bool streamout_enabled;
67 bool has_user_edgeflags;
68 bool skip_primitive_id;
69 unsigned max_num_waves;
70
71 /* LDS params */
72 unsigned pervertex_lds_bytes;
73
74 uint64_t inputs_needed_by_pos;
75 uint64_t inputs_needed_by_others;
76
77 nir_instr *compact_arg_stores[4];
78 nir_intrinsic_instr *overwrite_args;
79 nir_variable *repacked_rel_patch_id;
80
81 /* clip distance */
82 nir_variable *clip_vertex_var;
83 nir_variable *clipdist_neg_mask_var;
84 bool has_clipdist;
85
86 /* outputs */
87 ac_nir_prerast_out out;
88 } lower_ngg_nogs_state;
89
90 typedef struct
91 {
92 const ac_nir_lower_ngg_options *options;
93
94 nir_function_impl *impl;
95 int const_out_vtxcnt[4];
96 int const_out_prmcnt[4];
97 unsigned max_num_waves;
98 unsigned num_vertices_per_primitive;
99 nir_def *lds_addr_gs_out_vtx;
100 nir_def *lds_addr_gs_scratch;
101 unsigned lds_bytes_per_gs_out_vertex;
102 unsigned lds_offs_primflags;
103 bool output_compile_time_known;
104 bool streamout_enabled;
105 /* Outputs */
106 ac_nir_prerast_out out;
107 /* Count per stream. */
108 nir_def *vertex_count[4];
109 nir_def *primitive_count[4];
110 } lower_ngg_gs_state;
111
112 /* LDS layout of Mesh Shader workgroup info. */
113 enum {
114 /* DW0: number of primitives */
115 lds_ms_num_prims = 0,
116 /* DW1: number of vertices */
117 lds_ms_num_vtx = 4,
118 /* DW2: workgroup index within the current dispatch */
119 lds_ms_wg_index = 8,
120 /* DW3: number of API workgroups in flight */
121 lds_ms_num_api_waves = 12,
122 };
123
124 /* Potential location for Mesh Shader outputs. */
125 typedef enum {
126 ms_out_mode_lds,
127 ms_out_mode_scratch_ring,
128 ms_out_mode_attr_ring,
129 ms_out_mode_var,
130 } ms_out_mode;
131
132 typedef struct
133 {
134 uint64_t mask; /* Mask of output locations */
135 uint32_t addr; /* Base address */
136 } ms_out_part;
137
138 typedef struct
139 {
140 /* Mesh shader LDS layout. For details, see ms_calculate_output_layout. */
141 struct {
142 uint32_t workgroup_info_addr;
143 ms_out_part vtx_attr;
144 ms_out_part prm_attr;
145 uint32_t indices_addr;
146 uint32_t cull_flags_addr;
147 uint32_t total_size;
148 } lds;
149
150 /* VRAM "mesh shader scratch ring" layout for outputs that don't fit into the LDS.
151 * Not to be confused with scratch memory.
152 */
153 struct {
154 ms_out_part vtx_attr;
155 ms_out_part prm_attr;
156 } scratch_ring;
157
158 /* VRAM attributes ring (GFX11 only) for all non-position outputs.
159 * GFX11 doesn't have to reload attributes from this ring at the end of the shader.
160 */
161 struct {
162 ms_out_part vtx_attr;
163 ms_out_part prm_attr;
164 } attr_ring;
165
166 /* Outputs without cross-invocation access can be stored in variables. */
167 struct {
168 ms_out_part vtx_attr;
169 ms_out_part prm_attr;
170 } var;
171 } ms_out_mem_layout;
172
173 typedef struct
174 {
175 enum amd_gfx_level gfx_level;
176 bool fast_launch_2;
177 bool vert_multirow_export;
178 bool prim_multirow_export;
179
180 ms_out_mem_layout layout;
181 uint64_t per_vertex_outputs;
182 uint64_t per_primitive_outputs;
183 unsigned vertices_per_prim;
184
185 unsigned wave_size;
186 unsigned api_workgroup_size;
187 unsigned hw_workgroup_size;
188
189 nir_def *workgroup_index;
190 nir_variable *out_variables[VARYING_SLOT_MAX * 4];
191 nir_variable *primitive_count_var;
192 nir_variable *vertex_count_var;
193
194 /* True if the lowering needs to insert the layer output. */
195 bool insert_layer_output;
196 /* True if cull flags are used */
197 bool uses_cull_flags;
198
199 struct {
200 /* Bitmask of components used: 4 bits per slot, 1 bit per component. */
201 uint32_t components_mask;
202 } output_info[VARYING_SLOT_MAX];
203
204 /* Used by outputs export. */
205 nir_def *outputs[VARYING_SLOT_MAX][4];
206 uint32_t clipdist_enable_mask;
207 const uint8_t *vs_output_param_offset;
208 bool has_param_exports;
209
210 /* True if the lowering needs to insert shader query. */
211 bool has_query;
212 } lower_ngg_ms_state;
213
214 /* Per-vertex LDS layout of culling shaders */
215 enum {
216 /* Position of the ES vertex (at the beginning for alignment reasons) */
217 lds_es_pos_x = 0,
218 lds_es_pos_y = 4,
219 lds_es_pos_z = 8,
220 lds_es_pos_w = 12,
221
222 /* 1 when the vertex is accepted, 0 if it should be culled */
223 lds_es_vertex_accepted = 16,
224 /* ID of the thread which will export the current thread's vertex */
225 lds_es_exporter_tid = 17,
226 /* bit i is set when the i'th clip distance of a vertex is negative */
227 lds_es_clipdist_neg_mask = 18,
228 /* TES only, relative patch ID, less than max workgroup size */
229 lds_es_tes_rel_patch_id = 19,
230
231 /* Repacked arguments - also listed separately for VS and TES */
232 lds_es_arg_0 = 20,
233 };
234
235 typedef struct {
236 nir_def *num_repacked_invocations;
237 nir_def *repacked_invocation_index;
238 } wg_repack_result;
239
240 /**
241 * Computes a horizontal sum of 8-bit packed values loaded from LDS.
242 *
243 * Each lane N will sum packed bytes 0 to N-1.
244 * We only care about the results from up to wave_id+1 lanes.
245 * (Other lanes are not deactivated but their calculation is not used.)
246 */
247 static nir_def *
summarize_repack(nir_builder * b,nir_def * packed_counts,unsigned num_lds_dwords)248 summarize_repack(nir_builder *b, nir_def *packed_counts, unsigned num_lds_dwords)
249 {
250 /* We'll use shift to filter out the bytes not needed by the current lane.
251 *
252 * Need to shift by: num_lds_dwords * 4 - lane_id (in bytes).
253 * However, two shifts are needed because one can't go all the way,
254 * so the shift amount is half that (and in bits).
255 *
256 * When v_dot4_u32_u8 is available, we right-shift a series of 0x01 bytes.
257 * This will yield 0x01 at wanted byte positions and 0x00 at unwanted positions,
258 * therefore v_dot can get rid of the unneeded values.
259 * This sequence is preferable because it better hides the latency of the LDS.
260 *
261 * If the v_dot instruction can't be used, we left-shift the packed bytes.
262 * This will shift out the unneeded bytes and shift in zeroes instead,
263 * then we sum them using v_msad_u8.
264 */
265
266 nir_def *lane_id = nir_load_subgroup_invocation(b);
267 nir_def *shift = nir_iadd_imm(b, nir_imul_imm(b, lane_id, -4u), num_lds_dwords * 16);
268 bool use_dot = b->shader->options->has_udot_4x8;
269
270 if (num_lds_dwords == 1) {
271 nir_def *dot_op = !use_dot ? NULL : nir_ushr(b, nir_ushr(b, nir_imm_int(b, 0x01010101), shift), shift);
272
273 /* Broadcast the packed data we read from LDS (to the first 16 lanes, but we only care up to num_waves). */
274 nir_def *packed = nir_lane_permute_16_amd(b, packed_counts, nir_imm_int(b, 0), nir_imm_int(b, 0));
275
276 /* Horizontally add the packed bytes. */
277 if (use_dot) {
278 return nir_udot_4x8_uadd(b, packed, dot_op, nir_imm_int(b, 0));
279 } else {
280 nir_def *sad_op = nir_ishl(b, nir_ishl(b, packed, shift), shift);
281 return nir_msad_4x8(b, sad_op, nir_imm_int(b, 0), nir_imm_int(b, 0));
282 }
283 } else if (num_lds_dwords == 2) {
284 nir_def *dot_op = !use_dot ? NULL : nir_ushr(b, nir_ushr(b, nir_imm_int64(b, 0x0101010101010101), shift), shift);
285
286 /* Broadcast the packed data we read from LDS (to the first 16 lanes, but we only care up to num_waves). */
287 nir_def *packed_dw0 = nir_lane_permute_16_amd(b, nir_unpack_64_2x32_split_x(b, packed_counts), nir_imm_int(b, 0), nir_imm_int(b, 0));
288 nir_def *packed_dw1 = nir_lane_permute_16_amd(b, nir_unpack_64_2x32_split_y(b, packed_counts), nir_imm_int(b, 0), nir_imm_int(b, 0));
289
290 /* Horizontally add the packed bytes. */
291 if (use_dot) {
292 nir_def *sum = nir_udot_4x8_uadd(b, packed_dw0, nir_unpack_64_2x32_split_x(b, dot_op), nir_imm_int(b, 0));
293 return nir_udot_4x8_uadd(b, packed_dw1, nir_unpack_64_2x32_split_y(b, dot_op), sum);
294 } else {
295 nir_def *sad_op = nir_ishl(b, nir_ishl(b, nir_pack_64_2x32_split(b, packed_dw0, packed_dw1), shift), shift);
296 nir_def *sum = nir_msad_4x8(b, nir_unpack_64_2x32_split_x(b, sad_op), nir_imm_int(b, 0), nir_imm_int(b, 0));
297 return nir_msad_4x8(b, nir_unpack_64_2x32_split_y(b, sad_op), nir_imm_int(b, 0), sum);
298 }
299 } else {
300 unreachable("Unimplemented NGG wave count");
301 }
302 }
303
304 /**
305 * Repacks invocations in the current workgroup to eliminate gaps between them.
306 *
307 * Uses 1 dword of LDS per 4 waves (1 byte of LDS per wave).
308 * Assumes that all invocations in the workgroup are active (exec = -1).
309 */
310 static wg_repack_result
repack_invocations_in_workgroup(nir_builder * b,nir_def * input_bool,nir_def * lds_addr_base,unsigned max_num_waves,unsigned wave_size)311 repack_invocations_in_workgroup(nir_builder *b, nir_def *input_bool,
312 nir_def *lds_addr_base, unsigned max_num_waves,
313 unsigned wave_size)
314 {
315 /* Input boolean: 1 if the current invocation should survive the repack. */
316 assert(input_bool->bit_size == 1);
317
318 /* STEP 1. Count surviving invocations in the current wave.
319 *
320 * Implemented by a scalar instruction that simply counts the number of bits set in a 32/64-bit mask.
321 */
322
323 nir_def *input_mask = nir_ballot(b, 1, wave_size, input_bool);
324 nir_def *surviving_invocations_in_current_wave = nir_bit_count(b, input_mask);
325
326 /* If we know at compile time that the workgroup has only 1 wave, no further steps are necessary. */
327 if (max_num_waves == 1) {
328 wg_repack_result r = {
329 .num_repacked_invocations = surviving_invocations_in_current_wave,
330 .repacked_invocation_index = nir_mbcnt_amd(b, input_mask, nir_imm_int(b, 0)),
331 };
332 return r;
333 }
334
335 /* STEP 2. Waves tell each other their number of surviving invocations.
336 *
337 * Each wave activates only its first lane (exec = 1), which stores the number of surviving
338 * invocations in that wave into the LDS, then reads the numbers from every wave.
339 *
340 * The workgroup size of NGG shaders is at most 256, which means
341 * the maximum number of waves is 4 in Wave64 mode and 8 in Wave32 mode.
342 * Each wave writes 1 byte, so it's up to 8 bytes, so at most 2 dwords are necessary.
343 */
344
345 const unsigned num_lds_dwords = DIV_ROUND_UP(max_num_waves, 4);
346 assert(num_lds_dwords <= 2);
347
348 nir_def *wave_id = nir_load_subgroup_id(b);
349 nir_def *lds_offset = nir_iadd(b, lds_addr_base, wave_id);
350 nir_def *dont_care = nir_undef(b, 1, num_lds_dwords * 32);
351 nir_if *if_first_lane = nir_push_if(b, nir_elect(b, 1));
352
353 nir_store_shared(b, nir_u2u8(b, surviving_invocations_in_current_wave), lds_offset);
354
355 nir_barrier(b, .execution_scope=SCOPE_WORKGROUP, .memory_scope=SCOPE_WORKGROUP,
356 .memory_semantics=NIR_MEMORY_ACQ_REL, .memory_modes=nir_var_mem_shared);
357
358 nir_def *packed_counts =
359 nir_load_shared(b, 1, num_lds_dwords * 32, lds_addr_base, .align_mul = 8u);
360
361 nir_pop_if(b, if_first_lane);
362
363 packed_counts = nir_if_phi(b, packed_counts, dont_care);
364
365 /* STEP 3. Compute the repacked invocation index and the total number of surviving invocations.
366 *
367 * By now, every wave knows the number of surviving invocations in all waves.
368 * Each number is 1 byte, and they are packed into up to 2 dwords.
369 *
370 * Each lane N will sum the number of surviving invocations from waves 0 to N-1.
371 * If the workgroup has M waves, then each wave will use only its first M+1 lanes for this.
372 * (Other lanes are not deactivated but their calculation is not used.)
373 *
374 * - We read the sum from the lane whose id is the current wave's id.
375 * Add the masked bitcount to this, and we get the repacked invocation index.
376 * - We read the sum from the lane whose id is the number of waves in the workgroup.
377 * This is the total number of surviving invocations in the workgroup.
378 */
379
380 nir_def *num_waves = nir_load_num_subgroups(b);
381 nir_def *sum = summarize_repack(b, packed_counts, num_lds_dwords);
382
383 nir_def *wg_repacked_index_base = nir_read_invocation(b, sum, wave_id);
384 nir_def *wg_num_repacked_invocations = nir_read_invocation(b, sum, num_waves);
385 nir_def *wg_repacked_index = nir_mbcnt_amd(b, input_mask, wg_repacked_index_base);
386
387 wg_repack_result r = {
388 .num_repacked_invocations = wg_num_repacked_invocations,
389 .repacked_invocation_index = wg_repacked_index,
390 };
391
392 return r;
393 }
394
395 static nir_def *
pervertex_lds_addr(nir_builder * b,nir_def * vertex_idx,unsigned per_vtx_bytes)396 pervertex_lds_addr(nir_builder *b, nir_def *vertex_idx, unsigned per_vtx_bytes)
397 {
398 return nir_imul_imm(b, vertex_idx, per_vtx_bytes);
399 }
400
401 static nir_def *
emit_pack_ngg_prim_exp_arg(nir_builder * b,unsigned num_vertices_per_primitives,nir_def * vertex_indices[3],nir_def * is_null_prim,enum amd_gfx_level gfx_level)402 emit_pack_ngg_prim_exp_arg(nir_builder *b, unsigned num_vertices_per_primitives,
403 nir_def *vertex_indices[3], nir_def *is_null_prim,
404 enum amd_gfx_level gfx_level)
405 {
406 nir_def *arg = nir_load_initial_edgeflags_amd(b);
407
408 for (unsigned i = 0; i < num_vertices_per_primitives; ++i) {
409 assert(vertex_indices[i]);
410 arg = nir_ior(b, arg, nir_ishl_imm(b, vertex_indices[i],
411 (gfx_level >= GFX12 ? 9u : 10u) * i));
412 }
413
414 if (is_null_prim) {
415 if (is_null_prim->bit_size == 1)
416 is_null_prim = nir_b2i32(b, is_null_prim);
417 assert(is_null_prim->bit_size == 32);
418 arg = nir_ior(b, arg, nir_ishl_imm(b, is_null_prim, 31u));
419 }
420
421 return arg;
422 }
423
424 static void
alloc_vertices_and_primitives(nir_builder * b,nir_def * num_vtx,nir_def * num_prim)425 alloc_vertices_and_primitives(nir_builder *b,
426 nir_def *num_vtx,
427 nir_def *num_prim)
428 {
429 /* The caller should only call this conditionally on wave 0.
430 *
431 * Send GS Alloc Request message from the first wave of the group to SPI.
432 * Message payload (in the m0 register) is:
433 * - bits 0..10: number of vertices in group
434 * - bits 12..22: number of primitives in group
435 */
436
437 nir_def *m0 = nir_ior(b, nir_ishl_imm(b, num_prim, 12), num_vtx);
438 nir_sendmsg_amd(b, m0, .base = AC_SENDMSG_GS_ALLOC_REQ);
439 }
440
441 static void
alloc_vertices_and_primitives_gfx10_workaround(nir_builder * b,nir_def * num_vtx,nir_def * num_prim)442 alloc_vertices_and_primitives_gfx10_workaround(nir_builder *b,
443 nir_def *num_vtx,
444 nir_def *num_prim)
445 {
446 /* HW workaround for a GPU hang with 100% culling on GFX10.
447 * We always have to export at least 1 primitive.
448 * Export a degenerate triangle using vertex 0 for all 3 vertices.
449 *
450 * NOTE: We rely on the caller to set the vertex count also to 0 when the primitive count is 0.
451 */
452 nir_def *is_prim_cnt_0 = nir_ieq_imm(b, num_prim, 0);
453 nir_if *if_prim_cnt_0 = nir_push_if(b, is_prim_cnt_0);
454 {
455 nir_def *one = nir_imm_int(b, 1);
456 alloc_vertices_and_primitives(b, one, one);
457
458 nir_def *tid = nir_load_subgroup_invocation(b);
459 nir_def *is_thread_0 = nir_ieq_imm(b, tid, 0);
460 nir_if *if_thread_0 = nir_push_if(b, is_thread_0);
461 {
462 /* The vertex indices are 0, 0, 0. */
463 nir_export_amd(b, nir_imm_zero(b, 4, 32),
464 .base = V_008DFC_SQ_EXP_PRIM,
465 .flags = AC_EXP_FLAG_DONE,
466 .write_mask = 1);
467
468 /* The HW culls primitives with NaN. -1 is also NaN and can save
469 * a dword in binary code by inlining constant.
470 */
471 nir_export_amd(b, nir_imm_ivec4(b, -1, -1, -1, -1),
472 .base = V_008DFC_SQ_EXP_POS,
473 .flags = AC_EXP_FLAG_DONE,
474 .write_mask = 0xf);
475 }
476 nir_pop_if(b, if_thread_0);
477 }
478 nir_push_else(b, if_prim_cnt_0);
479 {
480 alloc_vertices_and_primitives(b, num_vtx, num_prim);
481 }
482 nir_pop_if(b, if_prim_cnt_0);
483 }
484
485 static void
ngg_nogs_init_vertex_indices_vars(nir_builder * b,nir_function_impl * impl,lower_ngg_nogs_state * s)486 ngg_nogs_init_vertex_indices_vars(nir_builder *b, nir_function_impl *impl, lower_ngg_nogs_state *s)
487 {
488 for (unsigned v = 0; v < s->options->num_vertices_per_primitive; ++v) {
489 s->gs_vtx_indices_vars[v] = nir_local_variable_create(impl, glsl_uint_type(), "gs_vtx_addr");
490
491 nir_def *vtx;
492
493 if (s->options->gfx_level >= GFX12) {
494 vtx = nir_ubfe_imm(b, nir_load_packed_passthrough_primitive_amd(b), 9 * v, 8);
495 } else if (s->options->passthrough) {
496 vtx = nir_ubfe_imm(b, nir_load_packed_passthrough_primitive_amd(b), 10 * v, 9);
497 } else {
498 vtx = nir_ubfe_imm(b, nir_load_gs_vertex_offset_amd(b, .base = v / 2u),
499 (v & 1u) * 16u, 16u);
500 }
501
502 nir_store_var(b, s->gs_vtx_indices_vars[v], vtx, 0x1);
503 }
504 }
505
506 static nir_def *
emit_ngg_nogs_prim_exp_arg(nir_builder * b,lower_ngg_nogs_state * s)507 emit_ngg_nogs_prim_exp_arg(nir_builder *b, lower_ngg_nogs_state *s)
508 {
509 if (s->options->gfx_level >= GFX12 || s->options->passthrough) {
510 return nir_load_packed_passthrough_primitive_amd(b);
511 } else {
512 nir_def *vtx_idx[3] = {0};
513
514 for (unsigned v = 0; v < s->options->num_vertices_per_primitive; ++v)
515 vtx_idx[v] = nir_load_var(b, s->gs_vtx_indices_vars[v]);
516
517 return emit_pack_ngg_prim_exp_arg(b, s->options->num_vertices_per_primitive, vtx_idx, NULL,
518 s->options->gfx_level);
519 }
520 }
521
522 static nir_def *
has_input_vertex(nir_builder * b)523 has_input_vertex(nir_builder *b)
524 {
525 return nir_is_subgroup_invocation_lt_amd(b, nir_load_merged_wave_info_amd(b));
526 }
527
528 static nir_def *
has_input_primitive(nir_builder * b)529 has_input_primitive(nir_builder *b)
530 {
531 return nir_is_subgroup_invocation_lt_amd(b,
532 nir_ushr_imm(b, nir_load_merged_wave_info_amd(b), 8));
533 }
534
535 static void
nogs_prim_gen_query(nir_builder * b,lower_ngg_nogs_state * s)536 nogs_prim_gen_query(nir_builder *b, lower_ngg_nogs_state *s)
537 {
538 if (!s->options->has_gen_prim_query)
539 return;
540
541 nir_if *if_shader_query = nir_push_if(b, nir_load_prim_gen_query_enabled_amd(b));
542 {
543 /* Activate only 1 lane and add the number of primitives to query result. */
544 nir_if *if_elected = nir_push_if(b, nir_elect(b, 1));
545 {
546 /* Number of input primitives in the current wave. */
547 nir_def *num_input_prims = nir_ubfe_imm(b, nir_load_merged_wave_info_amd(b),
548 8, 8);
549
550 /* Add to stream 0 primitive generated counter. */
551 nir_atomic_add_gen_prim_count_amd(b, num_input_prims, .stream_id = 0);
552 }
553 nir_pop_if(b, if_elected);
554 }
555 nir_pop_if(b, if_shader_query);
556 }
557
558 static void
emit_ngg_nogs_prim_export(nir_builder * b,lower_ngg_nogs_state * s,nir_def * arg)559 emit_ngg_nogs_prim_export(nir_builder *b, lower_ngg_nogs_state *s, nir_def *arg)
560 {
561 nir_if *if_gs_thread = nir_push_if(b, nir_load_var(b, s->gs_exported_var));
562 {
563 if (!arg)
564 arg = emit_ngg_nogs_prim_exp_arg(b, s);
565
566 /* pack user edge flag info into arg */
567 if (s->has_user_edgeflags) {
568 /* Workgroup barrier: wait for ES threads store user edge flags to LDS */
569 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP,
570 .memory_scope = SCOPE_WORKGROUP,
571 .memory_semantics = NIR_MEMORY_ACQ_REL,
572 .memory_modes = nir_var_mem_shared);
573
574 unsigned edge_flag_bits = ac_get_all_edge_flag_bits(s->options->gfx_level);
575 nir_def *mask = nir_imm_intN_t(b, ~edge_flag_bits, 32);
576
577 unsigned edge_flag_offset = 0;
578 if (s->streamout_enabled) {
579 unsigned packed_location =
580 util_bitcount64(b->shader->info.outputs_written &
581 BITFIELD64_MASK(VARYING_SLOT_EDGE));
582 edge_flag_offset = packed_location * 16;
583 }
584
585 for (int i = 0; i < s->options->num_vertices_per_primitive; i++) {
586 nir_def *vtx_idx = nir_load_var(b, s->gs_vtx_indices_vars[i]);
587 nir_def *addr = pervertex_lds_addr(b, vtx_idx, s->pervertex_lds_bytes);
588 nir_def *edge = nir_load_shared(b, 1, 32, addr, .base = edge_flag_offset);
589
590 if (s->options->gfx_level >= GFX12)
591 mask = nir_ior(b, mask, nir_ishl_imm(b, edge, 8 + i * 9));
592 else
593 mask = nir_ior(b, mask, nir_ishl_imm(b, edge, 9 + i * 10));
594 }
595 arg = nir_iand(b, arg, mask);
596 }
597
598 ac_nir_export_primitive(b, arg, NULL);
599 }
600 nir_pop_if(b, if_gs_thread);
601 }
602
603 static void
emit_ngg_nogs_prim_id_store_shared(nir_builder * b,lower_ngg_nogs_state * s)604 emit_ngg_nogs_prim_id_store_shared(nir_builder *b, lower_ngg_nogs_state *s)
605 {
606 nir_def *gs_thread =
607 s->gs_accepted_var ? nir_load_var(b, s->gs_accepted_var) : has_input_primitive(b);
608
609 nir_if *if_gs_thread = nir_push_if(b, gs_thread);
610 {
611 /* Copy Primitive IDs from GS threads to the LDS address
612 * corresponding to the ES thread of the provoking vertex.
613 * It will be exported as a per-vertex attribute.
614 */
615 nir_def *gs_vtx_indices[3];
616 for (unsigned i = 0; i < s->options->num_vertices_per_primitive; i++)
617 gs_vtx_indices[i] = nir_load_var(b, s->gs_vtx_indices_vars[i]);
618
619 nir_def *provoking_vertex = nir_load_provoking_vtx_in_prim_amd(b);
620 nir_def *provoking_vtx_idx = nir_select_from_ssa_def_array(
621 b, gs_vtx_indices, s->options->num_vertices_per_primitive, provoking_vertex);
622
623 nir_def *prim_id = nir_load_primitive_id(b);
624 nir_def *addr = pervertex_lds_addr(b, provoking_vtx_idx, s->pervertex_lds_bytes);
625
626 /* primitive id is always at last of a vertex */
627 nir_store_shared(b, prim_id, addr, .base = s->pervertex_lds_bytes - 4);
628 }
629 nir_pop_if(b, if_gs_thread);
630 }
631
632 static void
emit_store_ngg_nogs_es_primitive_id(nir_builder * b,lower_ngg_nogs_state * s)633 emit_store_ngg_nogs_es_primitive_id(nir_builder *b, lower_ngg_nogs_state *s)
634 {
635 nir_def *prim_id = NULL;
636
637 if (b->shader->info.stage == MESA_SHADER_VERTEX) {
638 /* LDS address where the primitive ID is stored */
639 nir_def *thread_id_in_threadgroup = nir_load_local_invocation_index(b);
640 nir_def *addr =
641 pervertex_lds_addr(b, thread_id_in_threadgroup, s->pervertex_lds_bytes);
642
643 /* Load primitive ID from LDS */
644 prim_id = nir_load_shared(b, 1, 32, addr, .base = s->pervertex_lds_bytes - 4);
645 } else if (b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
646 /* Just use tess eval primitive ID, which is the same as the patch ID. */
647 prim_id = nir_load_primitive_id(b);
648 }
649
650 s->out.outputs[VARYING_SLOT_PRIMITIVE_ID][0] = prim_id;
651
652 /* Update outputs_written to reflect that the pass added a new output. */
653 b->shader->info.outputs_written |= VARYING_BIT_PRIMITIVE_ID;
654 }
655
656 static void
add_clipdist_bit(nir_builder * b,nir_def * dist,unsigned index,nir_variable * mask)657 add_clipdist_bit(nir_builder *b, nir_def *dist, unsigned index, nir_variable *mask)
658 {
659 nir_def *is_neg = nir_flt_imm(b, dist, 0);
660 nir_def *neg_mask = nir_ishl_imm(b, nir_b2i32(b, is_neg), index);
661 neg_mask = nir_ior(b, neg_mask, nir_load_var(b, mask));
662 nir_store_var(b, mask, neg_mask, 1);
663 }
664
665 static bool
remove_culling_shader_output(nir_builder * b,nir_instr * instr,void * state)666 remove_culling_shader_output(nir_builder *b, nir_instr *instr, void *state)
667 {
668 lower_ngg_nogs_state *s = (lower_ngg_nogs_state *) state;
669
670 if (instr->type != nir_instr_type_intrinsic)
671 return false;
672
673 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
674
675 /* These are not allowed in VS / TES */
676 assert(intrin->intrinsic != nir_intrinsic_store_per_vertex_output &&
677 intrin->intrinsic != nir_intrinsic_load_per_vertex_input);
678
679 /* We are only interested in output stores now */
680 if (intrin->intrinsic != nir_intrinsic_store_output)
681 return false;
682
683 b->cursor = nir_before_instr(instr);
684
685 /* no indirect output */
686 assert(nir_src_is_const(intrin->src[1]) && nir_src_as_uint(intrin->src[1]) == 0);
687
688 unsigned writemask = nir_intrinsic_write_mask(intrin);
689 unsigned component = nir_intrinsic_component(intrin);
690 nir_def *store_val = intrin->src[0].ssa;
691
692 /* Position output - store the value to a variable, remove output store */
693 nir_io_semantics io_sem = nir_intrinsic_io_semantics(intrin);
694 switch (io_sem.location) {
695 case VARYING_SLOT_POS:
696 ac_nir_store_var_components(b, s->position_value_var, store_val, component, writemask);
697 break;
698 case VARYING_SLOT_CLIP_DIST0:
699 case VARYING_SLOT_CLIP_DIST1: {
700 unsigned base = io_sem.location == VARYING_SLOT_CLIP_DIST1 ? 4 : 0;
701 base += component;
702
703 /* valid clipdist component mask */
704 unsigned mask = (s->options->clip_cull_dist_mask >> base) & writemask;
705 u_foreach_bit(i, mask) {
706 add_clipdist_bit(b, nir_channel(b, store_val, i), base + i,
707 s->clipdist_neg_mask_var);
708 s->has_clipdist = true;
709 }
710 break;
711 }
712 case VARYING_SLOT_CLIP_VERTEX:
713 ac_nir_store_var_components(b, s->clip_vertex_var, store_val, component, writemask);
714 break;
715 default:
716 break;
717 }
718
719 /* Remove all output stores */
720 nir_instr_remove(instr);
721 return true;
722 }
723
724 static void
remove_culling_shader_outputs(nir_shader * culling_shader,lower_ngg_nogs_state * s)725 remove_culling_shader_outputs(nir_shader *culling_shader, lower_ngg_nogs_state *s)
726 {
727 nir_shader_instructions_pass(culling_shader, remove_culling_shader_output,
728 nir_metadata_control_flow, s);
729
730 /* Remove dead code resulting from the deleted outputs. */
731 bool progress;
732 do {
733 progress = false;
734 NIR_PASS(progress, culling_shader, nir_opt_dead_write_vars);
735 NIR_PASS(progress, culling_shader, nir_opt_dce);
736 NIR_PASS(progress, culling_shader, nir_opt_dead_cf);
737 } while (progress);
738 }
739
740 static void
rewrite_uses_to_var(nir_builder * b,nir_def * old_def,nir_variable * replacement_var,unsigned replacement_var_channel)741 rewrite_uses_to_var(nir_builder *b, nir_def *old_def, nir_variable *replacement_var, unsigned replacement_var_channel)
742 {
743 if (old_def->parent_instr->type == nir_instr_type_load_const)
744 return;
745
746 b->cursor = nir_after_instr(old_def->parent_instr);
747 if (b->cursor.instr->type == nir_instr_type_phi)
748 b->cursor = nir_after_phis(old_def->parent_instr->block);
749
750 nir_def *pos_val_rep = nir_load_var(b, replacement_var);
751 nir_def *replacement = nir_channel(b, pos_val_rep, replacement_var_channel);
752
753 if (old_def->num_components > 1) {
754 /* old_def uses a swizzled vector component.
755 * There is no way to replace the uses of just a single vector component,
756 * so instead create a new vector and replace all uses of the old vector.
757 */
758 nir_def *old_def_elements[NIR_MAX_VEC_COMPONENTS] = {0};
759 for (unsigned j = 0; j < old_def->num_components; ++j)
760 old_def_elements[j] = nir_channel(b, old_def, j);
761 replacement = nir_vec(b, old_def_elements, old_def->num_components);
762 }
763
764 nir_def_rewrite_uses_after(old_def, replacement, replacement->parent_instr);
765 }
766
767 static bool
remove_extra_pos_output(nir_builder * b,nir_instr * instr,void * state)768 remove_extra_pos_output(nir_builder *b, nir_instr *instr, void *state)
769 {
770 lower_ngg_nogs_state *s = (lower_ngg_nogs_state *) state;
771
772 if (instr->type != nir_instr_type_intrinsic)
773 return false;
774
775 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
776
777 /* These are not allowed in VS / TES */
778 assert(intrin->intrinsic != nir_intrinsic_store_per_vertex_output &&
779 intrin->intrinsic != nir_intrinsic_load_per_vertex_input);
780
781 /* We are only interested in output stores now */
782 if (intrin->intrinsic != nir_intrinsic_store_output)
783 return false;
784
785 nir_io_semantics io_sem = nir_intrinsic_io_semantics(intrin);
786 if (io_sem.location != VARYING_SLOT_POS)
787 return false;
788
789 b->cursor = nir_before_instr(instr);
790
791 /* In case other outputs use what we calculated for pos,
792 * try to avoid calculating it again by rewriting the usages
793 * of the store components here.
794 */
795 nir_def *store_val = intrin->src[0].ssa;
796 unsigned store_pos_component = nir_intrinsic_component(intrin);
797
798 nir_instr_remove(instr);
799
800 if (store_val->parent_instr->type == nir_instr_type_alu) {
801 nir_alu_instr *alu = nir_instr_as_alu(store_val->parent_instr);
802 if (nir_op_is_vec_or_mov(alu->op)) {
803 /* Output store uses a vector, we can easily rewrite uses of each vector element. */
804
805 unsigned num_vec_src = 0;
806 if (alu->op == nir_op_mov)
807 num_vec_src = 1;
808 else if (alu->op == nir_op_vec2)
809 num_vec_src = 2;
810 else if (alu->op == nir_op_vec3)
811 num_vec_src = 3;
812 else if (alu->op == nir_op_vec4)
813 num_vec_src = 4;
814 assert(num_vec_src);
815
816 /* Remember the current components whose uses we wish to replace.
817 * This is needed because rewriting one source can affect the others too.
818 */
819 nir_def *vec_comps[NIR_MAX_VEC_COMPONENTS] = {0};
820 for (unsigned i = 0; i < num_vec_src; i++)
821 vec_comps[i] = alu->src[i].src.ssa;
822
823 for (unsigned i = 0; i < num_vec_src; i++)
824 rewrite_uses_to_var(b, vec_comps[i], s->position_value_var, store_pos_component + i);
825 } else {
826 rewrite_uses_to_var(b, store_val, s->position_value_var, store_pos_component);
827 }
828 } else {
829 rewrite_uses_to_var(b, store_val, s->position_value_var, store_pos_component);
830 }
831
832 return true;
833 }
834
835 static void
remove_extra_pos_outputs(nir_shader * shader,lower_ngg_nogs_state * s)836 remove_extra_pos_outputs(nir_shader *shader, lower_ngg_nogs_state *s)
837 {
838 nir_shader_instructions_pass(shader, remove_extra_pos_output,
839 nir_metadata_control_flow,
840 s);
841 }
842
843 static bool
remove_compacted_arg(lower_ngg_nogs_state * s,nir_builder * b,unsigned idx)844 remove_compacted_arg(lower_ngg_nogs_state *s, nir_builder *b, unsigned idx)
845 {
846 nir_instr *store_instr = s->compact_arg_stores[idx];
847 if (!store_instr)
848 return false;
849
850 /* Simply remove the store. */
851 nir_instr_remove(store_instr);
852
853 /* Find the intrinsic that overwrites the shader arguments,
854 * and change its corresponding source.
855 * This will cause NIR's DCE to recognize the load and its phis as dead.
856 */
857 b->cursor = nir_before_instr(&s->overwrite_args->instr);
858 nir_def *undef_arg = nir_undef(b, 1, 32);
859 nir_def_rewrite_uses(s->overwrite_args->src[idx].ssa, undef_arg);
860
861 s->compact_arg_stores[idx] = NULL;
862 return true;
863 }
864
865 static bool
cleanup_culling_shader_after_dce(nir_shader * shader,nir_function_impl * function_impl,lower_ngg_nogs_state * s)866 cleanup_culling_shader_after_dce(nir_shader *shader,
867 nir_function_impl *function_impl,
868 lower_ngg_nogs_state *s)
869 {
870 bool uses_vs_vertex_id = false;
871 bool uses_vs_instance_id = false;
872 bool uses_tes_u = false;
873 bool uses_tes_v = false;
874 bool uses_tes_rel_patch_id = false;
875 bool uses_tes_patch_id = false;
876
877 bool progress = false;
878 nir_builder b = nir_builder_create(function_impl);
879
880 nir_foreach_block_reverse_safe(block, function_impl) {
881 nir_foreach_instr_reverse_safe(instr, block) {
882 if (instr->type != nir_instr_type_intrinsic)
883 continue;
884
885 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
886
887 switch (intrin->intrinsic) {
888 case nir_intrinsic_sendmsg_amd:
889 goto cleanup_culling_shader_after_dce_done;
890 case nir_intrinsic_load_vertex_id:
891 case nir_intrinsic_load_vertex_id_zero_base:
892 uses_vs_vertex_id = true;
893 break;
894 case nir_intrinsic_load_instance_id:
895 uses_vs_instance_id = true;
896 break;
897 case nir_intrinsic_load_input: {
898 const nir_io_semantics io_sem = nir_intrinsic_io_semantics(intrin);
899 if (s->options->instance_rate_inputs & BITFIELD_BIT(io_sem.location))
900 uses_vs_instance_id = true;
901 else
902 uses_vs_vertex_id = true;
903 break;
904 }
905 case nir_intrinsic_load_tess_coord:
906 uses_tes_u = uses_tes_v = true;
907 break;
908 case nir_intrinsic_load_tess_rel_patch_id_amd:
909 uses_tes_rel_patch_id = true;
910 break;
911 case nir_intrinsic_load_primitive_id:
912 if (shader->info.stage == MESA_SHADER_TESS_EVAL)
913 uses_tes_patch_id = true;
914 break;
915 default:
916 break;
917 }
918 }
919 }
920
921 cleanup_culling_shader_after_dce_done:
922
923 if (shader->info.stage == MESA_SHADER_VERTEX) {
924 if (!uses_vs_vertex_id)
925 progress |= remove_compacted_arg(s, &b, 0);
926 if (!uses_vs_instance_id)
927 progress |= remove_compacted_arg(s, &b, 1);
928 } else if (shader->info.stage == MESA_SHADER_TESS_EVAL) {
929 if (!uses_tes_u)
930 progress |= remove_compacted_arg(s, &b, 0);
931 if (!uses_tes_v)
932 progress |= remove_compacted_arg(s, &b, 1);
933 if (!uses_tes_rel_patch_id)
934 progress |= remove_compacted_arg(s, &b, 3);
935 if (!uses_tes_patch_id)
936 progress |= remove_compacted_arg(s, &b, 2);
937 }
938
939 return progress;
940 }
941
942 /**
943 * Perform vertex compaction after culling.
944 *
945 * 1. Repack surviving ES invocations (this determines which lane will export which vertex)
946 * 2. Surviving ES vertex invocations store their data to LDS
947 * 3. Emit GS_ALLOC_REQ
948 * 4. Repacked invocations load the vertex data from LDS
949 * 5. GS threads update their vertex indices
950 */
951 static void
compact_vertices_after_culling(nir_builder * b,lower_ngg_nogs_state * s,nir_variable ** repacked_variables,nir_variable ** gs_vtxaddr_vars,nir_def * invocation_index,nir_def * es_vertex_lds_addr,nir_def * es_exporter_tid,nir_def * num_live_vertices_in_workgroup,unsigned pervertex_lds_bytes,unsigned num_repacked_variables)952 compact_vertices_after_culling(nir_builder *b,
953 lower_ngg_nogs_state *s,
954 nir_variable **repacked_variables,
955 nir_variable **gs_vtxaddr_vars,
956 nir_def *invocation_index,
957 nir_def *es_vertex_lds_addr,
958 nir_def *es_exporter_tid,
959 nir_def *num_live_vertices_in_workgroup,
960 unsigned pervertex_lds_bytes,
961 unsigned num_repacked_variables)
962 {
963 nir_variable *es_accepted_var = s->es_accepted_var;
964 nir_variable *gs_accepted_var = s->gs_accepted_var;
965 nir_variable *position_value_var = s->position_value_var;
966 nir_variable *prim_exp_arg_var = s->prim_exp_arg_var;
967
968 nir_if *if_es_accepted = nir_push_if(b, nir_load_var(b, es_accepted_var));
969 {
970 nir_def *exporter_addr = pervertex_lds_addr(b, es_exporter_tid, pervertex_lds_bytes);
971
972 /* Store the exporter thread's index to the LDS space of the current thread so GS threads can load it */
973 nir_store_shared(b, nir_u2u8(b, es_exporter_tid), es_vertex_lds_addr, .base = lds_es_exporter_tid);
974
975 /* Store the current thread's position output to the exporter thread's LDS space */
976 nir_def *pos = nir_load_var(b, position_value_var);
977 nir_store_shared(b, pos, exporter_addr, .base = lds_es_pos_x);
978
979 /* Store the current thread's repackable arguments to the exporter thread's LDS space */
980 for (unsigned i = 0; i < num_repacked_variables; ++i) {
981 nir_def *arg_val = nir_load_var(b, repacked_variables[i]);
982 nir_intrinsic_instr *store = nir_store_shared(b, arg_val, exporter_addr, .base = lds_es_arg_0 + 4u * i);
983
984 s->compact_arg_stores[i] = &store->instr;
985 }
986
987 /* TES rel patch id does not cost extra dword */
988 if (b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
989 nir_def *arg_val = nir_load_var(b, s->repacked_rel_patch_id);
990 nir_intrinsic_instr *store =
991 nir_store_shared(b, nir_u2u8(b, arg_val), exporter_addr,
992 .base = lds_es_tes_rel_patch_id);
993
994 s->compact_arg_stores[3] = &store->instr;
995 }
996 }
997 nir_pop_if(b, if_es_accepted);
998
999 /* TODO: Consider adding a shortcut exit.
1000 * Waves that have no vertices and primitives left can s_endpgm right here.
1001 */
1002
1003 nir_barrier(b, .execution_scope=SCOPE_WORKGROUP, .memory_scope=SCOPE_WORKGROUP,
1004 .memory_semantics=NIR_MEMORY_ACQ_REL, .memory_modes=nir_var_mem_shared);
1005
1006 nir_def *es_survived = nir_ilt(b, invocation_index, num_live_vertices_in_workgroup);
1007 nir_if *if_packed_es_thread = nir_push_if(b, es_survived);
1008 {
1009 /* Read position from the current ES thread's LDS space (written by the exported vertex's ES thread) */
1010 nir_def *exported_pos = nir_load_shared(b, 4, 32, es_vertex_lds_addr, .base = lds_es_pos_x);
1011 nir_store_var(b, position_value_var, exported_pos, 0xfu);
1012
1013 /* Read the repacked arguments */
1014 for (unsigned i = 0; i < num_repacked_variables; ++i) {
1015 nir_def *arg_val = nir_load_shared(b, 1, 32, es_vertex_lds_addr, .base = lds_es_arg_0 + 4u * i);
1016 nir_store_var(b, repacked_variables[i], arg_val, 0x1u);
1017 }
1018
1019 if (b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
1020 nir_def *arg_val = nir_load_shared(b, 1, 8, es_vertex_lds_addr,
1021 .base = lds_es_tes_rel_patch_id);
1022 nir_store_var(b, s->repacked_rel_patch_id, nir_u2u32(b, arg_val), 0x1u);
1023 }
1024 }
1025 nir_push_else(b, if_packed_es_thread);
1026 {
1027 nir_store_var(b, position_value_var, nir_undef(b, 4, 32), 0xfu);
1028 for (unsigned i = 0; i < num_repacked_variables; ++i)
1029 nir_store_var(b, repacked_variables[i], nir_undef(b, 1, 32), 0x1u);
1030 }
1031 nir_pop_if(b, if_packed_es_thread);
1032
1033 nir_if *if_gs_accepted = nir_push_if(b, nir_load_var(b, gs_accepted_var));
1034 {
1035 nir_def *exporter_vtx_indices[3] = {0};
1036
1037 /* Load the index of the ES threads that will export the current GS thread's vertices */
1038 for (unsigned v = 0; v < s->options->num_vertices_per_primitive; ++v) {
1039 nir_def *vtx_addr = nir_load_var(b, gs_vtxaddr_vars[v]);
1040 nir_def *exporter_vtx_idx = nir_load_shared(b, 1, 8, vtx_addr, .base = lds_es_exporter_tid);
1041 exporter_vtx_indices[v] = nir_u2u32(b, exporter_vtx_idx);
1042 nir_store_var(b, s->gs_vtx_indices_vars[v], exporter_vtx_indices[v], 0x1);
1043 }
1044
1045 nir_def *prim_exp_arg =
1046 emit_pack_ngg_prim_exp_arg(b, s->options->num_vertices_per_primitive,
1047 exporter_vtx_indices, NULL, s->options->gfx_level);
1048 nir_store_var(b, prim_exp_arg_var, prim_exp_arg, 0x1u);
1049 }
1050 nir_pop_if(b, if_gs_accepted);
1051
1052 nir_store_var(b, es_accepted_var, es_survived, 0x1u);
1053 }
1054
1055 static void
analyze_shader_before_culling_walk(nir_def * ssa,uint8_t flag,lower_ngg_nogs_state * s)1056 analyze_shader_before_culling_walk(nir_def *ssa,
1057 uint8_t flag,
1058 lower_ngg_nogs_state *s)
1059 {
1060 nir_instr *instr = ssa->parent_instr;
1061 uint8_t old_pass_flags = instr->pass_flags;
1062 instr->pass_flags |= flag;
1063
1064 if (instr->pass_flags == old_pass_flags)
1065 return; /* Already visited. */
1066
1067 switch (instr->type) {
1068 case nir_instr_type_intrinsic: {
1069 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
1070
1071 /* VS input loads and SSBO loads are actually VRAM reads on AMD HW. */
1072 switch (intrin->intrinsic) {
1073 case nir_intrinsic_load_input: {
1074 nir_io_semantics in_io_sem = nir_intrinsic_io_semantics(intrin);
1075 uint64_t in_mask = UINT64_C(1) << (uint64_t) in_io_sem.location;
1076 if (instr->pass_flags & nggc_passflag_used_by_pos)
1077 s->inputs_needed_by_pos |= in_mask;
1078 else if (instr->pass_flags & nggc_passflag_used_by_other)
1079 s->inputs_needed_by_others |= in_mask;
1080 break;
1081 }
1082 default:
1083 break;
1084 }
1085
1086 break;
1087 }
1088 case nir_instr_type_alu: {
1089 nir_alu_instr *alu = nir_instr_as_alu(instr);
1090 unsigned num_srcs = nir_op_infos[alu->op].num_inputs;
1091
1092 for (unsigned i = 0; i < num_srcs; ++i) {
1093 analyze_shader_before_culling_walk(alu->src[i].src.ssa, flag, s);
1094 }
1095
1096 break;
1097 }
1098 case nir_instr_type_tex: {
1099 nir_tex_instr *tex = nir_instr_as_tex(instr);
1100 unsigned num_srcs = tex->num_srcs;
1101
1102 for (unsigned i = 0; i < num_srcs; ++i) {
1103 analyze_shader_before_culling_walk(tex->src[i].src.ssa, flag, s);
1104 }
1105
1106 break;
1107 }
1108 case nir_instr_type_phi: {
1109 nir_phi_instr *phi = nir_instr_as_phi(instr);
1110 nir_foreach_phi_src_safe(phi_src, phi) {
1111 analyze_shader_before_culling_walk(phi_src->src.ssa, flag, s);
1112 }
1113
1114 break;
1115 }
1116 default:
1117 break;
1118 }
1119 }
1120
1121 static void
analyze_shader_before_culling(nir_shader * shader,lower_ngg_nogs_state * s)1122 analyze_shader_before_culling(nir_shader *shader, lower_ngg_nogs_state *s)
1123 {
1124 /* LCSSA is needed to get correct results from divergence analysis. */
1125 nir_convert_to_lcssa(shader, true, true);
1126 /* We need divergence info for culling shaders. */
1127 nir_divergence_analysis(shader);
1128
1129 nir_foreach_function_impl(impl, shader) {
1130 nir_foreach_block(block, impl) {
1131 nir_foreach_instr(instr, block) {
1132 instr->pass_flags = 0;
1133
1134 if (instr->type != nir_instr_type_intrinsic)
1135 continue;
1136
1137 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
1138 if (intrin->intrinsic != nir_intrinsic_store_output)
1139 continue;
1140
1141 nir_io_semantics io_sem = nir_intrinsic_io_semantics(intrin);
1142 nir_def *store_val = intrin->src[0].ssa;
1143 uint8_t flag = io_sem.location == VARYING_SLOT_POS ? nggc_passflag_used_by_pos : nggc_passflag_used_by_other;
1144 analyze_shader_before_culling_walk(store_val, flag, s);
1145 }
1146 }
1147 }
1148 }
1149
1150 static nir_def *
find_reusable_ssa_def(nir_instr * instr)1151 find_reusable_ssa_def(nir_instr *instr)
1152 {
1153 /* Find instructions whose SSA definitions are used by both
1154 * the top and bottom parts of the shader (before and after culling).
1155 * Only in this case, it makes sense for the bottom part
1156 * to try to reuse these from the top part.
1157 */
1158 if ((instr->pass_flags & nggc_passflag_used_by_both) != nggc_passflag_used_by_both)
1159 return NULL;
1160
1161 switch (instr->type) {
1162 case nir_instr_type_alu: {
1163 nir_alu_instr *alu = nir_instr_as_alu(instr);
1164 if (alu->def.divergent)
1165 return NULL;
1166 /* Ignore uniform floats because they regress VGPR usage too much */
1167 if (nir_op_infos[alu->op].output_type & nir_type_float)
1168 return NULL;
1169 return &alu->def;
1170 }
1171 case nir_instr_type_intrinsic: {
1172 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
1173 if (!nir_intrinsic_can_reorder(intrin) ||
1174 !nir_intrinsic_infos[intrin->intrinsic].has_dest ||
1175 intrin->def.divergent)
1176 return NULL;
1177 return &intrin->def;
1178 }
1179 case nir_instr_type_phi: {
1180 nir_phi_instr *phi = nir_instr_as_phi(instr);
1181 if (phi->def.divergent)
1182 return NULL;
1183 return &phi->def;
1184 }
1185 default:
1186 return NULL;
1187 }
1188 }
1189
1190 static const struct glsl_type *
glsl_uint_type_for_ssa(nir_def * ssa)1191 glsl_uint_type_for_ssa(nir_def *ssa)
1192 {
1193 enum glsl_base_type base_type = GLSL_TYPE_UINT;
1194 switch (ssa->bit_size) {
1195 case 8: base_type = GLSL_TYPE_UINT8; break;
1196 case 16: base_type = GLSL_TYPE_UINT16; break;
1197 case 32: base_type = GLSL_TYPE_UINT; break;
1198 case 64: base_type = GLSL_TYPE_UINT64; break;
1199 default: return NULL;
1200 }
1201
1202 return ssa->num_components == 1
1203 ? glsl_scalar_type(base_type)
1204 : glsl_vector_type(base_type, ssa->num_components);
1205 }
1206
1207 /**
1208 * Save the reusable SSA definitions to variables so that the
1209 * bottom shader part can reuse them from the top part.
1210 *
1211 * 1. We create a new function temporary variable for reusables,
1212 * and insert a store+load.
1213 * 2. The shader is cloned (the top part is created), then the
1214 * control flow is reinserted (for the bottom part.)
1215 * 3. For reusables, we delete the variable stores from the
1216 * bottom part. This will make them use the variables from
1217 * the top part and DCE the redundant instructions.
1218 */
1219 static void
save_reusable_variables(nir_builder * b,lower_ngg_nogs_state * s)1220 save_reusable_variables(nir_builder *b, lower_ngg_nogs_state *s)
1221 {
1222 ASSERTED int vec_ok = u_vector_init(&s->reusable_nondeferred_variables, 4, sizeof(reusable_nondeferred_variable));
1223 assert(vec_ok);
1224
1225 /* Upper limit on reusable uniforms in order to reduce SGPR spilling. */
1226 unsigned remaining_reusable_uniforms = 48;
1227
1228 nir_block *block = nir_start_block(b->impl);
1229 while (block) {
1230 /* Process the instructions in the current block. */
1231 nir_foreach_instr_safe(instr, block) {
1232 /* Determine if we can reuse the current SSA value.
1233 * When vertex compaction is used, it is possible that the same shader invocation
1234 * processes a different vertex in the top and bottom part of the shader.
1235 * Therefore, we only reuse uniform values.
1236 */
1237 nir_def *ssa = find_reusable_ssa_def(instr);
1238 if (!ssa)
1239 continue;
1240
1241 /* Determine a suitable type for the SSA value. */
1242 const struct glsl_type *t = glsl_uint_type_for_ssa(ssa);
1243 if (!t)
1244 continue;
1245
1246 if (!ssa->divergent) {
1247 if (remaining_reusable_uniforms < ssa->num_components)
1248 continue;
1249
1250 remaining_reusable_uniforms -= ssa->num_components;
1251 }
1252
1253 reusable_nondeferred_variable *saved = (reusable_nondeferred_variable *) u_vector_add(&s->reusable_nondeferred_variables);
1254 assert(saved);
1255
1256 /* Create a new NIR variable where we store the reusable value.
1257 * Then, we reload the variable and replace the uses of the value
1258 * with the reloaded variable.
1259 */
1260 saved->var = nir_local_variable_create(b->impl, t, NULL);
1261 saved->ssa = ssa;
1262
1263 b->cursor = instr->type == nir_instr_type_phi
1264 ? nir_after_instr_and_phis(instr)
1265 : nir_after_instr(instr);
1266 nir_store_var(b, saved->var, saved->ssa, BITFIELD_MASK(ssa->num_components));
1267 nir_def *reloaded = nir_load_var(b, saved->var);
1268 nir_def_rewrite_uses_after(ssa, reloaded, reloaded->parent_instr);
1269 }
1270
1271 /* Look at the next CF node. */
1272 nir_cf_node *next_cf_node = nir_cf_node_next(&block->cf_node);
1273 if (next_cf_node) {
1274 /* It makes no sense to try to reuse things from within loops. */
1275 bool next_is_loop = next_cf_node->type == nir_cf_node_loop;
1276
1277 /* Don't reuse if we're in divergent control flow.
1278 *
1279 * Thanks to vertex repacking, the same shader invocation may process a different vertex
1280 * in the top and bottom part, and it's even possible that this different vertex was initially
1281 * processed in a different wave. So the two parts may take a different divergent code path.
1282 * Therefore, these variables in divergent control flow may stay undefined.
1283 *
1284 * Note that this problem doesn't exist if vertices are not repacked or if the
1285 * workgroup only has a single wave.
1286 */
1287 bool next_is_divergent_if =
1288 next_cf_node->type == nir_cf_node_if &&
1289 nir_cf_node_as_if(next_cf_node)->condition.ssa->divergent;
1290
1291 if (next_is_loop || next_is_divergent_if) {
1292 block = nir_cf_node_cf_tree_next(next_cf_node);
1293 continue;
1294 }
1295 }
1296
1297 /* Go to the next block. */
1298 block = nir_block_cf_tree_next(block);
1299 }
1300 }
1301
1302 /**
1303 * Reuses suitable variables from the top part of the shader,
1304 * by deleting their stores from the bottom part.
1305 */
1306 static void
apply_reusable_variables(nir_builder * b,lower_ngg_nogs_state * s)1307 apply_reusable_variables(nir_builder *b, lower_ngg_nogs_state *s)
1308 {
1309 if (!u_vector_length(&s->reusable_nondeferred_variables)) {
1310 u_vector_finish(&s->reusable_nondeferred_variables);
1311 return;
1312 }
1313
1314 nir_foreach_block_reverse_safe(block, b->impl) {
1315 nir_foreach_instr_reverse_safe(instr, block) {
1316 if (instr->type != nir_instr_type_intrinsic)
1317 continue;
1318 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
1319
1320 /* When we found any of these intrinsics, it means
1321 * we reached the top part and we must stop.
1322 */
1323 if (intrin->intrinsic == nir_intrinsic_sendmsg_amd)
1324 goto done;
1325
1326 if (intrin->intrinsic != nir_intrinsic_store_deref)
1327 continue;
1328 nir_deref_instr *deref = nir_src_as_deref(intrin->src[0]);
1329 if (deref->deref_type != nir_deref_type_var)
1330 continue;
1331
1332 reusable_nondeferred_variable *saved;
1333 u_vector_foreach(saved, &s->reusable_nondeferred_variables) {
1334 if (saved->var == deref->var) {
1335 nir_instr_remove(instr);
1336 }
1337 }
1338 }
1339 }
1340
1341 done:
1342 u_vector_finish(&s->reusable_nondeferred_variables);
1343 }
1344
1345 static void
cull_primitive_accepted(nir_builder * b,void * state)1346 cull_primitive_accepted(nir_builder *b, void *state)
1347 {
1348 lower_ngg_nogs_state *s = (lower_ngg_nogs_state *)state;
1349
1350 nir_store_var(b, s->gs_accepted_var, nir_imm_true(b), 0x1u);
1351
1352 /* Store the accepted state to LDS for ES threads */
1353 for (unsigned vtx = 0; vtx < s->options->num_vertices_per_primitive; ++vtx)
1354 nir_store_shared(b, nir_imm_intN_t(b, 1, 8), s->vtx_addr[vtx], .base = lds_es_vertex_accepted);
1355 }
1356
1357 static void
clipdist_culling_es_part(nir_builder * b,lower_ngg_nogs_state * s,nir_def * es_vertex_lds_addr)1358 clipdist_culling_es_part(nir_builder *b, lower_ngg_nogs_state *s,
1359 nir_def *es_vertex_lds_addr)
1360 {
1361 /* no gl_ClipDistance used but we have user defined clip plane */
1362 if (s->options->user_clip_plane_enable_mask && !s->has_clipdist) {
1363 /* use gl_ClipVertex if defined */
1364 nir_variable *clip_vertex_var =
1365 b->shader->info.outputs_written & BITFIELD64_BIT(VARYING_SLOT_CLIP_VERTEX) ?
1366 s->clip_vertex_var : s->position_value_var;
1367 nir_def *clip_vertex = nir_load_var(b, clip_vertex_var);
1368
1369 /* clip against user defined clip planes */
1370 for (unsigned i = 0; i < 8; i++) {
1371 if (!(s->options->user_clip_plane_enable_mask & BITFIELD_BIT(i)))
1372 continue;
1373
1374 nir_def *plane = nir_load_user_clip_plane(b, .ucp_id = i);
1375 nir_def *dist = nir_fdot(b, clip_vertex, plane);
1376 add_clipdist_bit(b, dist, i, s->clipdist_neg_mask_var);
1377 }
1378
1379 s->has_clipdist = true;
1380 }
1381
1382 /* store clipdist_neg_mask to LDS for culling latter in gs thread */
1383 if (s->has_clipdist) {
1384 nir_def *mask = nir_load_var(b, s->clipdist_neg_mask_var);
1385 nir_store_shared(b, nir_u2u8(b, mask), es_vertex_lds_addr,
1386 .base = lds_es_clipdist_neg_mask);
1387 }
1388 }
1389
1390 static unsigned
ngg_nogs_get_culling_pervertex_lds_size(gl_shader_stage stage,bool uses_instance_id,bool uses_primitive_id,unsigned * num_repacked_variables)1391 ngg_nogs_get_culling_pervertex_lds_size(gl_shader_stage stage,
1392 bool uses_instance_id,
1393 bool uses_primitive_id,
1394 unsigned *num_repacked_variables)
1395 {
1396 /* Culling shaders must repack some variables because
1397 * the same shader invocation may process different vertices
1398 * before and after the culling algorithm.
1399 */
1400
1401 unsigned num_repacked;
1402 if (stage == MESA_SHADER_VERTEX) {
1403 /* Vertex shaders repack:
1404 * - Vertex ID
1405 * - Instance ID (only if used)
1406 */
1407 num_repacked = uses_instance_id ? 2 : 1;
1408 } else {
1409 /* Tess eval shaders repack:
1410 * - U, V coordinates
1411 * - primitive ID (aka. patch id, only if used)
1412 * - relative patch id (not included here because doesn't need a dword)
1413 */
1414 assert(stage == MESA_SHADER_TESS_EVAL);
1415 num_repacked = uses_primitive_id ? 3 : 2;
1416 }
1417
1418 if (num_repacked_variables)
1419 *num_repacked_variables = num_repacked;
1420
1421 /* one odd dword to reduce LDS bank conflict */
1422 return (lds_es_arg_0 + num_repacked * 4u) | 4u;
1423 }
1424
1425 static void
add_deferred_attribute_culling(nir_builder * b,nir_cf_list * original_extracted_cf,lower_ngg_nogs_state * s)1426 add_deferred_attribute_culling(nir_builder *b, nir_cf_list *original_extracted_cf, lower_ngg_nogs_state *s)
1427 {
1428 bool uses_instance_id = BITSET_TEST(b->shader->info.system_values_read, SYSTEM_VALUE_INSTANCE_ID);
1429 bool uses_tess_primitive_id = BITSET_TEST(b->shader->info.system_values_read, SYSTEM_VALUE_PRIMITIVE_ID);
1430
1431 unsigned num_repacked_variables;
1432 unsigned pervertex_lds_bytes =
1433 ngg_nogs_get_culling_pervertex_lds_size(b->shader->info.stage,
1434 uses_instance_id,
1435 uses_tess_primitive_id,
1436 &num_repacked_variables);
1437
1438 nir_function_impl *impl = nir_shader_get_entrypoint(b->shader);
1439
1440 /* Create some helper variables. */
1441 nir_variable *gs_vtxaddr_vars[3] = {
1442 nir_local_variable_create(impl, glsl_uint_type(), "gs_vtx0_addr"),
1443 nir_local_variable_create(impl, glsl_uint_type(), "gs_vtx1_addr"),
1444 nir_local_variable_create(impl, glsl_uint_type(), "gs_vtx2_addr"),
1445 };
1446
1447 nir_variable *repacked_variables[3] = {
1448 nir_local_variable_create(impl, glsl_uint_type(), "repacked_var_0"),
1449 nir_local_variable_create(impl, glsl_uint_type(), "repacked_var_1"),
1450 nir_local_variable_create(impl, glsl_uint_type(), "repacked_var_2"),
1451 };
1452
1453 /* Relative patch ID is a special case because it doesn't need an extra dword, repack separately. */
1454 s->repacked_rel_patch_id = nir_local_variable_create(impl, glsl_uint_type(), "repacked_rel_patch_id");
1455
1456 if (s->options->clip_cull_dist_mask ||
1457 s->options->user_clip_plane_enable_mask) {
1458 s->clip_vertex_var =
1459 nir_local_variable_create(impl, glsl_vec4_type(), "clip_vertex");
1460 s->clipdist_neg_mask_var =
1461 nir_local_variable_create(impl, glsl_uint_type(), "clipdist_neg_mask");
1462
1463 /* init mask to 0 */
1464 nir_store_var(b, s->clipdist_neg_mask_var, nir_imm_int(b, 0), 1);
1465 }
1466
1467 /* Top part of the culling shader (aka. position shader part)
1468 *
1469 * We clone the full ES shader and emit it here, but we only really care
1470 * about its position output, so we delete every other output from this part.
1471 * The position output is stored into a temporary variable, and reloaded later.
1472 */
1473
1474 nir_def *es_thread = has_input_vertex(b);
1475 nir_if *if_es_thread = nir_push_if(b, es_thread);
1476 {
1477 /* Initialize the position output variable to zeroes, in case not all VS/TES invocations store the output.
1478 * The spec doesn't require it, but we use (0, 0, 0, 1) because some games rely on that.
1479 */
1480 nir_store_var(b, s->position_value_var, nir_imm_vec4(b, 0.0f, 0.0f, 0.0f, 1.0f), 0xfu);
1481
1482 /* Now reinsert a clone of the shader code */
1483 struct hash_table *remap_table = _mesa_pointer_hash_table_create(NULL);
1484 nir_cf_list_clone_and_reinsert(original_extracted_cf, &if_es_thread->cf_node, b->cursor, remap_table);
1485 _mesa_hash_table_destroy(remap_table, NULL);
1486 b->cursor = nir_after_cf_list(&if_es_thread->then_list);
1487
1488 /* Remember the current thread's shader arguments */
1489 if (b->shader->info.stage == MESA_SHADER_VERTEX) {
1490 nir_store_var(b, repacked_variables[0], nir_load_vertex_id_zero_base(b), 0x1u);
1491 if (uses_instance_id)
1492 nir_store_var(b, repacked_variables[1], nir_load_instance_id(b), 0x1u);
1493 } else if (b->shader->info.stage == MESA_SHADER_TESS_EVAL) {
1494 nir_store_var(b, s->repacked_rel_patch_id, nir_load_tess_rel_patch_id_amd(b), 0x1u);
1495 nir_def *tess_coord = nir_load_tess_coord(b);
1496 nir_store_var(b, repacked_variables[0], nir_channel(b, tess_coord, 0), 0x1u);
1497 nir_store_var(b, repacked_variables[1], nir_channel(b, tess_coord, 1), 0x1u);
1498 if (uses_tess_primitive_id)
1499 nir_store_var(b, repacked_variables[2], nir_load_primitive_id(b), 0x1u);
1500 } else {
1501 unreachable("Should be VS or TES.");
1502 }
1503 }
1504 nir_pop_if(b, if_es_thread);
1505
1506 nir_store_var(b, s->es_accepted_var, es_thread, 0x1u);
1507 nir_def *gs_thread = has_input_primitive(b);
1508 nir_store_var(b, s->gs_accepted_var, gs_thread, 0x1u);
1509
1510 /* Remove all non-position outputs, and put the position output into the variable. */
1511 nir_metadata_preserve(impl, nir_metadata_none);
1512 remove_culling_shader_outputs(b->shader, s);
1513 b->cursor = nir_after_impl(impl);
1514
1515 nir_def *lds_scratch_base = nir_load_lds_ngg_scratch_base_amd(b);
1516
1517 /* Run culling algorithms if culling is enabled.
1518 *
1519 * NGG culling can be enabled or disabled in runtime.
1520 * This is determined by a SGPR shader argument which is accessed
1521 * by the following NIR intrinsic.
1522 */
1523
1524 nir_if *if_cull_en = nir_push_if(b, nir_load_cull_any_enabled_amd(b));
1525 {
1526 nir_def *invocation_index = nir_load_local_invocation_index(b);
1527 nir_def *es_vertex_lds_addr = pervertex_lds_addr(b, invocation_index, pervertex_lds_bytes);
1528
1529 /* ES invocations store their vertex data to LDS for GS threads to read. */
1530 if_es_thread = nir_push_if(b, es_thread);
1531 if_es_thread->control = nir_selection_control_divergent_always_taken;
1532 {
1533 /* Store position components that are relevant to culling in LDS */
1534 nir_def *pre_cull_pos = nir_load_var(b, s->position_value_var);
1535 nir_def *pre_cull_w = nir_channel(b, pre_cull_pos, 3);
1536 nir_store_shared(b, pre_cull_w, es_vertex_lds_addr, .base = lds_es_pos_w);
1537 nir_def *pre_cull_x_div_w = nir_fdiv(b, nir_channel(b, pre_cull_pos, 0), pre_cull_w);
1538 nir_def *pre_cull_y_div_w = nir_fdiv(b, nir_channel(b, pre_cull_pos, 1), pre_cull_w);
1539 nir_store_shared(b, nir_vec2(b, pre_cull_x_div_w, pre_cull_y_div_w), es_vertex_lds_addr, .base = lds_es_pos_x);
1540
1541 /* Clear out the ES accepted flag in LDS */
1542 nir_store_shared(b, nir_imm_zero(b, 1, 8), es_vertex_lds_addr, .align_mul = 4, .base = lds_es_vertex_accepted);
1543
1544 /* For clipdist culling */
1545 clipdist_culling_es_part(b, s, es_vertex_lds_addr);
1546 }
1547 nir_pop_if(b, if_es_thread);
1548
1549 nir_barrier(b, .execution_scope=SCOPE_WORKGROUP, .memory_scope=SCOPE_WORKGROUP,
1550 .memory_semantics=NIR_MEMORY_ACQ_REL, .memory_modes=nir_var_mem_shared);
1551
1552 nir_store_var(b, s->gs_accepted_var, nir_imm_false(b), 0x1u);
1553 nir_store_var(b, s->prim_exp_arg_var, nir_imm_int(b, 1u << 31), 0x1u);
1554
1555 /* GS invocations load the vertex data and perform the culling. */
1556 nir_if *if_gs_thread = nir_push_if(b, gs_thread);
1557 {
1558 /* Load vertex indices from input VGPRs */
1559 nir_def *vtx_idx[3] = {0};
1560 for (unsigned vertex = 0; vertex < s->options->num_vertices_per_primitive;
1561 ++vertex)
1562 vtx_idx[vertex] = nir_load_var(b, s->gs_vtx_indices_vars[vertex]);
1563
1564 nir_def *pos[3][4] = {0};
1565
1566 /* Load W positions of vertices first because the culling code will use these first */
1567 for (unsigned vtx = 0; vtx < s->options->num_vertices_per_primitive; ++vtx) {
1568 s->vtx_addr[vtx] = pervertex_lds_addr(b, vtx_idx[vtx], pervertex_lds_bytes);
1569 pos[vtx][3] = nir_load_shared(b, 1, 32, s->vtx_addr[vtx], .base = lds_es_pos_w);
1570 nir_store_var(b, gs_vtxaddr_vars[vtx], s->vtx_addr[vtx], 0x1u);
1571 }
1572
1573 /* Load the X/W, Y/W positions of vertices */
1574 for (unsigned vtx = 0; vtx < s->options->num_vertices_per_primitive; ++vtx) {
1575 nir_def *xy = nir_load_shared(b, 2, 32, s->vtx_addr[vtx], .base = lds_es_pos_x);
1576 pos[vtx][0] = nir_channel(b, xy, 0);
1577 pos[vtx][1] = nir_channel(b, xy, 1);
1578 }
1579
1580 nir_def *accepted_by_clipdist;
1581 if (s->has_clipdist) {
1582 nir_def *clipdist_neg_mask = nir_imm_intN_t(b, 0xff, 8);
1583 for (unsigned vtx = 0; vtx < s->options->num_vertices_per_primitive; ++vtx) {
1584 nir_def *mask =
1585 nir_load_shared(b, 1, 8, s->vtx_addr[vtx],
1586 .base = lds_es_clipdist_neg_mask);
1587 clipdist_neg_mask = nir_iand(b, clipdist_neg_mask, mask);
1588 }
1589 /* primitive is culled if any plane's clipdist of all vertices are negative */
1590 accepted_by_clipdist = nir_ieq_imm(b, clipdist_neg_mask, 0);
1591 } else {
1592 accepted_by_clipdist = nir_imm_true(b);
1593 }
1594
1595 /* See if the current primitive is accepted */
1596 ac_nir_cull_primitive(b, accepted_by_clipdist, pos,
1597 s->options->num_vertices_per_primitive,
1598 cull_primitive_accepted, s);
1599 }
1600 nir_pop_if(b, if_gs_thread);
1601
1602 nir_barrier(b, .execution_scope=SCOPE_WORKGROUP, .memory_scope=SCOPE_WORKGROUP,
1603 .memory_semantics=NIR_MEMORY_ACQ_REL, .memory_modes=nir_var_mem_shared);
1604
1605 nir_store_var(b, s->es_accepted_var, nir_imm_false(b), 0x1u);
1606
1607 /* ES invocations load their accepted flag from LDS. */
1608 if_es_thread = nir_push_if(b, es_thread);
1609 if_es_thread->control = nir_selection_control_divergent_always_taken;
1610 {
1611 nir_def *accepted = nir_load_shared(b, 1, 8u, es_vertex_lds_addr, .base = lds_es_vertex_accepted, .align_mul = 4u);
1612 nir_def *accepted_bool = nir_ine_imm(b, nir_u2u32(b, accepted), 0);
1613 nir_store_var(b, s->es_accepted_var, accepted_bool, 0x1u);
1614 }
1615 nir_pop_if(b, if_es_thread);
1616
1617 nir_def *es_accepted = nir_load_var(b, s->es_accepted_var);
1618
1619 /* Repack the vertices that survived the culling. */
1620 wg_repack_result rep = repack_invocations_in_workgroup(b, es_accepted, lds_scratch_base,
1621 s->max_num_waves,
1622 s->options->wave_size);
1623 nir_def *num_live_vertices_in_workgroup = rep.num_repacked_invocations;
1624 nir_def *es_exporter_tid = rep.repacked_invocation_index;
1625
1626 /* If all vertices are culled, set primitive count to 0 as well. */
1627 nir_def *num_exported_prims = nir_load_workgroup_num_input_primitives_amd(b);
1628 nir_def *fully_culled = nir_ieq_imm(b, num_live_vertices_in_workgroup, 0u);
1629 num_exported_prims = nir_bcsel(b, fully_culled, nir_imm_int(b, 0u), num_exported_prims);
1630 nir_store_var(b, s->gs_exported_var, nir_iand(b, nir_inot(b, fully_culled), has_input_primitive(b)), 0x1u);
1631
1632 nir_if *if_wave_0 = nir_push_if(b, nir_ieq_imm(b, nir_load_subgroup_id(b), 0));
1633 {
1634 /* Tell the final vertex and primitive count to the HW. */
1635 if (s->options->gfx_level == GFX10) {
1636 alloc_vertices_and_primitives_gfx10_workaround(
1637 b, num_live_vertices_in_workgroup, num_exported_prims);
1638 } else {
1639 alloc_vertices_and_primitives(
1640 b, num_live_vertices_in_workgroup, num_exported_prims);
1641 }
1642 }
1643 nir_pop_if(b, if_wave_0);
1644
1645 /* Vertex compaction. */
1646 compact_vertices_after_culling(b, s,
1647 repacked_variables, gs_vtxaddr_vars,
1648 invocation_index, es_vertex_lds_addr,
1649 es_exporter_tid, num_live_vertices_in_workgroup,
1650 pervertex_lds_bytes, num_repacked_variables);
1651 }
1652 nir_push_else(b, if_cull_en);
1653 {
1654 /* When culling is disabled, we do the same as we would without culling. */
1655 nir_if *if_wave_0 = nir_push_if(b, nir_ieq_imm(b, nir_load_subgroup_id(b), 0));
1656 {
1657 nir_def *vtx_cnt = nir_load_workgroup_num_input_vertices_amd(b);
1658 nir_def *prim_cnt = nir_load_workgroup_num_input_primitives_amd(b);
1659 alloc_vertices_and_primitives(b, vtx_cnt, prim_cnt);
1660 }
1661 nir_pop_if(b, if_wave_0);
1662 nir_store_var(b, s->prim_exp_arg_var, emit_ngg_nogs_prim_exp_arg(b, s), 0x1u);
1663 }
1664 nir_pop_if(b, if_cull_en);
1665
1666 /* Update shader arguments.
1667 *
1668 * The registers which hold information about the subgroup's
1669 * vertices and primitives are updated here, so the rest of the shader
1670 * doesn't need to worry about the culling.
1671 *
1672 * These "overwrite" intrinsics must be at top level control flow,
1673 * otherwise they can mess up the backend (eg. ACO's SSA).
1674 *
1675 * TODO:
1676 * A cleaner solution would be to simply replace all usages of these args
1677 * with the load of the variables.
1678 * However, this wouldn't work right now because the backend uses the arguments
1679 * for purposes not expressed in NIR, eg. VS input loads, etc.
1680 * This can change if VS input loads and other stuff are lowered to eg. load_buffer_amd.
1681 */
1682
1683 if (b->shader->info.stage == MESA_SHADER_VERTEX)
1684 s->overwrite_args =
1685 nir_overwrite_vs_arguments_amd(b,
1686 nir_load_var(b, repacked_variables[0]), nir_load_var(b, repacked_variables[1]));
1687 else if (b->shader->info.stage == MESA_SHADER_TESS_EVAL)
1688 s->overwrite_args =
1689 nir_overwrite_tes_arguments_amd(b,
1690 nir_load_var(b, repacked_variables[0]), nir_load_var(b, repacked_variables[1]),
1691 nir_load_var(b, repacked_variables[2]), nir_load_var(b, s->repacked_rel_patch_id));
1692 else
1693 unreachable("Should be VS or TES.");
1694 }
1695
1696 static void
ngg_nogs_store_edgeflag_to_lds(nir_builder * b,lower_ngg_nogs_state * s)1697 ngg_nogs_store_edgeflag_to_lds(nir_builder *b, lower_ngg_nogs_state *s)
1698 {
1699 if (!s->out.outputs[VARYING_SLOT_EDGE][0])
1700 return;
1701
1702 /* clamp user edge flag to 1 for latter bit operations */
1703 nir_def *edgeflag = s->out.outputs[VARYING_SLOT_EDGE][0];
1704 edgeflag = nir_umin(b, edgeflag, nir_imm_int(b, 1));
1705
1706 /* user edge flag is stored at the beginning of a vertex if streamout is not enabled */
1707 unsigned offset = 0;
1708 if (s->streamout_enabled) {
1709 unsigned packed_location =
1710 util_bitcount64(b->shader->info.outputs_written & BITFIELD64_MASK(VARYING_SLOT_EDGE));
1711 offset = packed_location * 16;
1712 }
1713
1714 nir_def *tid = nir_load_local_invocation_index(b);
1715 nir_def *addr = pervertex_lds_addr(b, tid, s->pervertex_lds_bytes);
1716
1717 nir_store_shared(b, edgeflag, addr, .base = offset);
1718 }
1719
1720 static void
ngg_nogs_store_xfb_outputs_to_lds(nir_builder * b,lower_ngg_nogs_state * s)1721 ngg_nogs_store_xfb_outputs_to_lds(nir_builder *b, lower_ngg_nogs_state *s)
1722 {
1723 nir_xfb_info *info = b->shader->xfb_info;
1724
1725 uint64_t xfb_outputs = 0;
1726 unsigned xfb_outputs_16bit = 0;
1727 uint8_t xfb_mask[VARYING_SLOT_MAX] = {0};
1728 uint8_t xfb_mask_16bit_lo[16] = {0};
1729 uint8_t xfb_mask_16bit_hi[16] = {0};
1730
1731 /* Get XFB output mask for each slot. */
1732 for (int i = 0; i < info->output_count; i++) {
1733 nir_xfb_output_info *out = info->outputs + i;
1734
1735 if (out->location < VARYING_SLOT_VAR0_16BIT) {
1736 xfb_outputs |= BITFIELD64_BIT(out->location);
1737 xfb_mask[out->location] |= out->component_mask;
1738 } else {
1739 unsigned index = out->location - VARYING_SLOT_VAR0_16BIT;
1740 xfb_outputs_16bit |= BITFIELD_BIT(index);
1741
1742 if (out->high_16bits)
1743 xfb_mask_16bit_hi[index] |= out->component_mask;
1744 else
1745 xfb_mask_16bit_lo[index] |= out->component_mask;
1746 }
1747 }
1748
1749 nir_def *tid = nir_load_local_invocation_index(b);
1750 nir_def *addr = pervertex_lds_addr(b, tid, s->pervertex_lds_bytes);
1751
1752 u_foreach_bit64(slot, xfb_outputs) {
1753 uint64_t outputs_written = b->shader->info.outputs_written;
1754 if (s->skip_primitive_id)
1755 outputs_written &= ~VARYING_BIT_PRIMITIVE_ID;
1756 unsigned packed_location =
1757 util_bitcount64(outputs_written & BITFIELD64_MASK(slot));
1758
1759 unsigned mask = xfb_mask[slot];
1760
1761 /* Clear unused components. */
1762 for (unsigned i = 0; i < 4; i++) {
1763 if (!s->out.outputs[slot][i])
1764 mask &= ~BITFIELD_BIT(i);
1765 }
1766
1767 while (mask) {
1768 int start, count;
1769 u_bit_scan_consecutive_range(&mask, &start, &count);
1770 /* Outputs here are sure to be 32bit.
1771 *
1772 * 64bit outputs have been lowered to two 32bit. As 16bit outputs:
1773 * Vulkan does not allow streamout outputs less than 32bit.
1774 * OpenGL puts 16bit outputs in VARYING_SLOT_VAR0_16BIT.
1775 */
1776 nir_def *store_val = nir_vec(b, &s->out.outputs[slot][start], (unsigned)count);
1777 nir_store_shared(b, store_val, addr, .base = packed_location * 16 + start * 4);
1778 }
1779 }
1780
1781 unsigned num_32bit_outputs = util_bitcount64(b->shader->info.outputs_written);
1782 u_foreach_bit64(slot, xfb_outputs_16bit) {
1783 unsigned packed_location = num_32bit_outputs +
1784 util_bitcount(b->shader->info.outputs_written_16bit & BITFIELD_MASK(slot));
1785
1786 unsigned mask_lo = xfb_mask_16bit_lo[slot];
1787 unsigned mask_hi = xfb_mask_16bit_hi[slot];
1788
1789 /* Clear unused components. */
1790 for (unsigned i = 0; i < 4; i++) {
1791 if (!s->out.outputs_16bit_lo[slot][i])
1792 mask_lo &= ~BITFIELD_BIT(i);
1793 if (!s->out.outputs_16bit_hi[slot][i])
1794 mask_hi &= ~BITFIELD_BIT(i);
1795 }
1796
1797 nir_def **outputs_lo = s->out.outputs_16bit_lo[slot];
1798 nir_def **outputs_hi = s->out.outputs_16bit_hi[slot];
1799 nir_def *undef = nir_undef(b, 1, 16);
1800
1801 unsigned mask = mask_lo | mask_hi;
1802 while (mask) {
1803 int start, count;
1804 u_bit_scan_consecutive_range(&mask, &start, &count);
1805
1806 nir_def *values[4] = {0};
1807 for (int c = start; c < start + count; ++c) {
1808 nir_def *lo = mask_lo & BITFIELD_BIT(c) ? outputs_lo[c] : undef;
1809 nir_def *hi = mask_hi & BITFIELD_BIT(c) ? outputs_hi[c] : undef;
1810
1811 /* extend 8/16 bit to 32 bit, 64 bit has been lowered */
1812 values[c - start] = nir_pack_32_2x16_split(b, lo, hi);
1813 }
1814
1815 nir_def *store_val = nir_vec(b, values, (unsigned)count);
1816 nir_store_shared(b, store_val, addr, .base = packed_location * 16 + start * 4);
1817 }
1818 }
1819 }
1820
1821 static nir_def *
write_values_to_lanes(nir_builder * b,nir_def ** values,unsigned lane_mask)1822 write_values_to_lanes(nir_builder *b, nir_def **values, unsigned lane_mask)
1823 {
1824 nir_def *lanes = nir_imm_int(b, 0);
1825
1826 u_foreach_bit(i, lane_mask) {
1827 lanes = nir_write_invocation_amd(b, lanes, values[i], nir_imm_int(b, i));
1828 }
1829 return lanes;
1830 }
1831
1832 static void
ngg_build_streamout_buffer_info(nir_builder * b,nir_xfb_info * info,enum amd_gfx_level gfx_level,bool has_xfb_prim_query,bool use_gfx12_xfb_intrinsic,nir_def * scratch_base,nir_def * tid_in_tg,nir_def * gen_prim[4],nir_def * prim_stride_ret[4],nir_def * so_buffer_ret[4],nir_def * buffer_offsets_ret[4],nir_def * emit_prim_ret[4])1833 ngg_build_streamout_buffer_info(nir_builder *b,
1834 nir_xfb_info *info,
1835 enum amd_gfx_level gfx_level,
1836 bool has_xfb_prim_query,
1837 bool use_gfx12_xfb_intrinsic,
1838 nir_def *scratch_base,
1839 nir_def *tid_in_tg,
1840 nir_def *gen_prim[4],
1841 nir_def *prim_stride_ret[4],
1842 nir_def *so_buffer_ret[4],
1843 nir_def *buffer_offsets_ret[4],
1844 nir_def *emit_prim_ret[4])
1845 {
1846 nir_def *undef = nir_undef(b, 1, 32);
1847
1848 /* For radeonsi which pass this value by arg when VS. Streamout need accurate
1849 * num-vert-per-prim for writing correct amount of data to buffer.
1850 */
1851 nir_def *num_vert_per_prim = nir_load_num_vertices_per_primitive_amd(b);
1852 for (unsigned buffer = 0; buffer < 4; buffer++) {
1853 if (!(info->buffers_written & BITFIELD_BIT(buffer)))
1854 continue;
1855
1856 assert(info->buffers[buffer].stride);
1857
1858 prim_stride_ret[buffer] =
1859 nir_imul_imm(b, num_vert_per_prim, info->buffers[buffer].stride);
1860 so_buffer_ret[buffer] = nir_load_streamout_buffer_amd(b, .base = buffer);
1861 }
1862
1863 nir_if *if_invocation_0 = nir_push_if(b, nir_ieq_imm(b, tid_in_tg, 0));
1864 {
1865 nir_def *workgroup_buffer_sizes[4];
1866 for (unsigned buffer = 0; buffer < 4; buffer++) {
1867 if (info->buffers_written & BITFIELD_BIT(buffer)) {
1868 nir_def *buffer_size = nir_channel(b, so_buffer_ret[buffer], 2);
1869 /* In radeonsi, we may not know if a feedback buffer has been bound when
1870 * compile time, so have to check buffer size in runtime to disable the
1871 * GDS update for unbind buffer to prevent the case that previous draw
1872 * compiled with streamout but does not bind feedback buffer miss update
1873 * GDS which will affect current draw's streamout.
1874 */
1875 nir_def *buffer_valid = nir_ine_imm(b, buffer_size, 0);
1876 nir_def *inc_buffer_size =
1877 nir_imul(b, gen_prim[info->buffer_to_stream[buffer]], prim_stride_ret[buffer]);
1878 workgroup_buffer_sizes[buffer] =
1879 nir_bcsel(b, buffer_valid, inc_buffer_size, nir_imm_int(b, 0));
1880 } else
1881 workgroup_buffer_sizes[buffer] = undef;
1882 }
1883
1884 nir_def *buffer_offsets = NULL, *xfb_state_address = NULL, *xfb_voffset = NULL;
1885
1886 /* Get current global offset of buffer and increase by amount of
1887 * workgroup buffer size. This is an ordered operation sorted by
1888 * ordered_id; Each buffer info is in a channel of a vec4.
1889 */
1890 if (gfx_level >= GFX12) {
1891 nir_pop_if(b, if_invocation_0);
1892
1893 for (unsigned buffer = 0; buffer < 4; buffer++)
1894 workgroup_buffer_sizes[buffer] = nir_if_phi(b, workgroup_buffer_sizes[buffer], undef);
1895
1896 /* These must be set after nir_pop_if and phis. */
1897 xfb_state_address = nir_load_xfb_state_address_gfx12_amd(b);
1898 xfb_voffset = nir_imul_imm(b, tid_in_tg, 8);
1899
1900 nir_if *if_4lanes = nir_push_if(b, nir_ult_imm(b, tid_in_tg, 4));
1901 {
1902 /* Move workgroup buffer sizes from SGPRs to the first 4 lanes. */
1903 nir_def *workgroup_buffer_size_per_lane =
1904 write_values_to_lanes(b, workgroup_buffer_sizes, info->buffers_written);
1905 nir_def *ordered_id = nir_load_ordered_id_amd(b);
1906
1907 /* The atomic value for the 4 lanes is:
1908 * lane 0: uvec2(ordered_id, workgroup_buffer_size0)
1909 * lane 1: uvec2(ordered_id, workgroup_buffer_size1)
1910 * lane 2: uvec2(ordered_id, workgroup_buffer_size2)
1911 * lane 3: uvec2(ordered_id, workgroup_buffer_size3)
1912 */
1913 nir_def *atomic_src = nir_pack_64_2x32_split(b, ordered_id,
1914 workgroup_buffer_size_per_lane);
1915
1916 /* The memory layout of the xfb state is:
1917 * struct {
1918 * unsigned ordered_id;
1919 * unsigned dwords_written0;
1920 * unsigned ordered_id;
1921 * unsigned dwords_written1;
1922 * unsigned ordered_id;
1923 * unsigned dwords_written2;
1924 * unsigned ordered_id;
1925 * unsigned dwords_written3;
1926 * };
1927 *
1928 * Notes:
1929 * - global_atomic_ordered_add_b64 is semantically a 64-bit atomic, requiring 8-byte
1930 * address alignment, even though it operates on a pair of 32-bit values.
1931 * - The whole structure is updated at once by issuing the atomic from 4 lanes
1932 * with 8-byte address increments.
1933 * - The whole structure should be entirely within one 64B block of memory
1934 * for performance. (the address bits above 64B should not differ between lanes)
1935 */
1936 nir_def *buffer_offset_per_lane;
1937
1938 /* The gfx12 intrinsic inserts hand-written assembly producing better code than current
1939 * LLVM.
1940 */
1941 if (use_gfx12_xfb_intrinsic) {
1942 buffer_offset_per_lane =
1943 nir_ordered_add_loop_gfx12_amd(b, xfb_state_address, xfb_voffset, ordered_id,
1944 atomic_src);
1945 } else {
1946 /* The NIR version of the above using nir_atomic_op_ordered_add_gfx12_amd. */
1947 enum { NUM_ATOMICS_IN_FLIGHT = 6 };
1948
1949 nir_variable *result_ring[NUM_ATOMICS_IN_FLIGHT] = {0};
1950 for (unsigned i = 0; i < NUM_ATOMICS_IN_FLIGHT; i++)
1951 result_ring[i] = nir_local_variable_create(b->impl, glsl_uint64_t_type(), "result");
1952
1953 /* Issue the first N-1 atomics. The shader must not wait because we want them to be
1954 * pipelined. It will only wait for the oldest atomic in the NIR loop.
1955 */
1956 for (unsigned i = 0; i < NUM_ATOMICS_IN_FLIGHT - 1; i++) {
1957 nir_store_var(b, result_ring[i],
1958 nir_global_atomic_amd(b, 64, xfb_state_address, atomic_src, xfb_voffset,
1959 .atomic_op = nir_atomic_op_ordered_add_gfx12_amd), 0x1);
1960 }
1961
1962 nir_variable *buffer_offset_per_lane_var =
1963 nir_local_variable_create(b->impl, glsl_uint_type(), "buffer_offset_per_lane");
1964
1965 nir_loop *loop = nir_push_loop(b);
1966 {
1967 for (unsigned i = 0; i < NUM_ATOMICS_IN_FLIGHT; i++) {
1968 int issue_index = (NUM_ATOMICS_IN_FLIGHT - 1 + i) % NUM_ATOMICS_IN_FLIGHT;
1969 int read_index = i;
1970
1971 /* Issue (or repeat) the atomic. */
1972 nir_store_var(b, result_ring[issue_index],
1973 nir_global_atomic_amd(b, 64, xfb_state_address, atomic_src, xfb_voffset,
1974 .atomic_op = nir_atomic_op_ordered_add_gfx12_amd), 0x1);
1975
1976 /* Break if the oldest atomic succeeded in incrementing the offsets. */
1977 nir_def *oldest_result = nir_load_var(b, result_ring[read_index]);
1978 nir_def *loaded_ordered_id = nir_unpack_64_2x32_split_x(b, oldest_result);
1979 nir_def *loaded_dwords_written = nir_unpack_64_2x32_split_y(b, oldest_result);
1980
1981 /* Debug: Write the vec4 into a shader log ring buffer. */
1982 #if 0
1983 ac_nir_store_debug_log_amd(b, nir_vec4(b, nir_u2u32(b, xfb_state_address),
1984 ordered_id, loaded_ordered_id,
1985 loaded_dwords_written));
1986 #endif
1987
1988 /* This results in better code than using ballot with LLVM. */
1989 loaded_ordered_id = nir_read_invocation(b, loaded_ordered_id, nir_imm_int(b, 0));
1990
1991 nir_if *if_break = nir_push_if(b, nir_ieq(b, loaded_ordered_id, ordered_id));
1992 {
1993 nir_store_var(b, buffer_offset_per_lane_var, loaded_dwords_written, 0x1);
1994 nir_jump(b, nir_jump_break);
1995 }
1996 nir_pop_if(b, if_break);
1997 }
1998 }
1999 nir_pop_loop(b, loop);
2000
2001 buffer_offset_per_lane = nir_load_var(b, buffer_offset_per_lane_var);
2002 }
2003
2004 /* Move the buffer offsets from the 4 lanes to lane 0. */
2005 nir_def *offset[4] = {undef, undef, undef, undef};
2006
2007 for (unsigned buffer = 0; buffer < 4; buffer++) {
2008 if (info->buffers_written & BITFIELD_BIT(buffer)) {
2009 if (!buffer) {
2010 offset[buffer] = buffer_offset_per_lane;
2011 } else {
2012 offset[buffer] = nir_quad_swizzle_amd(b, buffer_offset_per_lane,
2013 .swizzle_mask = BITFIELD_BIT(buffer));
2014 }
2015 }
2016 }
2017 buffer_offsets = nir_vec(b, offset, 4);
2018 }
2019 nir_pop_if(b, if_4lanes);
2020 buffer_offsets = nir_if_phi(b, buffer_offsets, nir_undef(b, 4, 32));
2021
2022 if_invocation_0 = nir_push_if(b, nir_ieq_imm(b, tid_in_tg, 0));
2023 } else {
2024 nir_def *ordered_id = nir_load_ordered_id_amd(b);
2025 buffer_offsets =
2026 nir_ordered_xfb_counter_add_gfx11_amd(b, ordered_id,
2027 nir_vec(b, workgroup_buffer_sizes, 4),
2028 /* mask of buffers to update */
2029 .write_mask = info->buffers_written);
2030 }
2031
2032 nir_def *emit_prim[4];
2033 memcpy(emit_prim, gen_prim, 4 * sizeof(nir_def *));
2034
2035 nir_def *any_overflow = nir_imm_false(b);
2036 nir_def *overflow_amount[4] = {undef, undef, undef, undef};
2037
2038 for (unsigned buffer = 0; buffer < 4; buffer++) {
2039 if (!(info->buffers_written & BITFIELD_BIT(buffer)))
2040 continue;
2041
2042 nir_def *buffer_size = nir_channel(b, so_buffer_ret[buffer], 2);
2043
2044 /* Only consider overflow for valid feedback buffers because
2045 * otherwise the ordered operation above (GDS atomic return) might
2046 * return non-zero offsets for invalid buffers.
2047 */
2048 nir_def *buffer_valid = nir_ine_imm(b, buffer_size, 0);
2049 nir_def *buffer_offset = nir_channel(b, buffer_offsets, buffer);
2050 buffer_offset = nir_bcsel(b, buffer_valid, buffer_offset, nir_imm_int(b, 0));
2051
2052 nir_def *remain_size = nir_isub(b, buffer_size, buffer_offset);
2053 nir_def *remain_prim = nir_idiv(b, remain_size, prim_stride_ret[buffer]);
2054 nir_def *overflow = nir_ilt(b, buffer_size, buffer_offset);
2055
2056 any_overflow = nir_ior(b, any_overflow, overflow);
2057 overflow_amount[buffer] = nir_imax(b, nir_imm_int(b, 0),
2058 nir_isub(b, buffer_offset, buffer_size));
2059
2060 unsigned stream = info->buffer_to_stream[buffer];
2061 /* when previous workgroup overflow, we can't emit any primitive */
2062 emit_prim[stream] = nir_bcsel(
2063 b, overflow, nir_imm_int(b, 0),
2064 /* we can emit part primitives, limited by smallest buffer */
2065 nir_imin(b, emit_prim[stream], remain_prim));
2066
2067 /* Save to LDS for being accessed by other waves in this workgroup. */
2068 nir_store_shared(b, buffer_offset, scratch_base, .base = buffer * 4);
2069 }
2070
2071 /* We have to fix up the streamout offsets if we overflowed because they determine
2072 * the vertex count for DrawTransformFeedback.
2073 */
2074 if (gfx_level >= GFX12) {
2075 nir_pop_if(b, if_invocation_0);
2076
2077 any_overflow = nir_if_phi(b, any_overflow, nir_undef(b, 1, 1));
2078 for (unsigned buffer = 0; buffer < 4; buffer++)
2079 overflow_amount[buffer] = nir_if_phi(b, overflow_amount[buffer], undef);
2080 for (unsigned stream = 0; stream < 4; stream++) {
2081 if (emit_prim[stream])
2082 emit_prim[stream] = nir_if_phi(b, emit_prim[stream], undef);
2083 }
2084
2085 nir_if *if_any_overflow_4_lanes =
2086 nir_push_if(b, nir_iand(b, any_overflow, nir_ult_imm(b, tid_in_tg, 4)));
2087 {
2088 /* Move overflow amounts from SGPRs to the first 4 lanes. */
2089 nir_def *overflow_amount_per_lane =
2090 write_values_to_lanes(b, overflow_amount, info->buffers_written);
2091
2092 nir_global_atomic_amd(b, 32, xfb_state_address, nir_ineg(b, overflow_amount_per_lane),
2093 xfb_voffset, .base = 4, .atomic_op = nir_atomic_op_iadd);
2094 }
2095 nir_pop_if(b, if_any_overflow_4_lanes);
2096
2097 if_invocation_0 = nir_push_if(b, nir_ieq_imm(b, tid_in_tg, 0));
2098 } else {
2099 nir_if *if_any_overflow = nir_push_if(b, any_overflow);
2100 nir_xfb_counter_sub_gfx11_amd(b, nir_vec(b, overflow_amount, 4),
2101 /* mask of buffers to update */
2102 .write_mask = info->buffers_written);
2103 nir_pop_if(b, if_any_overflow);
2104 }
2105
2106 /* Save to LDS for being accessed by other waves in this workgroup. */
2107 for (unsigned stream = 0; stream < 4; stream++) {
2108 if (!(info->streams_written & BITFIELD_BIT(stream)))
2109 continue;
2110
2111 nir_store_shared(b, emit_prim[stream], scratch_base, .base = 16 + stream * 4);
2112 }
2113
2114 /* Update shader query. */
2115 if (has_xfb_prim_query) {
2116 nir_if *if_shader_query = nir_push_if(b, nir_load_prim_xfb_query_enabled_amd(b));
2117 {
2118 for (unsigned stream = 0; stream < 4; stream++) {
2119 if (info->streams_written & BITFIELD_BIT(stream))
2120 nir_atomic_add_xfb_prim_count_amd(b, emit_prim[stream], .stream_id = stream);
2121 }
2122 }
2123 nir_pop_if(b, if_shader_query);
2124 }
2125 }
2126 nir_pop_if(b, if_invocation_0);
2127
2128 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP,
2129 .memory_scope = SCOPE_WORKGROUP,
2130 .memory_semantics = NIR_MEMORY_ACQ_REL,
2131 .memory_modes = nir_var_mem_shared);
2132
2133 /* Fetch the per-buffer offsets in all waves. */
2134 for (unsigned buffer = 0; buffer < 4; buffer++) {
2135 if (!(info->buffers_written & BITFIELD_BIT(buffer)))
2136 continue;
2137
2138 buffer_offsets_ret[buffer] =
2139 nir_load_shared(b, 1, 32, scratch_base, .base = buffer * 4);
2140 }
2141
2142 /* Fetch the per-stream emit prim in all waves. */
2143 for (unsigned stream = 0; stream < 4; stream++) {
2144 if (!(info->streams_written & BITFIELD_BIT(stream)))
2145 continue;
2146
2147 emit_prim_ret[stream] =
2148 nir_load_shared(b, 1, 32, scratch_base, .base = 16 + stream * 4);
2149 }
2150 }
2151
2152 static void
ngg_build_streamout_vertex(nir_builder * b,nir_xfb_info * info,unsigned stream,nir_def * so_buffer[4],nir_def * buffer_offsets[4],nir_def * vtx_buffer_idx,nir_def * vtx_lds_addr,ac_nir_prerast_out * pr_out,bool skip_primitive_id)2153 ngg_build_streamout_vertex(nir_builder *b, nir_xfb_info *info,
2154 unsigned stream, nir_def *so_buffer[4],
2155 nir_def *buffer_offsets[4],
2156 nir_def *vtx_buffer_idx, nir_def *vtx_lds_addr,
2157 ac_nir_prerast_out *pr_out,
2158 bool skip_primitive_id)
2159 {
2160 nir_def *vtx_buffer_offsets[4];
2161 for (unsigned buffer = 0; buffer < 4; buffer++) {
2162 if (!(info->buffers_written & BITFIELD_BIT(buffer)))
2163 continue;
2164
2165 nir_def *offset = nir_imul_imm(b, vtx_buffer_idx, info->buffers[buffer].stride);
2166 vtx_buffer_offsets[buffer] = nir_iadd(b, buffer_offsets[buffer], offset);
2167 }
2168
2169 for (unsigned i = 0; i < info->output_count; i++) {
2170 nir_xfb_output_info *out = info->outputs + i;
2171 if (!out->component_mask || info->buffer_to_stream[out->buffer] != stream)
2172 continue;
2173
2174 unsigned base;
2175 if (out->location >= VARYING_SLOT_VAR0_16BIT) {
2176 base =
2177 util_bitcount64(b->shader->info.outputs_written) +
2178 util_bitcount(b->shader->info.outputs_written_16bit &
2179 BITFIELD_MASK(out->location - VARYING_SLOT_VAR0_16BIT));
2180 } else {
2181 uint64_t outputs_written = b->shader->info.outputs_written;
2182 if (skip_primitive_id)
2183 outputs_written &= ~VARYING_BIT_PRIMITIVE_ID;
2184
2185 base =
2186 util_bitcount64(outputs_written &
2187 BITFIELD64_MASK(out->location));
2188 }
2189
2190 unsigned offset = (base * 4 + out->component_offset) * 4;
2191 unsigned count = util_bitcount(out->component_mask);
2192
2193 assert(u_bit_consecutive(out->component_offset, count) == out->component_mask);
2194
2195 nir_def *out_data =
2196 nir_load_shared(b, count, 32, vtx_lds_addr, .base = offset);
2197
2198 /* Up-scaling 16bit outputs to 32bit.
2199 *
2200 * OpenGL ES will put 16bit medium precision varyings to VARYING_SLOT_VAR0_16BIT.
2201 * We need to up-scaling them to 32bit when streamout to buffer.
2202 *
2203 * Vulkan does not allow 8/16bit varyings to be streamout.
2204 */
2205 if (out->location >= VARYING_SLOT_VAR0_16BIT) {
2206 unsigned index = out->location - VARYING_SLOT_VAR0_16BIT;
2207 nir_def *values[4];
2208
2209 for (int j = 0; j < count; j++) {
2210 unsigned c = out->component_offset + j;
2211 nir_def *v = nir_channel(b, out_data, j);
2212 nir_alu_type t;
2213
2214 if (out->high_16bits) {
2215 v = nir_unpack_32_2x16_split_y(b, v);
2216 t = pr_out->types_16bit_hi[index][c];
2217 } else {
2218 v = nir_unpack_32_2x16_split_x(b, v);
2219 t = pr_out->types_16bit_lo[index][c];
2220 }
2221
2222 t = nir_alu_type_get_base_type(t);
2223 values[j] = nir_convert_to_bit_size(b, v, t, 32);
2224 }
2225
2226 out_data = nir_vec(b, values, count);
2227 }
2228
2229 nir_def *zero = nir_imm_int(b, 0);
2230 nir_store_buffer_amd(b, out_data, so_buffer[out->buffer],
2231 vtx_buffer_offsets[out->buffer],
2232 zero, zero,
2233 .base = out->offset,
2234 .memory_modes = nir_var_mem_ssbo,
2235 .access = ACCESS_NON_TEMPORAL);
2236 }
2237 }
2238
2239 static void
ngg_nogs_build_streamout(nir_builder * b,lower_ngg_nogs_state * s)2240 ngg_nogs_build_streamout(nir_builder *b, lower_ngg_nogs_state *s)
2241 {
2242 nir_xfb_info *info = b->shader->xfb_info;
2243
2244 nir_def *lds_scratch_base = nir_load_lds_ngg_scratch_base_amd(b);
2245
2246 /* Get global buffer offset where this workgroup will stream out data to. */
2247 nir_def *generated_prim = nir_load_workgroup_num_input_primitives_amd(b);
2248 nir_def *gen_prim_per_stream[4] = {generated_prim, 0, 0, 0};
2249 nir_def *emit_prim_per_stream[4] = {0};
2250 nir_def *buffer_offsets[4] = {0};
2251 nir_def *so_buffer[4] = {0};
2252 nir_def *prim_stride[4] = {0};
2253 nir_def *tid_in_tg = nir_load_local_invocation_index(b);
2254 ngg_build_streamout_buffer_info(b, info, s->options->gfx_level, s->options->has_xfb_prim_query,
2255 s->options->use_gfx12_xfb_intrinsic, lds_scratch_base, tid_in_tg,
2256 gen_prim_per_stream, prim_stride,
2257 so_buffer, buffer_offsets,
2258 emit_prim_per_stream);
2259
2260 /* Write out primitive data */
2261 nir_if *if_emit = nir_push_if(b, nir_ilt(b, tid_in_tg, emit_prim_per_stream[0]));
2262 {
2263 unsigned vtx_lds_stride = (b->shader->num_outputs * 4 + 1) * 4;
2264 nir_def *num_vert_per_prim = nir_load_num_vertices_per_primitive_amd(b);
2265 nir_def *vtx_buffer_idx = nir_imul(b, tid_in_tg, num_vert_per_prim);
2266
2267 for (unsigned i = 0; i < s->options->num_vertices_per_primitive; i++) {
2268 nir_if *if_valid_vertex =
2269 nir_push_if(b, nir_igt_imm(b, num_vert_per_prim, i));
2270 {
2271 nir_def *vtx_lds_idx = nir_load_var(b, s->gs_vtx_indices_vars[i]);
2272 nir_def *vtx_lds_addr = pervertex_lds_addr(b, vtx_lds_idx, vtx_lds_stride);
2273 ngg_build_streamout_vertex(b, info, 0, so_buffer, buffer_offsets,
2274 nir_iadd_imm(b, vtx_buffer_idx, i),
2275 vtx_lds_addr, &s->out, s->skip_primitive_id);
2276 }
2277 nir_pop_if(b, if_valid_vertex);
2278 }
2279 }
2280 nir_pop_if(b, if_emit);
2281
2282 /* Wait streamout memory ops done before export primitive, otherwise it
2283 * may not finish when shader ends.
2284 *
2285 * If a shader has no param exports, rasterization can start before
2286 * the shader finishes and thus memory stores might not finish before
2287 * the pixel shader starts.
2288 *
2289 * TODO: we only need this when no param exports.
2290 *
2291 * TODO: not sure if we need this barrier when late prim export, as I
2292 * can't observe test fail without this barrier.
2293 */
2294 nir_scoped_memory_barrier(b, SCOPE_DEVICE, NIR_MEMORY_RELEASE, nir_var_mem_ssbo);
2295 }
2296
2297 static unsigned
ngg_nogs_get_pervertex_lds_size(gl_shader_stage stage,unsigned shader_num_outputs,bool streamout_enabled,bool export_prim_id,bool has_user_edgeflags)2298 ngg_nogs_get_pervertex_lds_size(gl_shader_stage stage,
2299 unsigned shader_num_outputs,
2300 bool streamout_enabled,
2301 bool export_prim_id,
2302 bool has_user_edgeflags)
2303 {
2304 unsigned pervertex_lds_bytes = 0;
2305
2306 if (streamout_enabled) {
2307 /* The extra dword is used to avoid LDS bank conflicts and store the primitive id.
2308 * TODO: only alloc space for outputs that really need streamout.
2309 */
2310 pervertex_lds_bytes = (shader_num_outputs * 4 + 1) * 4;
2311 }
2312
2313 bool need_prim_id_store_shared = export_prim_id && stage == MESA_SHADER_VERTEX;
2314 if (need_prim_id_store_shared || has_user_edgeflags) {
2315 unsigned size = 0;
2316 if (need_prim_id_store_shared)
2317 size += 4;
2318 if (has_user_edgeflags)
2319 size += 4;
2320
2321 /* pad to odd dwords to avoid LDS bank conflict */
2322 size |= 4;
2323
2324 pervertex_lds_bytes = MAX2(pervertex_lds_bytes, size);
2325 }
2326
2327 return pervertex_lds_bytes;
2328 }
2329
2330 static void
ngg_nogs_gather_outputs(nir_builder * b,struct exec_list * cf_list,lower_ngg_nogs_state * s)2331 ngg_nogs_gather_outputs(nir_builder *b, struct exec_list *cf_list, lower_ngg_nogs_state *s)
2332 {
2333 /* Assume:
2334 * - the shader used nir_lower_io_to_temporaries
2335 * - 64-bit outputs are lowered
2336 * - no indirect indexing is present
2337 */
2338 struct nir_cf_node *first_node =
2339 exec_node_data(nir_cf_node, exec_list_get_head(cf_list), node);
2340
2341 for (nir_block *block = nir_cf_node_cf_tree_first(first_node); block != NULL;
2342 block = nir_block_cf_tree_next(block)) {
2343 nir_foreach_instr_safe (instr, block) {
2344 if (instr->type != nir_instr_type_intrinsic)
2345 continue;
2346
2347 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
2348 if (intrin->intrinsic != nir_intrinsic_store_output)
2349 continue;
2350
2351 ac_nir_gather_prerast_store_output_info(b, intrin, &s->out);
2352 nir_instr_remove(instr);
2353 }
2354 }
2355 }
2356
2357 static unsigned
gather_vs_outputs(nir_builder * b,vs_output * outputs,const uint8_t * param_offsets,nir_def * (* data)[4],nir_def * (* data_16bit_lo)[4],nir_def * (* data_16bit_hi)[4])2358 gather_vs_outputs(nir_builder *b, vs_output *outputs,
2359 const uint8_t *param_offsets,
2360 nir_def *(*data)[4],
2361 nir_def *(*data_16bit_lo)[4],
2362 nir_def *(*data_16bit_hi)[4])
2363 {
2364 unsigned num_outputs = 0;
2365 u_foreach_bit64 (slot, b->shader->info.outputs_written) {
2366 if (param_offsets[slot] > AC_EXP_PARAM_OFFSET_31)
2367 continue;
2368
2369 nir_def **output = data[slot];
2370
2371 /* skip output if no one written before */
2372 if (!output[0] && !output[1] && !output[2] && !output[3])
2373 continue;
2374
2375 outputs[num_outputs].slot = slot;
2376 for (int i = 0; i < 4; i++) {
2377 outputs[num_outputs].chan[i] = output[i];
2378 }
2379 num_outputs++;
2380 }
2381
2382 u_foreach_bit (i, b->shader->info.outputs_written_16bit) {
2383 unsigned slot = VARYING_SLOT_VAR0_16BIT + i;
2384 if (param_offsets[slot] > AC_EXP_PARAM_OFFSET_31)
2385 continue;
2386
2387 nir_def **output_lo = data_16bit_lo[i];
2388 nir_def **output_hi = data_16bit_hi[i];
2389
2390 /* skip output if no one written before */
2391 if (!output_lo[0] && !output_lo[1] && !output_lo[2] && !output_lo[3] &&
2392 !output_hi[0] && !output_hi[1] && !output_hi[2] && !output_hi[3])
2393 continue;
2394
2395 vs_output *output = &outputs[num_outputs++];
2396 output->slot = slot;
2397
2398 nir_def *undef = nir_undef(b, 1, 16);
2399 for (int j = 0; j < 4; j++) {
2400 nir_def *lo = output_lo[j] ? output_lo[j] : undef;
2401 nir_def *hi = output_hi[j] ? output_hi[j] : undef;
2402 if (output_lo[j] || output_hi[j])
2403 output->chan[j] = nir_pack_32_2x16_split(b, lo, hi);
2404 else
2405 output->chan[j] = NULL;
2406 }
2407 }
2408
2409 return num_outputs;
2410 }
2411
2412 static void
create_vertex_param_phis(nir_builder * b,unsigned num_outputs,vs_output * outputs)2413 create_vertex_param_phis(nir_builder *b, unsigned num_outputs, vs_output *outputs)
2414 {
2415 nir_def *undef = nir_undef(b, 1, 32); /* inserted at the start of the shader */
2416
2417 for (unsigned i = 0; i < num_outputs; i++) {
2418 for (unsigned j = 0; j < 4; j++) {
2419 if (outputs[i].chan[j])
2420 outputs[i].chan[j] = nir_if_phi(b, outputs[i].chan[j], undef);
2421 }
2422 }
2423 }
2424
2425 static void
export_vertex_params_gfx11(nir_builder * b,nir_def * export_tid,nir_def * num_export_threads,unsigned num_outputs,vs_output * outputs,const uint8_t * vs_output_param_offset)2426 export_vertex_params_gfx11(nir_builder *b, nir_def *export_tid, nir_def *num_export_threads,
2427 unsigned num_outputs, vs_output *outputs,
2428 const uint8_t *vs_output_param_offset)
2429 {
2430 nir_def *attr_rsrc = nir_load_ring_attr_amd(b);
2431
2432 /* We should always store full vec4s in groups of 8 lanes for the best performance even if
2433 * some of them are garbage or have unused components, so align the number of export threads
2434 * to 8.
2435 */
2436 num_export_threads = nir_iand_imm(b, nir_iadd_imm(b, num_export_threads, 7), ~7);
2437 if (!export_tid)
2438 nir_push_if(b, nir_is_subgroup_invocation_lt_amd(b, num_export_threads));
2439 else
2440 nir_push_if(b, nir_ult(b, export_tid, num_export_threads));
2441
2442 nir_def *attr_offset = nir_load_ring_attr_offset_amd(b);
2443 nir_def *vindex = nir_load_local_invocation_index(b);
2444 nir_def *voffset = nir_imm_int(b, 0);
2445 nir_def *undef = nir_undef(b, 1, 32);
2446
2447 uint32_t exported_params = 0;
2448
2449 for (unsigned i = 0; i < num_outputs; i++) {
2450 gl_varying_slot slot = outputs[i].slot;
2451 unsigned offset = vs_output_param_offset[slot];
2452
2453 /* Since vs_output_param_offset[] can map multiple varying slots to
2454 * the same param export index (that's radeonsi-specific behavior),
2455 * we need to do this so as not to emit duplicated exports.
2456 */
2457 if (exported_params & BITFIELD_BIT(offset))
2458 continue;
2459
2460 nir_def *comp[4];
2461 for (unsigned j = 0; j < 4; j++)
2462 comp[j] = outputs[i].chan[j] ? outputs[i].chan[j] : undef;
2463 nir_store_buffer_amd(b, nir_vec(b, comp, 4), attr_rsrc, voffset, attr_offset, vindex,
2464 .base = offset * 16,
2465 .memory_modes = nir_var_shader_out,
2466 .access = ACCESS_COHERENT | ACCESS_IS_SWIZZLED_AMD);
2467 exported_params |= BITFIELD_BIT(offset);
2468 }
2469
2470 nir_pop_if(b, NULL);
2471 }
2472
must_wait_attr_ring(enum amd_gfx_level gfx_level,bool has_param_exports)2473 static bool must_wait_attr_ring(enum amd_gfx_level gfx_level, bool has_param_exports)
2474 {
2475 return (gfx_level == GFX11 || gfx_level == GFX11_5) && has_param_exports;
2476 }
2477
2478 static void
export_pos0_wait_attr_ring(nir_builder * b,nir_if * if_es_thread,nir_def * outputs[VARYING_SLOT_MAX][4],const ac_nir_lower_ngg_options * options)2479 export_pos0_wait_attr_ring(nir_builder *b, nir_if *if_es_thread, nir_def *outputs[VARYING_SLOT_MAX][4], const ac_nir_lower_ngg_options *options)
2480 {
2481 b->cursor = nir_after_cf_node(&if_es_thread->cf_node);
2482
2483 /* Create phi for the position output values. */
2484 vs_output pos_output = {
2485 .slot = VARYING_SLOT_POS,
2486 .chan = {
2487 outputs[VARYING_SLOT_POS][0],
2488 outputs[VARYING_SLOT_POS][1],
2489 outputs[VARYING_SLOT_POS][2],
2490 outputs[VARYING_SLOT_POS][3],
2491 },
2492 };
2493 create_vertex_param_phis(b, 1, &pos_output);
2494
2495 b->cursor = nir_after_cf_list(&b->impl->body);
2496
2497 /* Wait for attribute stores to finish. */
2498 nir_barrier(b, .execution_scope = SCOPE_SUBGROUP,
2499 .memory_scope = SCOPE_DEVICE,
2500 .memory_semantics = NIR_MEMORY_RELEASE,
2501 .memory_modes = nir_var_mem_ssbo | nir_var_shader_out | nir_var_mem_global | nir_var_image);
2502
2503 /* Export just the pos0 output. */
2504 nir_if *if_export_empty_pos = nir_push_if(b, if_es_thread->condition.ssa);
2505 {
2506 nir_def *pos_output_array[VARYING_SLOT_MAX][4] = {0};
2507 memcpy(pos_output_array[VARYING_SLOT_POS], pos_output.chan, sizeof(pos_output.chan));
2508
2509 ac_nir_export_position(b, options->gfx_level,
2510 options->clip_cull_dist_mask,
2511 !options->has_param_exports,
2512 options->force_vrs, true,
2513 VARYING_BIT_POS, pos_output_array, NULL);
2514 }
2515 nir_pop_if(b, if_export_empty_pos);
2516 }
2517
2518 static void
nogs_export_vertex_params(nir_builder * b,nir_function_impl * impl,nir_if * if_es_thread,nir_def * num_es_threads,lower_ngg_nogs_state * s)2519 nogs_export_vertex_params(nir_builder *b, nir_function_impl *impl,
2520 nir_if *if_es_thread, nir_def *num_es_threads,
2521 lower_ngg_nogs_state *s)
2522 {
2523 if (!s->options->has_param_exports)
2524 return;
2525
2526 if (s->options->gfx_level >= GFX11) {
2527 /* Export varyings for GFX11+ */
2528 vs_output outputs[64];
2529 const unsigned num_outputs =
2530 gather_vs_outputs(b, outputs,
2531 s->options->vs_output_param_offset,
2532 s->out.outputs,
2533 s->out.outputs_16bit_lo,
2534 s->out.outputs_16bit_hi);
2535
2536 if (!num_outputs)
2537 return;
2538
2539 b->cursor = nir_after_cf_node(&if_es_thread->cf_node);
2540 create_vertex_param_phis(b, num_outputs, outputs);
2541
2542 b->cursor = nir_after_impl(impl);
2543 if (!num_es_threads)
2544 num_es_threads = nir_load_merged_wave_info_amd(b);
2545
2546 export_vertex_params_gfx11(b, NULL, num_es_threads, num_outputs, outputs,
2547 s->options->vs_output_param_offset);
2548 } else {
2549 ac_nir_export_parameters(b, s->options->vs_output_param_offset,
2550 b->shader->info.outputs_written,
2551 b->shader->info.outputs_written_16bit,
2552 s->out.outputs, s->out.outputs_16bit_lo,
2553 s->out.outputs_16bit_hi);
2554 }
2555 }
2556
2557 void
ac_nir_lower_ngg_nogs(nir_shader * shader,const ac_nir_lower_ngg_options * options)2558 ac_nir_lower_ngg_nogs(nir_shader *shader, const ac_nir_lower_ngg_options *options)
2559 {
2560 nir_function_impl *impl = nir_shader_get_entrypoint(shader);
2561 assert(impl);
2562 assert(options->max_workgroup_size && options->wave_size);
2563 assert(!(options->can_cull && options->passthrough));
2564
2565 nir_variable *position_value_var = nir_local_variable_create(impl, glsl_vec4_type(), "position_value");
2566 nir_variable *prim_exp_arg_var = nir_local_variable_create(impl, glsl_uint_type(), "prim_exp_arg");
2567 nir_variable *es_accepted_var =
2568 options->can_cull ? nir_local_variable_create(impl, glsl_bool_type(), "es_accepted") : NULL;
2569 nir_variable *gs_accepted_var =
2570 options->can_cull ? nir_local_variable_create(impl, glsl_bool_type(), "gs_accepted") : NULL;
2571 nir_variable *gs_exported_var = nir_local_variable_create(impl, glsl_bool_type(), "gs_exported");
2572
2573 bool streamout_enabled = shader->xfb_info && !options->disable_streamout;
2574 bool has_user_edgeflags =
2575 options->use_edgeflags && (shader->info.outputs_written & VARYING_BIT_EDGE);
2576 /* streamout need to be done before either prim or vertex export. Because when no
2577 * param export, rasterization can start right after prim and vertex export,
2578 * which left streamout buffer writes un-finished.
2579 *
2580 * Always use late prim export when user edge flags are enabled.
2581 * This is because edge flags are written by ES threads but they
2582 * are exported by GS threads as part of th primitive export.
2583 */
2584 bool early_prim_export =
2585 options->early_prim_export && !(streamout_enabled || has_user_edgeflags);
2586
2587 lower_ngg_nogs_state state = {
2588 .options = options,
2589 .early_prim_export = early_prim_export,
2590 .streamout_enabled = streamout_enabled,
2591 .position_value_var = position_value_var,
2592 .prim_exp_arg_var = prim_exp_arg_var,
2593 .es_accepted_var = es_accepted_var,
2594 .gs_accepted_var = gs_accepted_var,
2595 .gs_exported_var = gs_exported_var,
2596 .max_num_waves = DIV_ROUND_UP(options->max_workgroup_size, options->wave_size),
2597 .has_user_edgeflags = has_user_edgeflags,
2598 .skip_primitive_id = streamout_enabled && options->export_primitive_id,
2599 };
2600
2601 const bool need_prim_id_store_shared =
2602 options->export_primitive_id && shader->info.stage == MESA_SHADER_VERTEX;
2603
2604 if (options->export_primitive_id) {
2605 shader->info.outputs_written |= VARYING_BIT_PRIMITIVE_ID;
2606 }
2607
2608 nir_builder builder = nir_builder_create(impl);
2609 nir_builder *b = &builder; /* This is to avoid the & */
2610
2611 if (options->can_cull) {
2612 analyze_shader_before_culling(shader, &state);
2613 save_reusable_variables(b, &state);
2614 }
2615
2616 nir_cf_list extracted;
2617 nir_cf_extract(&extracted, nir_before_impl(impl),
2618 nir_after_impl(impl));
2619 b->cursor = nir_before_impl(impl);
2620
2621 ngg_nogs_init_vertex_indices_vars(b, impl, &state);
2622
2623 /* Emit primitives generated query code here, so that
2624 * it executes before culling and isn't in the extracted CF.
2625 */
2626 nogs_prim_gen_query(b, &state);
2627
2628 /* Whether a shader invocation should export a primitive,
2629 * initialize to all invocations that have an input primitive.
2630 */
2631 nir_store_var(b, gs_exported_var, has_input_primitive(b), 0x1u);
2632
2633 if (!options->can_cull) {
2634 /* Newer chips can use PRIMGEN_PASSTHRU_NO_MSG to skip gs_alloc_req for NGG passthrough. */
2635 if (!(options->passthrough && options->family >= CHIP_NAVI23)) {
2636 /* Allocate export space on wave 0 - confirm to the HW that we want to use all possible space */
2637 nir_if *if_wave_0 = nir_push_if(b, nir_ieq_imm(b, nir_load_subgroup_id(b), 0));
2638 {
2639 nir_def *vtx_cnt = nir_load_workgroup_num_input_vertices_amd(b);
2640 nir_def *prim_cnt = nir_load_workgroup_num_input_primitives_amd(b);
2641 alloc_vertices_and_primitives(b, vtx_cnt, prim_cnt);
2642 }
2643 nir_pop_if(b, if_wave_0);
2644 }
2645
2646 /* Take care of early primitive export, otherwise just pack the primitive export argument */
2647 if (state.early_prim_export)
2648 emit_ngg_nogs_prim_export(b, &state, NULL);
2649 else
2650 nir_store_var(b, prim_exp_arg_var, emit_ngg_nogs_prim_exp_arg(b, &state), 0x1u);
2651 } else {
2652 add_deferred_attribute_culling(b, &extracted, &state);
2653 b->cursor = nir_after_impl(impl);
2654
2655 if (state.early_prim_export)
2656 emit_ngg_nogs_prim_export(b, &state, nir_load_var(b, state.prim_exp_arg_var));
2657
2658 /* Wait for culling to finish using LDS. */
2659 if (need_prim_id_store_shared || has_user_edgeflags) {
2660 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP,
2661 .memory_scope = SCOPE_WORKGROUP,
2662 .memory_semantics = NIR_MEMORY_ACQ_REL,
2663 .memory_modes = nir_var_mem_shared);
2664 }
2665 }
2666
2667 /* determine the LDS vertex stride */
2668 state.pervertex_lds_bytes =
2669 ngg_nogs_get_pervertex_lds_size(shader->info.stage,
2670 shader->num_outputs,
2671 state.streamout_enabled,
2672 options->export_primitive_id,
2673 state.has_user_edgeflags);
2674
2675 if (need_prim_id_store_shared) {
2676 emit_ngg_nogs_prim_id_store_shared(b, &state);
2677
2678 /* Wait for GS threads to store primitive ID in LDS. */
2679 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP, .memory_scope = SCOPE_WORKGROUP,
2680 .memory_semantics = NIR_MEMORY_ACQ_REL, .memory_modes = nir_var_mem_shared);
2681 }
2682
2683 nir_def *es_thread =
2684 options->can_cull ? nir_load_var(b, es_accepted_var) : has_input_vertex(b);
2685
2686 /* Calculate the bit count here instead of below for lower SGPR usage and better ALU
2687 * scheduling.
2688 */
2689 nir_def *num_es_threads = NULL;
2690 if (state.options->gfx_level >= GFX11 && options->can_cull) {
2691 nir_def *es_accepted_mask =
2692 nir_ballot(b, 1, options->wave_size, nir_load_var(b, es_accepted_var));
2693 num_es_threads = nir_bit_count(b, es_accepted_mask);
2694 }
2695
2696 nir_if *if_es_thread = nir_push_if(b, es_thread);
2697 {
2698 /* Run the actual shader */
2699 nir_cf_reinsert(&extracted, b->cursor);
2700 b->cursor = nir_after_cf_list(&if_es_thread->then_list);
2701
2702 if (options->export_primitive_id)
2703 emit_store_ngg_nogs_es_primitive_id(b, &state);
2704 }
2705 nir_pop_if(b, if_es_thread);
2706
2707 if (options->can_cull) {
2708 /* Replace uniforms. */
2709 apply_reusable_variables(b, &state);
2710
2711 /* Remove the redundant position output. */
2712 remove_extra_pos_outputs(shader, &state);
2713
2714 /* After looking at the performance in apps eg. Doom Eternal, and The Witcher 3,
2715 * it seems that it's best to put the position export always at the end, and
2716 * then let ACO schedule it up (slightly) only when early prim export is used.
2717 */
2718 b->cursor = nir_after_cf_list(&if_es_thread->then_list);
2719
2720 nir_def *pos_val = nir_load_var(b, state.position_value_var);
2721 for (int i = 0; i < 4; i++)
2722 state.out.outputs[VARYING_SLOT_POS][i] = nir_channel(b, pos_val, i);
2723 }
2724
2725 /* Gather outputs data and types */
2726 ngg_nogs_gather_outputs(b, &if_es_thread->then_list, &state);
2727 b->cursor = nir_after_cf_list(&if_es_thread->then_list);
2728
2729 if (state.has_user_edgeflags)
2730 ngg_nogs_store_edgeflag_to_lds(b, &state);
2731
2732 if (state.streamout_enabled) {
2733 /* TODO: support culling after streamout. */
2734 assert(!options->can_cull);
2735
2736 ngg_nogs_store_xfb_outputs_to_lds(b, &state);
2737
2738 b->cursor = nir_after_impl(impl);
2739 ngg_nogs_build_streamout(b, &state);
2740 }
2741
2742 /* Take care of late primitive export */
2743 if (!state.early_prim_export) {
2744 b->cursor = nir_after_impl(impl);
2745 emit_ngg_nogs_prim_export(b, &state, nir_load_var(b, prim_exp_arg_var));
2746 }
2747
2748 uint64_t export_outputs = shader->info.outputs_written | VARYING_BIT_POS;
2749 if (options->kill_pointsize)
2750 export_outputs &= ~VARYING_BIT_PSIZ;
2751 if (options->kill_layer)
2752 export_outputs &= ~VARYING_BIT_LAYER;
2753
2754 const bool wait_attr_ring = must_wait_attr_ring(options->gfx_level, options->has_param_exports);
2755 if (wait_attr_ring)
2756 export_outputs &= ~VARYING_BIT_POS;
2757
2758 b->cursor = nir_after_cf_list(&if_es_thread->then_list);
2759
2760 ac_nir_export_position(b, options->gfx_level,
2761 options->clip_cull_dist_mask,
2762 !options->has_param_exports,
2763 options->force_vrs, !wait_attr_ring,
2764 export_outputs, state.out.outputs, NULL);
2765
2766 nogs_export_vertex_params(b, impl, if_es_thread, num_es_threads, &state);
2767
2768 if (wait_attr_ring)
2769 export_pos0_wait_attr_ring(b, if_es_thread, state.out.outputs, options);
2770
2771 nir_metadata_preserve(impl, nir_metadata_none);
2772 nir_validate_shader(shader, "after emitting NGG VS/TES");
2773
2774 /* Cleanup */
2775 nir_opt_dead_write_vars(shader);
2776 nir_lower_vars_to_ssa(shader);
2777 nir_remove_dead_variables(shader, nir_var_function_temp, NULL);
2778 nir_lower_alu_to_scalar(shader, NULL, NULL);
2779 nir_lower_phis_to_scalar(shader, true);
2780
2781 if (options->can_cull) {
2782 /* It's beneficial to redo these opts after splitting the shader. */
2783 nir_opt_sink(shader, nir_move_load_input | nir_move_const_undef | nir_move_copies);
2784 nir_opt_move(shader, nir_move_load_input | nir_move_copies | nir_move_const_undef);
2785 }
2786
2787 bool progress;
2788 do {
2789 progress = false;
2790 NIR_PASS(progress, shader, nir_opt_undef);
2791 NIR_PASS(progress, shader, nir_opt_dce);
2792 NIR_PASS(progress, shader, nir_opt_dead_cf);
2793
2794 if (options->can_cull)
2795 progress |= cleanup_culling_shader_after_dce(shader, b->impl, &state);
2796 } while (progress);
2797 }
2798
2799 /**
2800 * Return the address of the LDS storage reserved for the N'th vertex,
2801 * where N is in emit order, meaning:
2802 * - during the finale, N is the invocation_index (within the workgroup)
2803 * - during vertex emit, i.e. while the API GS shader invocation is running,
2804 * N = invocation_index * gs_max_out_vertices + emit_idx
2805 * where emit_idx is the vertex index in the current API GS invocation.
2806 *
2807 * Goals of the LDS memory layout:
2808 * 1. Eliminate bank conflicts on write for geometry shaders that have all emits
2809 * in uniform control flow
2810 * 2. Eliminate bank conflicts on read for export if, additionally, there is no
2811 * culling
2812 * 3. Agnostic to the number of waves (since we don't know it before compiling)
2813 * 4. Allow coalescing of LDS instructions (ds_write_b128 etc.)
2814 * 5. Avoid wasting memory.
2815 *
2816 * We use an AoS layout due to point 4 (this also helps point 3). In an AoS
2817 * layout, elimination of bank conflicts requires that each vertex occupy an
2818 * odd number of dwords. We use the additional dword to store the output stream
2819 * index as well as a flag to indicate whether this vertex ends a primitive
2820 * for rasterization.
2821 *
2822 * Swizzling is required to satisfy points 1 and 2 simultaneously.
2823 *
2824 * Vertices are stored in export order (gsthread * gs_max_out_vertices + emitidx).
2825 * Indices are swizzled in groups of 32, which ensures point 1 without
2826 * disturbing point 2.
2827 *
2828 * \return an LDS pointer to type {[N x i32], [4 x i8]}
2829 */
2830 static nir_def *
ngg_gs_out_vertex_addr(nir_builder * b,nir_def * out_vtx_idx,lower_ngg_gs_state * s)2831 ngg_gs_out_vertex_addr(nir_builder *b, nir_def *out_vtx_idx, lower_ngg_gs_state *s)
2832 {
2833 unsigned write_stride_2exp = ffs(MAX2(b->shader->info.gs.vertices_out, 1)) - 1;
2834
2835 /* gs_max_out_vertices = 2^(write_stride_2exp) * some odd number */
2836 if (write_stride_2exp) {
2837 nir_def *row = nir_ushr_imm(b, out_vtx_idx, 5);
2838 nir_def *swizzle = nir_iand_imm(b, row, (1u << write_stride_2exp) - 1u);
2839 out_vtx_idx = nir_ixor(b, out_vtx_idx, swizzle);
2840 }
2841
2842 nir_def *out_vtx_offs = nir_imul_imm(b, out_vtx_idx, s->lds_bytes_per_gs_out_vertex);
2843 return nir_iadd_nuw(b, out_vtx_offs, s->lds_addr_gs_out_vtx);
2844 }
2845
2846 static nir_def *
ngg_gs_emit_vertex_addr(nir_builder * b,nir_def * gs_vtx_idx,lower_ngg_gs_state * s)2847 ngg_gs_emit_vertex_addr(nir_builder *b, nir_def *gs_vtx_idx, lower_ngg_gs_state *s)
2848 {
2849 nir_def *tid_in_tg = nir_load_local_invocation_index(b);
2850 nir_def *gs_out_vtx_base = nir_imul_imm(b, tid_in_tg, b->shader->info.gs.vertices_out);
2851 nir_def *out_vtx_idx = nir_iadd_nuw(b, gs_out_vtx_base, gs_vtx_idx);
2852
2853 return ngg_gs_out_vertex_addr(b, out_vtx_idx, s);
2854 }
2855
2856 static void
ngg_gs_clear_primflags(nir_builder * b,nir_def * num_vertices,unsigned stream,lower_ngg_gs_state * s)2857 ngg_gs_clear_primflags(nir_builder *b, nir_def *num_vertices, unsigned stream, lower_ngg_gs_state *s)
2858 {
2859 char name[32];
2860 snprintf(name, sizeof(name), "clear_primflag_idx_%u", stream);
2861 nir_variable *clear_primflag_idx_var = nir_local_variable_create(b->impl, glsl_uint_type(), name);
2862
2863 nir_def *zero_u8 = nir_imm_zero(b, 1, 8);
2864 nir_store_var(b, clear_primflag_idx_var, num_vertices, 0x1u);
2865
2866 nir_loop *loop = nir_push_loop(b);
2867 {
2868 nir_def *clear_primflag_idx = nir_load_var(b, clear_primflag_idx_var);
2869 nir_if *if_break = nir_push_if(b, nir_uge_imm(b, clear_primflag_idx, b->shader->info.gs.vertices_out));
2870 {
2871 nir_jump(b, nir_jump_break);
2872 }
2873 nir_push_else(b, if_break);
2874 {
2875 nir_def *emit_vtx_addr = ngg_gs_emit_vertex_addr(b, clear_primflag_idx, s);
2876 nir_store_shared(b, zero_u8, emit_vtx_addr, .base = s->lds_offs_primflags + stream);
2877 nir_store_var(b, clear_primflag_idx_var, nir_iadd_imm_nuw(b, clear_primflag_idx, 1), 0x1u);
2878 }
2879 nir_pop_if(b, if_break);
2880 }
2881 nir_pop_loop(b, loop);
2882 }
2883
2884 static bool
lower_ngg_gs_store_output(nir_builder * b,nir_intrinsic_instr * intrin,lower_ngg_gs_state * s)2885 lower_ngg_gs_store_output(nir_builder *b, nir_intrinsic_instr *intrin, lower_ngg_gs_state *s)
2886 {
2887 ac_nir_gather_prerast_store_output_info(b, intrin, &s->out);
2888 nir_instr_remove(&intrin->instr);
2889 return true;
2890 }
2891
2892 static unsigned
gs_output_component_mask_with_stream(ac_nir_prerast_per_output_info * info,unsigned stream)2893 gs_output_component_mask_with_stream(ac_nir_prerast_per_output_info *info, unsigned stream)
2894 {
2895 unsigned mask = info->components_mask;
2896 if (!mask)
2897 return 0;
2898
2899 /* clear component when not requested stream */
2900 for (int i = 0; i < 4; i++) {
2901 if (((info->stream >> (i * 2)) & 3) != stream)
2902 mask &= ~(1 << i);
2903 }
2904
2905 return mask;
2906 }
2907
2908 static bool
lower_ngg_gs_emit_vertex_with_counter(nir_builder * b,nir_intrinsic_instr * intrin,lower_ngg_gs_state * s)2909 lower_ngg_gs_emit_vertex_with_counter(nir_builder *b, nir_intrinsic_instr *intrin, lower_ngg_gs_state *s)
2910 {
2911 b->cursor = nir_before_instr(&intrin->instr);
2912
2913 unsigned stream = nir_intrinsic_stream_id(intrin);
2914 if (!(b->shader->info.gs.active_stream_mask & (1 << stream))) {
2915 nir_instr_remove(&intrin->instr);
2916 return true;
2917 }
2918
2919 nir_def *gs_emit_vtx_idx = intrin->src[0].ssa;
2920 nir_def *current_vtx_per_prim = intrin->src[1].ssa;
2921 nir_def *gs_emit_vtx_addr = ngg_gs_emit_vertex_addr(b, gs_emit_vtx_idx, s);
2922
2923 /* Store generic 32-bit outputs to LDS.
2924 * In case of packed 16-bit, we assume that has been already packed into 32 bit slots by now.
2925 */
2926 u_foreach_bit64(slot, b->shader->info.outputs_written) {
2927 const unsigned packed_location = util_bitcount64((b->shader->info.outputs_written & BITFIELD64_MASK(slot)));
2928 unsigned mask = gs_output_component_mask_with_stream(&s->out.infos[slot], stream);
2929
2930 nir_def **output = s->out.outputs[slot];
2931 nir_def *undef = nir_undef(b, 1, 32);
2932
2933 while (mask) {
2934 int start, count;
2935 u_bit_scan_consecutive_range(&mask, &start, &count);
2936 nir_def *values[4] = {0};
2937 for (int c = start; c < start + count; ++c) {
2938 if (!output[c]) {
2939 /* The shader hasn't written this output. */
2940 values[c - start] = undef;
2941 } else {
2942 assert(output[c]->bit_size == 32);
2943 values[c - start] = output[c];
2944 }
2945 }
2946
2947 nir_def *store_val = nir_vec(b, values, (unsigned)count);
2948 nir_store_shared(b, store_val, gs_emit_vtx_addr,
2949 .base = packed_location * 16 + start * 4,
2950 .align_mul = 4);
2951 }
2952
2953 /* Clear all outputs (they are undefined after emit_vertex) */
2954 memset(s->out.outputs[slot], 0, sizeof(s->out.outputs[slot]));
2955 }
2956
2957 const unsigned num_32bit_outputs = util_bitcount64(b->shader->info.outputs_written);
2958
2959 /* Store dedicated 16-bit outputs to LDS. */
2960 u_foreach_bit(slot, b->shader->info.outputs_written_16bit) {
2961 const unsigned packed_location = num_32bit_outputs +
2962 util_bitcount(b->shader->info.outputs_written_16bit & BITFIELD_MASK(slot));
2963
2964 const unsigned mask_lo = gs_output_component_mask_with_stream(s->out.infos_16bit_lo + slot, stream);
2965 const unsigned mask_hi = gs_output_component_mask_with_stream(s->out.infos_16bit_hi + slot, stream);
2966 unsigned mask = mask_lo | mask_hi;
2967
2968 nir_def **output_lo = s->out.outputs_16bit_lo[slot];
2969 nir_def **output_hi = s->out.outputs_16bit_hi[slot];
2970 nir_def *undef = nir_undef(b, 1, 16);
2971
2972 while (mask) {
2973 int start, count;
2974 u_bit_scan_consecutive_range(&mask, &start, &count);
2975 nir_def *values[4] = {0};
2976 for (int c = start; c < start + count; ++c) {
2977 nir_def *lo = output_lo[c] ? output_lo[c] : undef;
2978 nir_def *hi = output_hi[c] ? output_hi[c] : undef;
2979
2980 values[c - start] = nir_pack_32_2x16_split(b, lo, hi);
2981 }
2982
2983 nir_def *store_val = nir_vec(b, values, (unsigned)count);
2984 nir_store_shared(b, store_val, gs_emit_vtx_addr,
2985 .base = packed_location * 16 + start * 4,
2986 .align_mul = 4);
2987 }
2988
2989 /* Clear all outputs (they are undefined after emit_vertex) */
2990 memset(s->out.outputs_16bit_lo[slot], 0, sizeof(s->out.outputs_16bit_lo[slot]));
2991 memset(s->out.outputs_16bit_hi[slot], 0, sizeof(s->out.outputs_16bit_hi[slot]));
2992 }
2993
2994 /* Calculate and store per-vertex primitive flags based on vertex counts:
2995 * - bit 0: whether this vertex finishes a primitive (a real primitive, not the strip)
2996 * - bit 1: whether the primitive index is odd (if we are emitting triangle strips, otherwise always 0)
2997 * only set when the vertex also finishes the primitive
2998 * - bit 2: whether vertex is live (if culling is enabled: set after culling, otherwise always 1)
2999 */
3000
3001 nir_def *vertex_live_flag =
3002 !stream && s->options->can_cull
3003 ? nir_ishl_imm(b, nir_b2i32(b, nir_inot(b, nir_load_cull_any_enabled_amd(b))), 2)
3004 : nir_imm_int(b, 0b100);
3005
3006 nir_def *completes_prim = nir_ige_imm(b, current_vtx_per_prim, s->num_vertices_per_primitive - 1);
3007 nir_def *complete_flag = nir_b2i32(b, completes_prim);
3008
3009 nir_def *prim_flag = nir_ior(b, vertex_live_flag, complete_flag);
3010 if (s->num_vertices_per_primitive == 3) {
3011 nir_def *odd = nir_iand(b, current_vtx_per_prim, complete_flag);
3012 nir_def *odd_flag = nir_ishl_imm(b, odd, 1);
3013 prim_flag = nir_ior(b, prim_flag, odd_flag);
3014 }
3015
3016 nir_store_shared(b, nir_u2u8(b, prim_flag), gs_emit_vtx_addr,
3017 .base = s->lds_offs_primflags + stream,
3018 .align_mul = 4, .align_offset = stream);
3019
3020 nir_instr_remove(&intrin->instr);
3021 return true;
3022 }
3023
3024 static bool
lower_ngg_gs_end_primitive_with_counter(nir_builder * b,nir_intrinsic_instr * intrin,UNUSED lower_ngg_gs_state * s)3025 lower_ngg_gs_end_primitive_with_counter(nir_builder *b, nir_intrinsic_instr *intrin, UNUSED lower_ngg_gs_state *s)
3026 {
3027 b->cursor = nir_before_instr(&intrin->instr);
3028
3029 /* These are not needed, we can simply remove them */
3030 nir_instr_remove(&intrin->instr);
3031 return true;
3032 }
3033
3034 static bool
lower_ngg_gs_set_vertex_and_primitive_count(nir_builder * b,nir_intrinsic_instr * intrin,lower_ngg_gs_state * s)3035 lower_ngg_gs_set_vertex_and_primitive_count(nir_builder *b, nir_intrinsic_instr *intrin, lower_ngg_gs_state *s)
3036 {
3037 b->cursor = nir_before_instr(&intrin->instr);
3038
3039 unsigned stream = nir_intrinsic_stream_id(intrin);
3040 if (stream > 0 && !(b->shader->info.gs.active_stream_mask & (1 << stream))) {
3041 nir_instr_remove(&intrin->instr);
3042 return true;
3043 }
3044
3045 s->vertex_count[stream] = intrin->src[0].ssa;
3046 s->primitive_count[stream] = intrin->src[1].ssa;
3047
3048 /* Clear the primitive flags of non-emitted vertices */
3049 if (!nir_src_is_const(intrin->src[0]) || nir_src_as_uint(intrin->src[0]) < b->shader->info.gs.vertices_out)
3050 ngg_gs_clear_primflags(b, intrin->src[0].ssa, stream, s);
3051
3052 nir_instr_remove(&intrin->instr);
3053 return true;
3054 }
3055
3056 static bool
lower_ngg_gs_intrinsic(nir_builder * b,nir_instr * instr,void * state)3057 lower_ngg_gs_intrinsic(nir_builder *b, nir_instr *instr, void *state)
3058 {
3059 lower_ngg_gs_state *s = (lower_ngg_gs_state *) state;
3060
3061 if (instr->type != nir_instr_type_intrinsic)
3062 return false;
3063
3064 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
3065
3066 if (intrin->intrinsic == nir_intrinsic_store_output)
3067 return lower_ngg_gs_store_output(b, intrin, s);
3068 else if (intrin->intrinsic == nir_intrinsic_emit_vertex_with_counter)
3069 return lower_ngg_gs_emit_vertex_with_counter(b, intrin, s);
3070 else if (intrin->intrinsic == nir_intrinsic_end_primitive_with_counter)
3071 return lower_ngg_gs_end_primitive_with_counter(b, intrin, s);
3072 else if (intrin->intrinsic == nir_intrinsic_set_vertex_and_primitive_count)
3073 return lower_ngg_gs_set_vertex_and_primitive_count(b, intrin, s);
3074
3075 return false;
3076 }
3077
3078 static void
lower_ngg_gs_intrinsics(nir_shader * shader,lower_ngg_gs_state * s)3079 lower_ngg_gs_intrinsics(nir_shader *shader, lower_ngg_gs_state *s)
3080 {
3081 nir_shader_instructions_pass(shader, lower_ngg_gs_intrinsic, nir_metadata_none, s);
3082 }
3083
3084 static void
ngg_gs_export_primitives(nir_builder * b,nir_def * max_num_out_prims,nir_def * tid_in_tg,nir_def * exporter_tid_in_tg,nir_def * primflag_0,lower_ngg_gs_state * s)3085 ngg_gs_export_primitives(nir_builder *b, nir_def *max_num_out_prims, nir_def *tid_in_tg,
3086 nir_def *exporter_tid_in_tg, nir_def *primflag_0,
3087 lower_ngg_gs_state *s)
3088 {
3089 nir_if *if_prim_export_thread = nir_push_if(b, nir_ilt(b, tid_in_tg, max_num_out_prims));
3090
3091 /* Only bit 0 matters here - set it to 1 when the primitive should be null */
3092 nir_def *is_null_prim = nir_ixor(b, primflag_0, nir_imm_int(b, -1u));
3093
3094 nir_def *vtx_indices[3] = {0};
3095 vtx_indices[s->num_vertices_per_primitive - 1] = exporter_tid_in_tg;
3096 if (s->num_vertices_per_primitive >= 2)
3097 vtx_indices[s->num_vertices_per_primitive - 2] = nir_iadd_imm(b, exporter_tid_in_tg, -1);
3098 if (s->num_vertices_per_primitive == 3)
3099 vtx_indices[s->num_vertices_per_primitive - 3] = nir_iadd_imm(b, exporter_tid_in_tg, -2);
3100
3101 if (s->num_vertices_per_primitive == 3) {
3102 /* API GS outputs triangle strips, but NGG HW understands triangles.
3103 * We already know the triangles due to how we set the primitive flags, but we need to
3104 * make sure the vertex order is so that the front/back is correct, and the provoking vertex is kept.
3105 */
3106
3107 nir_def *is_odd = nir_ubfe_imm(b, primflag_0, 1, 1);
3108 nir_def *provoking_vertex_index = nir_load_provoking_vtx_in_prim_amd(b);
3109 nir_def *provoking_vertex_first = nir_ieq_imm(b, provoking_vertex_index, 0);
3110
3111 vtx_indices[0] = nir_bcsel(b, provoking_vertex_first, vtx_indices[0],
3112 nir_iadd(b, vtx_indices[0], is_odd));
3113 vtx_indices[1] = nir_bcsel(b, provoking_vertex_first,
3114 nir_iadd(b, vtx_indices[1], is_odd),
3115 nir_isub(b, vtx_indices[1], is_odd));
3116 vtx_indices[2] = nir_bcsel(b, provoking_vertex_first,
3117 nir_isub(b, vtx_indices[2], is_odd), vtx_indices[2]);
3118 }
3119
3120 nir_def *arg = emit_pack_ngg_prim_exp_arg(b, s->num_vertices_per_primitive, vtx_indices,
3121 is_null_prim, s->options->gfx_level);
3122 ac_nir_export_primitive(b, arg, NULL);
3123 nir_pop_if(b, if_prim_export_thread);
3124 }
3125
3126 static void
ngg_gs_export_vertices(nir_builder * b,nir_def * max_num_out_vtx,nir_def * tid_in_tg,nir_def * out_vtx_lds_addr,lower_ngg_gs_state * s)3127 ngg_gs_export_vertices(nir_builder *b, nir_def *max_num_out_vtx, nir_def *tid_in_tg,
3128 nir_def *out_vtx_lds_addr, lower_ngg_gs_state *s)
3129 {
3130 nir_if *if_vtx_export_thread = nir_push_if(b, nir_ilt(b, tid_in_tg, max_num_out_vtx));
3131 nir_def *exported_out_vtx_lds_addr = out_vtx_lds_addr;
3132
3133 if (!s->output_compile_time_known) {
3134 /* Vertex compaction.
3135 * The current thread will export a vertex that was live in another invocation.
3136 * Load the index of the vertex that the current thread will have to export.
3137 */
3138 nir_def *exported_vtx_idx = nir_load_shared(b, 1, 8, out_vtx_lds_addr, .base = s->lds_offs_primflags + 1);
3139 exported_out_vtx_lds_addr = ngg_gs_out_vertex_addr(b, nir_u2u32(b, exported_vtx_idx), s);
3140 }
3141
3142 u_foreach_bit64(slot, b->shader->info.outputs_written) {
3143 const unsigned packed_location =
3144 util_bitcount64((b->shader->info.outputs_written & BITFIELD64_MASK(slot)));
3145
3146 unsigned mask = gs_output_component_mask_with_stream(&s->out.infos[slot], 0);
3147
3148 while (mask) {
3149 int start, count;
3150 u_bit_scan_consecutive_range(&mask, &start, &count);
3151 nir_def *load =
3152 nir_load_shared(b, count, 32, exported_out_vtx_lds_addr,
3153 .base = packed_location * 16 + start * 4,
3154 .align_mul = 4);
3155
3156 for (int i = 0; i < count; i++)
3157 s->out.outputs[slot][start + i] = nir_channel(b, load, i);
3158 }
3159 }
3160
3161 const unsigned num_32bit_outputs = util_bitcount64(b->shader->info.outputs_written);
3162
3163 /* Dedicated 16-bit outputs. */
3164 u_foreach_bit(i, b->shader->info.outputs_written_16bit) {
3165 const unsigned packed_location = num_32bit_outputs +
3166 util_bitcount(b->shader->info.outputs_written_16bit & BITFIELD_MASK(i));
3167
3168 const unsigned mask_lo = gs_output_component_mask_with_stream(&s->out.infos_16bit_lo[i], 0);
3169 const unsigned mask_hi = gs_output_component_mask_with_stream(&s->out.infos_16bit_hi[i], 0);
3170 unsigned mask = mask_lo | mask_hi;
3171
3172 while (mask) {
3173 int start, count;
3174 u_bit_scan_consecutive_range(&mask, &start, &count);
3175 nir_def *load =
3176 nir_load_shared(b, count, 32, exported_out_vtx_lds_addr,
3177 .base = packed_location * 16 + start * 4,
3178 .align_mul = 4);
3179
3180 for (int j = 0; j < count; j++) {
3181 nir_def *val = nir_channel(b, load, j);
3182 unsigned comp = start + j;
3183
3184 if (mask_lo & BITFIELD_BIT(comp))
3185 s->out.outputs_16bit_lo[i][comp] = nir_unpack_32_2x16_split_x(b, val);
3186
3187 if (mask_hi & BITFIELD_BIT(comp))
3188 s->out.outputs_16bit_hi[i][comp] = nir_unpack_32_2x16_split_y(b, val);
3189 }
3190 }
3191 }
3192
3193 uint64_t export_outputs = b->shader->info.outputs_written | VARYING_BIT_POS;
3194 if (s->options->kill_pointsize)
3195 export_outputs &= ~VARYING_BIT_PSIZ;
3196 if (s->options->kill_layer)
3197 export_outputs &= ~VARYING_BIT_LAYER;
3198
3199 const bool wait_attr_ring = must_wait_attr_ring(s->options->gfx_level, s->options->has_param_exports);
3200 if (wait_attr_ring)
3201 export_outputs &= ~VARYING_BIT_POS;
3202
3203 ac_nir_export_position(b, s->options->gfx_level,
3204 s->options->clip_cull_dist_mask,
3205 !s->options->has_param_exports,
3206 s->options->force_vrs, !wait_attr_ring,
3207 export_outputs, s->out.outputs, NULL);
3208
3209 nir_pop_if(b, if_vtx_export_thread);
3210
3211 if (s->options->has_param_exports) {
3212 b->cursor = nir_after_cf_list(&if_vtx_export_thread->then_list);
3213
3214 if (s->options->gfx_level >= GFX11) {
3215 vs_output outputs[64];
3216 unsigned num_outputs = gather_vs_outputs(b, outputs,
3217 s->options->vs_output_param_offset,
3218 s->out.outputs, s->out.outputs_16bit_lo,
3219 s->out.outputs_16bit_hi);
3220
3221 if (num_outputs) {
3222 b->cursor = nir_after_impl(s->impl);
3223 create_vertex_param_phis(b, num_outputs, outputs);
3224
3225 export_vertex_params_gfx11(b, tid_in_tg, max_num_out_vtx, num_outputs, outputs,
3226 s->options->vs_output_param_offset);
3227 }
3228 } else {
3229 ac_nir_export_parameters(b, s->options->vs_output_param_offset,
3230 b->shader->info.outputs_written,
3231 b->shader->info.outputs_written_16bit,
3232 s->out.outputs, s->out.outputs_16bit_lo,
3233 s->out.outputs_16bit_hi);
3234 }
3235 }
3236
3237 if (wait_attr_ring)
3238 export_pos0_wait_attr_ring(b, if_vtx_export_thread, s->out.outputs, s->options);
3239 }
3240
3241 static void
ngg_gs_setup_vertex_compaction(nir_builder * b,nir_def * vertex_live,nir_def * tid_in_tg,nir_def * exporter_tid_in_tg,lower_ngg_gs_state * s)3242 ngg_gs_setup_vertex_compaction(nir_builder *b, nir_def *vertex_live, nir_def *tid_in_tg,
3243 nir_def *exporter_tid_in_tg, lower_ngg_gs_state *s)
3244 {
3245 assert(vertex_live->bit_size == 1);
3246 nir_if *if_vertex_live = nir_push_if(b, vertex_live);
3247 {
3248 /* Setup the vertex compaction.
3249 * Save the current thread's id for the thread which will export the current vertex.
3250 * We reuse stream 1 of the primitive flag of the other thread's vertex for storing this.
3251 */
3252
3253 nir_def *exporter_lds_addr = ngg_gs_out_vertex_addr(b, exporter_tid_in_tg, s);
3254 nir_def *tid_in_tg_u8 = nir_u2u8(b, tid_in_tg);
3255 nir_store_shared(b, tid_in_tg_u8, exporter_lds_addr, .base = s->lds_offs_primflags + 1);
3256 }
3257 nir_pop_if(b, if_vertex_live);
3258 }
3259
3260 static nir_def *
ngg_gs_load_out_vtx_primflag(nir_builder * b,unsigned stream,nir_def * tid_in_tg,nir_def * vtx_lds_addr,nir_def * max_num_out_vtx,lower_ngg_gs_state * s)3261 ngg_gs_load_out_vtx_primflag(nir_builder *b, unsigned stream, nir_def *tid_in_tg,
3262 nir_def *vtx_lds_addr, nir_def *max_num_out_vtx,
3263 lower_ngg_gs_state *s)
3264 {
3265 nir_def *zero = nir_imm_int(b, 0);
3266
3267 nir_if *if_outvtx_thread = nir_push_if(b, nir_ilt(b, tid_in_tg, max_num_out_vtx));
3268 nir_def *primflag = nir_load_shared(b, 1, 8, vtx_lds_addr,
3269 .base = s->lds_offs_primflags + stream);
3270 primflag = nir_u2u32(b, primflag);
3271 nir_pop_if(b, if_outvtx_thread);
3272
3273 return nir_if_phi(b, primflag, zero);
3274 }
3275
3276 static void
ngg_gs_out_prim_all_vtxptr(nir_builder * b,nir_def * last_vtxidx,nir_def * last_vtxptr,nir_def * last_vtx_primflag,lower_ngg_gs_state * s,nir_def * vtxptr[3])3277 ngg_gs_out_prim_all_vtxptr(nir_builder *b, nir_def *last_vtxidx, nir_def *last_vtxptr,
3278 nir_def *last_vtx_primflag, lower_ngg_gs_state *s,
3279 nir_def *vtxptr[3])
3280 {
3281 unsigned last_vtx = s->num_vertices_per_primitive - 1;
3282 vtxptr[last_vtx]= last_vtxptr;
3283
3284 bool primitive_is_triangle = s->num_vertices_per_primitive == 3;
3285 nir_def *is_odd = primitive_is_triangle ?
3286 nir_ubfe_imm(b, last_vtx_primflag, 1, 1) : NULL;
3287
3288 for (unsigned i = 0; i < s->num_vertices_per_primitive - 1; i++) {
3289 nir_def *vtxidx = nir_iadd_imm(b, last_vtxidx, -(last_vtx - i));
3290
3291 /* Need to swap vertex 0 and vertex 1 when vertex 2 index is odd to keep
3292 * CW/CCW order for correct front/back face culling.
3293 */
3294 if (primitive_is_triangle)
3295 vtxidx = i == 0 ? nir_iadd(b, vtxidx, is_odd) : nir_isub(b, vtxidx, is_odd);
3296
3297 vtxptr[i] = ngg_gs_out_vertex_addr(b, vtxidx, s);
3298 }
3299 }
3300
3301 static nir_def *
ngg_gs_cull_primitive(nir_builder * b,nir_def * tid_in_tg,nir_def * max_vtxcnt,nir_def * out_vtx_lds_addr,nir_def * out_vtx_primflag_0,lower_ngg_gs_state * s)3302 ngg_gs_cull_primitive(nir_builder *b, nir_def *tid_in_tg, nir_def *max_vtxcnt,
3303 nir_def *out_vtx_lds_addr, nir_def *out_vtx_primflag_0,
3304 lower_ngg_gs_state *s)
3305 {
3306 /* we haven't enabled point culling, if enabled this function could be further optimized */
3307 assert(s->num_vertices_per_primitive > 1);
3308
3309 /* save the primflag so that we don't need to load it from LDS again */
3310 nir_variable *primflag_var = nir_local_variable_create(s->impl, glsl_uint_type(), "primflag");
3311 nir_store_var(b, primflag_var, out_vtx_primflag_0, 1);
3312
3313 /* last bit of primflag indicate if this is the final vertex of a primitive */
3314 nir_def *is_end_prim_vtx = nir_i2b(b, nir_iand_imm(b, out_vtx_primflag_0, 1));
3315 nir_def *has_output_vertex = nir_ilt(b, tid_in_tg, max_vtxcnt);
3316 nir_def *prim_enable = nir_iand(b, is_end_prim_vtx, has_output_vertex);
3317
3318 nir_if *if_prim_enable = nir_push_if(b, prim_enable);
3319 {
3320 /* Calculate the LDS address of every vertex in the current primitive. */
3321 nir_def *vtxptr[3];
3322 ngg_gs_out_prim_all_vtxptr(b, tid_in_tg, out_vtx_lds_addr, out_vtx_primflag_0, s, vtxptr);
3323
3324 /* Load the positions from LDS. */
3325 nir_def *pos[3][4];
3326 for (unsigned i = 0; i < s->num_vertices_per_primitive; i++) {
3327 /* VARYING_SLOT_POS == 0, so base won't count packed location */
3328 pos[i][3] = nir_load_shared(b, 1, 32, vtxptr[i], .base = 12); /* W */
3329 nir_def *xy = nir_load_shared(b, 2, 32, vtxptr[i], .base = 0, .align_mul = 4);
3330 pos[i][0] = nir_channel(b, xy, 0);
3331 pos[i][1] = nir_channel(b, xy, 1);
3332
3333 pos[i][0] = nir_fdiv(b, pos[i][0], pos[i][3]);
3334 pos[i][1] = nir_fdiv(b, pos[i][1], pos[i][3]);
3335 }
3336
3337 /* TODO: support clipdist culling in GS */
3338 nir_def *accepted_by_clipdist = nir_imm_true(b);
3339
3340 nir_def *accepted = ac_nir_cull_primitive(
3341 b, accepted_by_clipdist, pos, s->num_vertices_per_primitive, NULL, NULL);
3342
3343 nir_if *if_rejected = nir_push_if(b, nir_inot(b, accepted));
3344 {
3345 /* clear the primflag if rejected */
3346 nir_store_shared(b, nir_imm_zero(b, 1, 8), out_vtx_lds_addr,
3347 .base = s->lds_offs_primflags);
3348
3349 nir_store_var(b, primflag_var, nir_imm_int(b, 0), 1);
3350 }
3351 nir_pop_if(b, if_rejected);
3352 }
3353 nir_pop_if(b, if_prim_enable);
3354
3355 /* Wait for LDS primflag access done. */
3356 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP,
3357 .memory_scope = SCOPE_WORKGROUP,
3358 .memory_semantics = NIR_MEMORY_ACQ_REL,
3359 .memory_modes = nir_var_mem_shared);
3360
3361 /* only dead vertex need a chance to relive */
3362 nir_def *vtx_is_dead = nir_ieq_imm(b, nir_load_var(b, primflag_var), 0);
3363 nir_def *vtx_update_primflag = nir_iand(b, vtx_is_dead, has_output_vertex);
3364 nir_if *if_update_primflag = nir_push_if(b, vtx_update_primflag);
3365 {
3366 /* get succeeding vertices' primflag to detect this vertex's liveness */
3367 for (unsigned i = 1; i < s->num_vertices_per_primitive; i++) {
3368 nir_def *vtxidx = nir_iadd_imm(b, tid_in_tg, i);
3369 nir_def *not_overflow = nir_ilt(b, vtxidx, max_vtxcnt);
3370 nir_if *if_not_overflow = nir_push_if(b, not_overflow);
3371 {
3372 nir_def *vtxptr = ngg_gs_out_vertex_addr(b, vtxidx, s);
3373 nir_def *vtx_primflag =
3374 nir_load_shared(b, 1, 8, vtxptr, .base = s->lds_offs_primflags);
3375 vtx_primflag = nir_u2u32(b, vtx_primflag);
3376
3377 /* if succeeding vertex is alive end of primitive vertex, need to set current
3378 * thread vertex's liveness flag (bit 2)
3379 */
3380 nir_def *has_prim = nir_i2b(b, nir_iand_imm(b, vtx_primflag, 1));
3381 nir_def *vtx_live_flag =
3382 nir_bcsel(b, has_prim, nir_imm_int(b, 0b100), nir_imm_int(b, 0));
3383
3384 /* update this vertex's primflag */
3385 nir_def *primflag = nir_load_var(b, primflag_var);
3386 primflag = nir_ior(b, primflag, vtx_live_flag);
3387 nir_store_var(b, primflag_var, primflag, 1);
3388 }
3389 nir_pop_if(b, if_not_overflow);
3390 }
3391 }
3392 nir_pop_if(b, if_update_primflag);
3393
3394 return nir_load_var(b, primflag_var);
3395 }
3396
3397 static void
ngg_gs_build_streamout(nir_builder * b,lower_ngg_gs_state * s)3398 ngg_gs_build_streamout(nir_builder *b, lower_ngg_gs_state *s)
3399 {
3400 nir_xfb_info *info = b->shader->xfb_info;
3401
3402 nir_def *tid_in_tg = nir_load_local_invocation_index(b);
3403 nir_def *max_vtxcnt = nir_load_workgroup_num_input_vertices_amd(b);
3404 nir_def *out_vtx_lds_addr = ngg_gs_out_vertex_addr(b, tid_in_tg, s);
3405 nir_def *prim_live[4] = {0};
3406 nir_def *gen_prim[4] = {0};
3407 nir_def *export_seq[4] = {0};
3408 nir_def *out_vtx_primflag[4] = {0};
3409 for (unsigned stream = 0; stream < 4; stream++) {
3410 if (!(info->streams_written & BITFIELD_BIT(stream)))
3411 continue;
3412
3413 out_vtx_primflag[stream] =
3414 ngg_gs_load_out_vtx_primflag(b, stream, tid_in_tg, out_vtx_lds_addr, max_vtxcnt, s);
3415
3416 /* Check bit 0 of primflag for primitive alive, it's set for every last
3417 * vertex of a primitive.
3418 */
3419 prim_live[stream] = nir_i2b(b, nir_iand_imm(b, out_vtx_primflag[stream], 1));
3420
3421 unsigned scratch_stride = ALIGN(s->max_num_waves, 4);
3422 nir_def *scratch_base =
3423 nir_iadd_imm(b, s->lds_addr_gs_scratch, stream * scratch_stride);
3424
3425 /* We want to export primitives to streamout buffer in sequence,
3426 * but not all vertices are alive or mark end of a primitive, so
3427 * there're "holes". We don't need continuous invocations to write
3428 * primitives to streamout buffer like final vertex export, so
3429 * just repack to get the sequence (export_seq) is enough, no need
3430 * to do compaction.
3431 *
3432 * Use separate scratch space for each stream to avoid barrier.
3433 * TODO: we may further reduce barriers by writing to all stream
3434 * LDS at once, then we only need one barrier instead of one each
3435 * stream..
3436 */
3437 wg_repack_result rep =
3438 repack_invocations_in_workgroup(b, prim_live[stream], scratch_base,
3439 s->max_num_waves, s->options->wave_size);
3440
3441 /* nir_intrinsic_set_vertex_and_primitive_count can also get primitive count of
3442 * current wave, but still need LDS to sum all wave's count to get workgroup count.
3443 * And we need repack to export primitive to streamout buffer anyway, so do here.
3444 */
3445 gen_prim[stream] = rep.num_repacked_invocations;
3446 export_seq[stream] = rep.repacked_invocation_index;
3447 }
3448
3449 /* Workgroup barrier: wait for LDS scratch reads finish. */
3450 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP,
3451 .memory_scope = SCOPE_WORKGROUP,
3452 .memory_semantics = NIR_MEMORY_ACQ_REL,
3453 .memory_modes = nir_var_mem_shared);
3454
3455 /* Get global buffer offset where this workgroup will stream out data to. */
3456 nir_def *emit_prim[4] = {0};
3457 nir_def *buffer_offsets[4] = {0};
3458 nir_def *so_buffer[4] = {0};
3459 nir_def *prim_stride[4] = {0};
3460 ngg_build_streamout_buffer_info(b, info, s->options->gfx_level, s->options->has_xfb_prim_query,
3461 s->options->use_gfx12_xfb_intrinsic, s->lds_addr_gs_scratch, tid_in_tg,
3462 gen_prim, prim_stride, so_buffer, buffer_offsets, emit_prim);
3463
3464 for (unsigned stream = 0; stream < 4; stream++) {
3465 if (!(info->streams_written & BITFIELD_BIT(stream)))
3466 continue;
3467
3468 nir_def *can_emit = nir_ilt(b, export_seq[stream], emit_prim[stream]);
3469 nir_if *if_emit = nir_push_if(b, nir_iand(b, can_emit, prim_live[stream]));
3470 {
3471 /* Get streamout buffer vertex index for the first vertex of this primitive. */
3472 nir_def *vtx_buffer_idx =
3473 nir_imul_imm(b, export_seq[stream], s->num_vertices_per_primitive);
3474
3475 /* Get all vertices' lds address of this primitive. */
3476 nir_def *exported_vtx_lds_addr[3];
3477 ngg_gs_out_prim_all_vtxptr(b, tid_in_tg, out_vtx_lds_addr,
3478 out_vtx_primflag[stream], s,
3479 exported_vtx_lds_addr);
3480
3481 /* Write all vertices of this primitive to streamout buffer. */
3482 for (unsigned i = 0; i < s->num_vertices_per_primitive; i++) {
3483 ngg_build_streamout_vertex(b, info, stream, so_buffer,
3484 buffer_offsets,
3485 nir_iadd_imm(b, vtx_buffer_idx, i),
3486 exported_vtx_lds_addr[i],
3487 &s->out, false);
3488 }
3489 }
3490 nir_pop_if(b, if_emit);
3491 }
3492 }
3493
3494 static void
ngg_gs_finale(nir_builder * b,lower_ngg_gs_state * s)3495 ngg_gs_finale(nir_builder *b, lower_ngg_gs_state *s)
3496 {
3497 nir_def *tid_in_tg = nir_load_local_invocation_index(b);
3498 nir_def *max_vtxcnt = nir_load_workgroup_num_input_vertices_amd(b);
3499 nir_def *max_prmcnt = max_vtxcnt; /* They are currently practically the same; both RADV and RadeonSI do this. */
3500 nir_def *out_vtx_lds_addr = ngg_gs_out_vertex_addr(b, tid_in_tg, s);
3501
3502 if (s->output_compile_time_known) {
3503 /* When the output is compile-time known, the GS writes all possible vertices and primitives it can.
3504 * The gs_alloc_req needs to happen on one wave only, otherwise the HW hangs.
3505 */
3506 nir_if *if_wave_0 = nir_push_if(b, nir_ieq_imm(b, nir_load_subgroup_id(b), 0));
3507 alloc_vertices_and_primitives(b, max_vtxcnt, max_prmcnt);
3508 nir_pop_if(b, if_wave_0);
3509 }
3510
3511 /* Workgroup barrier already emitted, we can assume all GS output stores are done by now. */
3512
3513 nir_def *out_vtx_primflag_0 = ngg_gs_load_out_vtx_primflag(b, 0, tid_in_tg, out_vtx_lds_addr, max_vtxcnt, s);
3514
3515 if (s->output_compile_time_known) {
3516 ngg_gs_export_primitives(b, max_vtxcnt, tid_in_tg, tid_in_tg, out_vtx_primflag_0, s);
3517 ngg_gs_export_vertices(b, max_vtxcnt, tid_in_tg, out_vtx_lds_addr, s);
3518 return;
3519 }
3520
3521 /* cull primitives */
3522 if (s->options->can_cull) {
3523 nir_if *if_cull_en = nir_push_if(b, nir_load_cull_any_enabled_amd(b));
3524
3525 /* culling code will update the primflag */
3526 nir_def *updated_primflag =
3527 ngg_gs_cull_primitive(b, tid_in_tg, max_vtxcnt, out_vtx_lds_addr,
3528 out_vtx_primflag_0, s);
3529
3530 nir_pop_if(b, if_cull_en);
3531
3532 out_vtx_primflag_0 = nir_if_phi(b, updated_primflag, out_vtx_primflag_0);
3533 }
3534
3535 /* When the output vertex count is not known at compile time:
3536 * There may be gaps between invocations that have live vertices, but NGG hardware
3537 * requires that the invocations that export vertices are packed (ie. compact).
3538 * To ensure this, we need to repack invocations that have a live vertex.
3539 */
3540 nir_def *vertex_live = nir_ine_imm(b, out_vtx_primflag_0, 0);
3541 wg_repack_result rep = repack_invocations_in_workgroup(b, vertex_live, s->lds_addr_gs_scratch,
3542 s->max_num_waves, s->options->wave_size);
3543
3544 nir_def *workgroup_num_vertices = rep.num_repacked_invocations;
3545 nir_def *exporter_tid_in_tg = rep.repacked_invocation_index;
3546
3547 /* When the workgroup emits 0 total vertices, we also must export 0 primitives (otherwise the HW can hang). */
3548 nir_def *any_output = nir_ine_imm(b, workgroup_num_vertices, 0);
3549 max_prmcnt = nir_bcsel(b, any_output, max_prmcnt, nir_imm_int(b, 0));
3550
3551 /* Allocate export space. We currently don't compact primitives, just use the maximum number. */
3552 nir_if *if_wave_0 = nir_push_if(b, nir_ieq_imm(b, nir_load_subgroup_id(b), 0));
3553 {
3554 if (s->options->gfx_level == GFX10)
3555 alloc_vertices_and_primitives_gfx10_workaround(b, workgroup_num_vertices, max_prmcnt);
3556 else
3557 alloc_vertices_and_primitives(b, workgroup_num_vertices, max_prmcnt);
3558 }
3559 nir_pop_if(b, if_wave_0);
3560
3561 /* Vertex compaction. This makes sure there are no gaps between threads that export vertices. */
3562 ngg_gs_setup_vertex_compaction(b, vertex_live, tid_in_tg, exporter_tid_in_tg, s);
3563
3564 /* Workgroup barrier: wait for all LDS stores to finish. */
3565 nir_barrier(b, .execution_scope=SCOPE_WORKGROUP, .memory_scope=SCOPE_WORKGROUP,
3566 .memory_semantics=NIR_MEMORY_ACQ_REL, .memory_modes=nir_var_mem_shared);
3567
3568 ngg_gs_export_primitives(b, max_prmcnt, tid_in_tg, exporter_tid_in_tg, out_vtx_primflag_0, s);
3569 ngg_gs_export_vertices(b, workgroup_num_vertices, tid_in_tg, out_vtx_lds_addr, s);
3570 }
3571
3572 void
ac_nir_lower_ngg_gs(nir_shader * shader,const ac_nir_lower_ngg_options * options)3573 ac_nir_lower_ngg_gs(nir_shader *shader, const ac_nir_lower_ngg_options *options)
3574 {
3575 nir_function_impl *impl = nir_shader_get_entrypoint(shader);
3576 assert(impl);
3577
3578 lower_ngg_gs_state state = {
3579 .options = options,
3580 .impl = impl,
3581 .max_num_waves = DIV_ROUND_UP(options->max_workgroup_size, options->wave_size),
3582 .lds_offs_primflags = options->gs_out_vtx_bytes,
3583 .lds_bytes_per_gs_out_vertex = options->gs_out_vtx_bytes + 4u,
3584 .streamout_enabled = shader->xfb_info && !options->disable_streamout,
3585 };
3586
3587 if (!options->can_cull) {
3588 nir_gs_count_vertices_and_primitives(shader, state.const_out_vtxcnt,
3589 state.const_out_prmcnt, NULL, 4u);
3590 state.output_compile_time_known =
3591 state.const_out_vtxcnt[0] == shader->info.gs.vertices_out &&
3592 state.const_out_prmcnt[0] != -1;
3593 }
3594
3595 if (shader->info.gs.output_primitive == MESA_PRIM_POINTS)
3596 state.num_vertices_per_primitive = 1;
3597 else if (shader->info.gs.output_primitive == MESA_PRIM_LINE_STRIP)
3598 state.num_vertices_per_primitive = 2;
3599 else if (shader->info.gs.output_primitive == MESA_PRIM_TRIANGLE_STRIP)
3600 state.num_vertices_per_primitive = 3;
3601 else
3602 unreachable("Invalid GS output primitive.");
3603
3604 /* Extract the full control flow. It is going to be wrapped in an if statement. */
3605 nir_cf_list extracted;
3606 nir_cf_extract(&extracted, nir_before_impl(impl),
3607 nir_after_impl(impl));
3608
3609 nir_builder builder = nir_builder_at(nir_before_impl(impl));
3610 nir_builder *b = &builder; /* This is to avoid the & */
3611
3612 /* Workgroup barrier: wait for ES threads */
3613 nir_barrier(b, .execution_scope=SCOPE_WORKGROUP, .memory_scope=SCOPE_WORKGROUP,
3614 .memory_semantics=NIR_MEMORY_ACQ_REL, .memory_modes=nir_var_mem_shared);
3615
3616 state.lds_addr_gs_out_vtx = nir_load_lds_ngg_gs_out_vertex_base_amd(b);
3617 state.lds_addr_gs_scratch = nir_load_lds_ngg_scratch_base_amd(b);
3618
3619 /* Wrap the GS control flow. */
3620 nir_if *if_gs_thread = nir_push_if(b, has_input_primitive(b));
3621
3622 nir_cf_reinsert(&extracted, b->cursor);
3623 b->cursor = nir_after_cf_list(&if_gs_thread->then_list);
3624 nir_pop_if(b, if_gs_thread);
3625
3626 /* Workgroup barrier: wait for all GS threads to finish */
3627 nir_barrier(b, .execution_scope=SCOPE_WORKGROUP, .memory_scope=SCOPE_WORKGROUP,
3628 .memory_semantics=NIR_MEMORY_ACQ_REL, .memory_modes=nir_var_mem_shared);
3629
3630 if (state.streamout_enabled)
3631 ngg_gs_build_streamout(b, &state);
3632
3633 /* Lower the GS intrinsics */
3634 lower_ngg_gs_intrinsics(shader, &state);
3635
3636 if (!state.vertex_count[0]) {
3637 fprintf(stderr, "Could not find set_vertex_and_primitive_count for stream 0. This would hang your GPU.");
3638 abort();
3639 }
3640
3641 /* Emit shader queries */
3642 b->cursor = nir_after_cf_list(&if_gs_thread->then_list);
3643 ac_nir_gs_shader_query(b,
3644 state.options->has_gen_prim_query,
3645 state.options->has_gs_invocations_query,
3646 state.options->has_gs_primitives_query,
3647 state.num_vertices_per_primitive,
3648 state.options->wave_size,
3649 state.vertex_count,
3650 state.primitive_count);
3651
3652 b->cursor = nir_after_impl(impl);
3653
3654 /* Emit the finale sequence */
3655 ngg_gs_finale(b, &state);
3656 nir_validate_shader(shader, "after emitting NGG GS");
3657
3658 /* Cleanup */
3659 nir_lower_vars_to_ssa(shader);
3660 nir_remove_dead_variables(shader, nir_var_function_temp, NULL);
3661 nir_metadata_preserve(impl, nir_metadata_none);
3662 }
3663
3664 unsigned
ac_ngg_nogs_get_pervertex_lds_size(gl_shader_stage stage,unsigned shader_num_outputs,bool streamout_enabled,bool export_prim_id,bool has_user_edgeflags,bool can_cull,bool uses_instance_id,bool uses_primitive_id)3665 ac_ngg_nogs_get_pervertex_lds_size(gl_shader_stage stage,
3666 unsigned shader_num_outputs,
3667 bool streamout_enabled,
3668 bool export_prim_id,
3669 bool has_user_edgeflags,
3670 bool can_cull,
3671 bool uses_instance_id,
3672 bool uses_primitive_id)
3673 {
3674 /* for culling time lds layout only */
3675 unsigned culling_pervertex_lds_bytes = can_cull ?
3676 ngg_nogs_get_culling_pervertex_lds_size(
3677 stage, uses_instance_id, uses_primitive_id, NULL) : 0;
3678
3679 unsigned pervertex_lds_bytes =
3680 ngg_nogs_get_pervertex_lds_size(stage, shader_num_outputs, streamout_enabled,
3681 export_prim_id, has_user_edgeflags);
3682
3683 return MAX2(culling_pervertex_lds_bytes, pervertex_lds_bytes);
3684 }
3685
3686 unsigned
ac_ngg_get_scratch_lds_size(gl_shader_stage stage,unsigned workgroup_size,unsigned wave_size,bool streamout_enabled,bool can_cull)3687 ac_ngg_get_scratch_lds_size(gl_shader_stage stage,
3688 unsigned workgroup_size,
3689 unsigned wave_size,
3690 bool streamout_enabled,
3691 bool can_cull)
3692 {
3693 unsigned scratch_lds_size = 0;
3694 unsigned max_num_waves = DIV_ROUND_UP(workgroup_size, wave_size);
3695
3696 if (stage == MESA_SHADER_VERTEX || stage == MESA_SHADER_TESS_EVAL) {
3697 if (streamout_enabled) {
3698 /* 4 dwords for 4 streamout buffer offset, 1 dword for emit prim count */
3699 scratch_lds_size = 20;
3700 } else if (can_cull) {
3701 scratch_lds_size = ALIGN(max_num_waves, 4u);
3702 }
3703 } else {
3704 assert(stage == MESA_SHADER_GEOMETRY);
3705
3706 scratch_lds_size = ALIGN(max_num_waves, 4u);
3707 /* streamout take 8 dwords for buffer offset and emit vertex per stream */
3708 if (streamout_enabled)
3709 scratch_lds_size = MAX2(scratch_lds_size, 32);
3710 }
3711
3712 return scratch_lds_size;
3713 }
3714
3715 static void
ms_store_prim_indices(nir_builder * b,nir_intrinsic_instr * intrin,lower_ngg_ms_state * s)3716 ms_store_prim_indices(nir_builder *b,
3717 nir_intrinsic_instr *intrin,
3718 lower_ngg_ms_state *s)
3719 {
3720 /* EXT_mesh_shader primitive indices: array of vectors.
3721 * They don't count as per-primitive outputs, but the array is indexed
3722 * by the primitive index, so they are practically per-primitive.
3723 */
3724 assert(nir_src_is_const(*nir_get_io_offset_src(intrin)));
3725 assert(nir_src_as_uint(*nir_get_io_offset_src(intrin)) == 0);
3726
3727 const unsigned component_offset = nir_intrinsic_component(intrin);
3728 nir_def *store_val = intrin->src[0].ssa;
3729 assert(store_val->num_components <= 3);
3730
3731 if (store_val->num_components > s->vertices_per_prim)
3732 store_val = nir_trim_vector(b, store_val, s->vertices_per_prim);
3733
3734 if (s->layout.var.prm_attr.mask & BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_INDICES)) {
3735 for (unsigned c = 0; c < store_val->num_components; ++c) {
3736 const unsigned i = VARYING_SLOT_PRIMITIVE_INDICES * 4 + c + component_offset;
3737 nir_store_var(b, s->out_variables[i], nir_channel(b, store_val, c), 0x1);
3738 }
3739 return;
3740 }
3741
3742 nir_def *arr_index = nir_get_io_arrayed_index_src(intrin)->ssa;
3743 nir_def *offset = nir_imul_imm(b, arr_index, s->vertices_per_prim);
3744
3745 /* The max vertex count is 256, so these indices always fit 8 bits.
3746 * To reduce LDS use, store these as a flat array of 8-bit values.
3747 */
3748 nir_store_shared(b, nir_u2u8(b, store_val), offset, .base = s->layout.lds.indices_addr + component_offset);
3749 }
3750
3751 static void
ms_store_cull_flag(nir_builder * b,nir_intrinsic_instr * intrin,lower_ngg_ms_state * s)3752 ms_store_cull_flag(nir_builder *b,
3753 nir_intrinsic_instr *intrin,
3754 lower_ngg_ms_state *s)
3755 {
3756 /* EXT_mesh_shader cull primitive: per-primitive bool. */
3757 assert(nir_src_is_const(*nir_get_io_offset_src(intrin)));
3758 assert(nir_src_as_uint(*nir_get_io_offset_src(intrin)) == 0);
3759 assert(nir_intrinsic_component(intrin) == 0);
3760 assert(nir_intrinsic_write_mask(intrin) == 1);
3761
3762 nir_def *store_val = intrin->src[0].ssa;
3763
3764 assert(store_val->num_components == 1);
3765 assert(store_val->bit_size == 1);
3766
3767 if (s->layout.var.prm_attr.mask & BITFIELD64_BIT(VARYING_SLOT_CULL_PRIMITIVE)) {
3768 nir_store_var(b, s->out_variables[VARYING_SLOT_CULL_PRIMITIVE * 4], nir_b2i32(b, store_val), 0x1);
3769 return;
3770 }
3771
3772 nir_def *arr_index = nir_get_io_arrayed_index_src(intrin)->ssa;
3773 nir_def *offset = nir_imul_imm(b, arr_index, s->vertices_per_prim);
3774
3775 /* To reduce LDS use, store these as an array of 8-bit values. */
3776 nir_store_shared(b, nir_b2i8(b, store_val), offset, .base = s->layout.lds.cull_flags_addr);
3777 }
3778
3779 static nir_def *
ms_arrayed_output_base_addr(nir_builder * b,nir_def * arr_index,unsigned mapped_location,unsigned num_arrayed_outputs)3780 ms_arrayed_output_base_addr(nir_builder *b,
3781 nir_def *arr_index,
3782 unsigned mapped_location,
3783 unsigned num_arrayed_outputs)
3784 {
3785 /* Address offset of the array item (vertex or primitive). */
3786 unsigned arr_index_stride = num_arrayed_outputs * 16u;
3787 nir_def *arr_index_off = nir_imul_imm(b, arr_index, arr_index_stride);
3788
3789 /* IO address offset within the vertex or primitive data. */
3790 unsigned io_offset = mapped_location * 16u;
3791 nir_def *io_off = nir_imm_int(b, io_offset);
3792
3793 return nir_iadd_nuw(b, arr_index_off, io_off);
3794 }
3795
3796 static void
update_ms_output_info_slot(lower_ngg_ms_state * s,unsigned slot,unsigned base_off,uint32_t components_mask)3797 update_ms_output_info_slot(lower_ngg_ms_state *s,
3798 unsigned slot, unsigned base_off,
3799 uint32_t components_mask)
3800 {
3801 while (components_mask) {
3802 s->output_info[slot + base_off].components_mask |= components_mask & 0xF;
3803
3804 components_mask >>= 4;
3805 base_off++;
3806 }
3807 }
3808
3809 static void
update_ms_output_info(const nir_io_semantics io_sem,const nir_src * base_offset_src,const uint32_t write_mask,const unsigned component_offset,const unsigned bit_size,const ms_out_part * out,lower_ngg_ms_state * s)3810 update_ms_output_info(const nir_io_semantics io_sem,
3811 const nir_src *base_offset_src,
3812 const uint32_t write_mask,
3813 const unsigned component_offset,
3814 const unsigned bit_size,
3815 const ms_out_part *out,
3816 lower_ngg_ms_state *s)
3817 {
3818 uint32_t write_mask_32 = util_widen_mask(write_mask, DIV_ROUND_UP(bit_size, 32));
3819 uint32_t components_mask = write_mask_32 << component_offset;
3820
3821 if (nir_src_is_const(*base_offset_src)) {
3822 /* Simply mark the components of the current slot as used. */
3823 unsigned base_off = nir_src_as_uint(*base_offset_src);
3824 update_ms_output_info_slot(s, io_sem.location, base_off, components_mask);
3825 } else {
3826 /* Indirect offset: mark the components of all slots as used. */
3827 for (unsigned base_off = 0; base_off < io_sem.num_slots; ++base_off)
3828 update_ms_output_info_slot(s, io_sem.location, base_off, components_mask);
3829 }
3830 }
3831
3832 static const ms_out_part *
ms_get_out_layout_part(unsigned location,shader_info * info,ms_out_mode * out_mode,lower_ngg_ms_state * s)3833 ms_get_out_layout_part(unsigned location,
3834 shader_info *info,
3835 ms_out_mode *out_mode,
3836 lower_ngg_ms_state *s)
3837 {
3838 uint64_t mask = BITFIELD64_BIT(location);
3839
3840 if (info->per_primitive_outputs & mask) {
3841 if (mask & s->layout.lds.prm_attr.mask) {
3842 *out_mode = ms_out_mode_lds;
3843 return &s->layout.lds.prm_attr;
3844 } else if (mask & s->layout.scratch_ring.prm_attr.mask) {
3845 *out_mode = ms_out_mode_scratch_ring;
3846 return &s->layout.scratch_ring.prm_attr;
3847 } else if (mask & s->layout.attr_ring.prm_attr.mask) {
3848 *out_mode = ms_out_mode_attr_ring;
3849 return &s->layout.attr_ring.prm_attr;
3850 } else if (mask & s->layout.var.prm_attr.mask) {
3851 *out_mode = ms_out_mode_var;
3852 return &s->layout.var.prm_attr;
3853 }
3854 } else {
3855 if (mask & s->layout.lds.vtx_attr.mask) {
3856 *out_mode = ms_out_mode_lds;
3857 return &s->layout.lds.vtx_attr;
3858 } else if (mask & s->layout.scratch_ring.vtx_attr.mask) {
3859 *out_mode = ms_out_mode_scratch_ring;
3860 return &s->layout.scratch_ring.vtx_attr;
3861 } else if (mask & s->layout.attr_ring.vtx_attr.mask) {
3862 *out_mode = ms_out_mode_attr_ring;
3863 return &s->layout.attr_ring.vtx_attr;
3864 } else if (mask & s->layout.var.vtx_attr.mask) {
3865 *out_mode = ms_out_mode_var;
3866 return &s->layout.var.vtx_attr;
3867 }
3868 }
3869
3870 unreachable("Couldn't figure out mesh shader output mode.");
3871 }
3872
3873 static void
ms_store_arrayed_output(nir_builder * b,nir_src * base_off_src,nir_def * store_val,nir_def * arr_index,const nir_io_semantics io_sem,const unsigned component_offset,const unsigned write_mask,lower_ngg_ms_state * s)3874 ms_store_arrayed_output(nir_builder *b,
3875 nir_src *base_off_src,
3876 nir_def *store_val,
3877 nir_def *arr_index,
3878 const nir_io_semantics io_sem,
3879 const unsigned component_offset,
3880 const unsigned write_mask,
3881 lower_ngg_ms_state *s)
3882 {
3883 ms_out_mode out_mode;
3884 const ms_out_part *out = ms_get_out_layout_part(io_sem.location, &b->shader->info, &out_mode, s);
3885 update_ms_output_info(io_sem, base_off_src, write_mask, component_offset, store_val->bit_size, out, s);
3886
3887 bool hi_16b = io_sem.high_16bits;
3888 bool lo_16b = !hi_16b && store_val->bit_size == 16;
3889
3890 unsigned mapped_location = util_bitcount64(out->mask & u_bit_consecutive64(0, io_sem.location));
3891 unsigned num_outputs = util_bitcount64(out->mask);
3892 unsigned const_off = out->addr + component_offset * 4 + (hi_16b ? 2 : 0);
3893
3894 nir_def *base_addr = ms_arrayed_output_base_addr(b, arr_index, mapped_location, num_outputs);
3895 nir_def *base_offset = base_off_src->ssa;
3896 nir_def *base_addr_off = nir_imul_imm(b, base_offset, 16u);
3897 nir_def *addr = nir_iadd_nuw(b, base_addr, base_addr_off);
3898
3899 if (out_mode == ms_out_mode_lds) {
3900 nir_store_shared(b, store_val, addr, .base = const_off,
3901 .write_mask = write_mask, .align_mul = 16,
3902 .align_offset = const_off % 16);
3903 } else if (out_mode == ms_out_mode_scratch_ring) {
3904 nir_def *ring = nir_load_ring_mesh_scratch_amd(b);
3905 nir_def *off = nir_load_ring_mesh_scratch_offset_amd(b);
3906 nir_def *zero = nir_imm_int(b, 0);
3907 nir_store_buffer_amd(b, store_val, ring, addr, off, zero,
3908 .base = const_off,
3909 .write_mask = write_mask,
3910 .memory_modes = nir_var_shader_out,
3911 .access = ACCESS_COHERENT);
3912 } else if (out_mode == ms_out_mode_attr_ring) {
3913 /* GFX11+: Store params straight to the attribute ring.
3914 *
3915 * Even though the access pattern may not be the most optimal,
3916 * this is still much better than reserving LDS and losing waves.
3917 * (Also much better than storing and reloading from the scratch ring.)
3918 */
3919 unsigned param_offset = s->vs_output_param_offset[io_sem.location];
3920 nir_def *ring = nir_load_ring_attr_amd(b);
3921 nir_def *soffset = nir_load_ring_attr_offset_amd(b);
3922 nir_store_buffer_amd(b, store_val, ring, base_addr_off, soffset, arr_index,
3923 .base = const_off + param_offset * 16,
3924 .write_mask = write_mask,
3925 .memory_modes = nir_var_shader_out,
3926 .access = ACCESS_COHERENT | ACCESS_IS_SWIZZLED_AMD);
3927 } else if (out_mode == ms_out_mode_var) {
3928 unsigned write_mask_32 = write_mask;
3929 if (store_val->bit_size > 32) {
3930 /* Split 64-bit store values to 32-bit components. */
3931 store_val = nir_bitcast_vector(b, store_val, 32);
3932 /* Widen the write mask so it is in 32-bit components. */
3933 write_mask_32 = util_widen_mask(write_mask, store_val->bit_size / 32);
3934 }
3935
3936 u_foreach_bit(comp, write_mask_32) {
3937 unsigned idx = io_sem.location * 4 + comp + component_offset;
3938 nir_def *val = nir_channel(b, store_val, comp);
3939 nir_def *v = nir_load_var(b, s->out_variables[idx]);
3940
3941 if (lo_16b) {
3942 nir_def *var_hi = nir_unpack_32_2x16_split_y(b, v);
3943 val = nir_pack_32_2x16_split(b, val, var_hi);
3944 } else if (hi_16b) {
3945 nir_def *var_lo = nir_unpack_32_2x16_split_x(b, v);
3946 val = nir_pack_32_2x16_split(b, var_lo, val);
3947 }
3948
3949 nir_store_var(b, s->out_variables[idx], val, 0x1);
3950 }
3951 } else {
3952 unreachable("Invalid MS output mode for store");
3953 }
3954 }
3955
3956 static void
ms_store_arrayed_output_intrin(nir_builder * b,nir_intrinsic_instr * intrin,lower_ngg_ms_state * s)3957 ms_store_arrayed_output_intrin(nir_builder *b,
3958 nir_intrinsic_instr *intrin,
3959 lower_ngg_ms_state *s)
3960 {
3961 const nir_io_semantics io_sem = nir_intrinsic_io_semantics(intrin);
3962
3963 if (io_sem.location == VARYING_SLOT_PRIMITIVE_INDICES) {
3964 ms_store_prim_indices(b, intrin, s);
3965 return;
3966 } else if (io_sem.location == VARYING_SLOT_CULL_PRIMITIVE) {
3967 ms_store_cull_flag(b, intrin, s);
3968 return;
3969 }
3970
3971 unsigned component_offset = nir_intrinsic_component(intrin);
3972 unsigned write_mask = nir_intrinsic_write_mask(intrin);
3973
3974 nir_def *store_val = intrin->src[0].ssa;
3975 nir_def *arr_index = nir_get_io_arrayed_index_src(intrin)->ssa;
3976 nir_src *base_off_src = nir_get_io_offset_src(intrin);
3977
3978 if (store_val->bit_size < 32) {
3979 /* Split 16-bit output stores to ensure each 16-bit component is stored
3980 * in the correct location, without overwriting the other 16 bits there.
3981 */
3982 u_foreach_bit(c, write_mask) {
3983 nir_def *store_component = nir_channel(b, store_val, c);
3984 ms_store_arrayed_output(b, base_off_src, store_component, arr_index, io_sem, c + component_offset, 1, s);
3985 }
3986 } else {
3987 ms_store_arrayed_output(b, base_off_src, store_val, arr_index, io_sem, component_offset, write_mask, s);
3988 }
3989 }
3990
3991 static nir_def *
ms_load_arrayed_output(nir_builder * b,nir_def * arr_index,nir_def * base_offset,unsigned location,unsigned component_offset,unsigned num_components,unsigned load_bit_size,lower_ngg_ms_state * s)3992 ms_load_arrayed_output(nir_builder *b,
3993 nir_def *arr_index,
3994 nir_def *base_offset,
3995 unsigned location,
3996 unsigned component_offset,
3997 unsigned num_components,
3998 unsigned load_bit_size,
3999 lower_ngg_ms_state *s)
4000 {
4001 ms_out_mode out_mode;
4002 const ms_out_part *out = ms_get_out_layout_part(location, &b->shader->info, &out_mode, s);
4003
4004 unsigned component_addr_off = component_offset * 4;
4005 unsigned num_outputs = util_bitcount64(out->mask);
4006 unsigned const_off = out->addr + component_offset * 4;
4007
4008 /* Use compacted location instead of the original semantic location. */
4009 unsigned mapped_location = util_bitcount64(out->mask & u_bit_consecutive64(0, location));
4010
4011 nir_def *base_addr = ms_arrayed_output_base_addr(b, arr_index, mapped_location, num_outputs);
4012 nir_def *base_addr_off = nir_imul_imm(b, base_offset, 16);
4013 nir_def *addr = nir_iadd_nuw(b, base_addr, base_addr_off);
4014
4015 if (out_mode == ms_out_mode_lds) {
4016 return nir_load_shared(b, num_components, load_bit_size, addr, .align_mul = 16,
4017 .align_offset = component_addr_off % 16,
4018 .base = const_off);
4019 } else if (out_mode == ms_out_mode_scratch_ring) {
4020 nir_def *ring = nir_load_ring_mesh_scratch_amd(b);
4021 nir_def *off = nir_load_ring_mesh_scratch_offset_amd(b);
4022 nir_def *zero = nir_imm_int(b, 0);
4023 return nir_load_buffer_amd(b, num_components, load_bit_size, ring, addr, off, zero,
4024 .base = const_off,
4025 .memory_modes = nir_var_shader_out,
4026 .access = ACCESS_COHERENT);
4027 } else if (out_mode == ms_out_mode_var) {
4028 assert(load_bit_size == 32);
4029 nir_def *arr[8] = {0};
4030 for (unsigned comp = 0; comp < num_components; ++comp) {
4031 unsigned idx = location * 4 + comp + component_addr_off;
4032 arr[comp] = nir_load_var(b, s->out_variables[idx]);
4033 }
4034 return nir_vec(b, arr, num_components);
4035 } else {
4036 unreachable("Invalid MS output mode for load");
4037 }
4038 }
4039
4040 static nir_def *
lower_ms_load_workgroup_index(nir_builder * b,UNUSED nir_intrinsic_instr * intrin,lower_ngg_ms_state * s)4041 lower_ms_load_workgroup_index(nir_builder *b,
4042 UNUSED nir_intrinsic_instr *intrin,
4043 lower_ngg_ms_state *s)
4044 {
4045 return s->workgroup_index;
4046 }
4047
4048 static nir_def *
lower_ms_set_vertex_and_primitive_count(nir_builder * b,nir_intrinsic_instr * intrin,lower_ngg_ms_state * s)4049 lower_ms_set_vertex_and_primitive_count(nir_builder *b,
4050 nir_intrinsic_instr *intrin,
4051 lower_ngg_ms_state *s)
4052 {
4053 /* If either the number of vertices or primitives is zero, set both of them to zero. */
4054 nir_def *num_vtx = nir_read_first_invocation(b, intrin->src[0].ssa);
4055 nir_def *num_prm = nir_read_first_invocation(b, intrin->src[1].ssa);
4056 nir_def *zero = nir_imm_int(b, 0);
4057 nir_def *is_either_zero = nir_ieq(b, nir_umin(b, num_vtx, num_prm), zero);
4058 num_vtx = nir_bcsel(b, is_either_zero, zero, num_vtx);
4059 num_prm = nir_bcsel(b, is_either_zero, zero, num_prm);
4060
4061 nir_store_var(b, s->vertex_count_var, num_vtx, 0x1);
4062 nir_store_var(b, s->primitive_count_var, num_prm, 0x1);
4063
4064 return NIR_LOWER_INSTR_PROGRESS_REPLACE;
4065 }
4066
4067 static nir_def *
update_ms_barrier(nir_builder * b,nir_intrinsic_instr * intrin,lower_ngg_ms_state * s)4068 update_ms_barrier(nir_builder *b,
4069 nir_intrinsic_instr *intrin,
4070 lower_ngg_ms_state *s)
4071 {
4072 /* Output loads and stores are lowered to shared memory access,
4073 * so we have to update the barriers to also reflect this.
4074 */
4075 unsigned mem_modes = nir_intrinsic_memory_modes(intrin);
4076 if (mem_modes & nir_var_shader_out)
4077 mem_modes |= nir_var_mem_shared;
4078 else
4079 return NULL;
4080
4081 nir_intrinsic_set_memory_modes(intrin, mem_modes);
4082
4083 return NIR_LOWER_INSTR_PROGRESS;
4084 }
4085
4086 static nir_def *
lower_ms_intrinsic(nir_builder * b,nir_instr * instr,void * state)4087 lower_ms_intrinsic(nir_builder *b, nir_instr *instr, void *state)
4088 {
4089 lower_ngg_ms_state *s = (lower_ngg_ms_state *) state;
4090
4091 if (instr->type != nir_instr_type_intrinsic)
4092 return NULL;
4093
4094 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
4095
4096 switch (intrin->intrinsic) {
4097 case nir_intrinsic_store_per_vertex_output:
4098 case nir_intrinsic_store_per_primitive_output:
4099 ms_store_arrayed_output_intrin(b, intrin, s);
4100 return NIR_LOWER_INSTR_PROGRESS_REPLACE;
4101 case nir_intrinsic_barrier:
4102 return update_ms_barrier(b, intrin, s);
4103 case nir_intrinsic_load_workgroup_index:
4104 return lower_ms_load_workgroup_index(b, intrin, s);
4105 case nir_intrinsic_set_vertex_and_primitive_count:
4106 return lower_ms_set_vertex_and_primitive_count(b, intrin, s);
4107 default:
4108 unreachable("Not a lowerable mesh shader intrinsic.");
4109 }
4110 }
4111
4112 static bool
filter_ms_intrinsic(const nir_instr * instr,UNUSED const void * s)4113 filter_ms_intrinsic(const nir_instr *instr,
4114 UNUSED const void *s)
4115 {
4116 if (instr->type != nir_instr_type_intrinsic)
4117 return false;
4118
4119 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
4120 return intrin->intrinsic == nir_intrinsic_store_output ||
4121 intrin->intrinsic == nir_intrinsic_load_output ||
4122 intrin->intrinsic == nir_intrinsic_store_per_vertex_output ||
4123 intrin->intrinsic == nir_intrinsic_store_per_primitive_output ||
4124 intrin->intrinsic == nir_intrinsic_barrier ||
4125 intrin->intrinsic == nir_intrinsic_load_workgroup_index ||
4126 intrin->intrinsic == nir_intrinsic_set_vertex_and_primitive_count;
4127 }
4128
4129 static void
lower_ms_intrinsics(nir_shader * shader,lower_ngg_ms_state * s)4130 lower_ms_intrinsics(nir_shader *shader, lower_ngg_ms_state *s)
4131 {
4132 nir_shader_lower_instructions(shader, filter_ms_intrinsic, lower_ms_intrinsic, s);
4133 }
4134
4135 static void
ms_emit_arrayed_outputs(nir_builder * b,nir_def * invocation_index,uint64_t mask,lower_ngg_ms_state * s)4136 ms_emit_arrayed_outputs(nir_builder *b,
4137 nir_def *invocation_index,
4138 uint64_t mask,
4139 lower_ngg_ms_state *s)
4140 {
4141 nir_def *zero = nir_imm_int(b, 0);
4142
4143 u_foreach_bit64(slot, mask) {
4144 /* Should not occur here, handled separately. */
4145 assert(slot != VARYING_SLOT_PRIMITIVE_COUNT && slot != VARYING_SLOT_PRIMITIVE_INDICES);
4146
4147 unsigned component_mask = s->output_info[slot].components_mask;
4148
4149 while (component_mask) {
4150 int start_comp = 0, num_components = 1;
4151 u_bit_scan_consecutive_range(&component_mask, &start_comp, &num_components);
4152
4153 nir_def *load =
4154 ms_load_arrayed_output(b, invocation_index, zero, slot, start_comp,
4155 num_components, 32, s);
4156
4157 for (int i = 0; i < num_components; i++)
4158 s->outputs[slot][start_comp + i] = nir_channel(b, load, i);
4159 }
4160 }
4161 }
4162
4163 static void
ms_create_same_invocation_vars(nir_builder * b,lower_ngg_ms_state * s)4164 ms_create_same_invocation_vars(nir_builder *b, lower_ngg_ms_state *s)
4165 {
4166 /* Initialize NIR variables for same-invocation outputs. */
4167 uint64_t same_invocation_output_mask = s->layout.var.prm_attr.mask | s->layout.var.vtx_attr.mask;
4168
4169 u_foreach_bit64(slot, same_invocation_output_mask) {
4170 for (unsigned comp = 0; comp < 4; ++comp) {
4171 unsigned idx = slot * 4 + comp;
4172 s->out_variables[idx] = nir_local_variable_create(b->impl, glsl_uint_type(), "ms_var_output");
4173 }
4174 }
4175 }
4176
4177 static void
ms_emit_legacy_workgroup_index(nir_builder * b,lower_ngg_ms_state * s)4178 ms_emit_legacy_workgroup_index(nir_builder *b, lower_ngg_ms_state *s)
4179 {
4180 /* Workgroup ID should have been lowered to workgroup index. */
4181 assert(!BITSET_TEST(b->shader->info.system_values_read, SYSTEM_VALUE_WORKGROUP_ID));
4182
4183 /* No need to do anything if the shader doesn't use the workgroup index. */
4184 if (!BITSET_TEST(b->shader->info.system_values_read, SYSTEM_VALUE_WORKGROUP_INDEX))
4185 return;
4186
4187 b->cursor = nir_before_impl(b->impl);
4188
4189 /* Legacy fast launch mode (FAST_LAUNCH=1):
4190 *
4191 * The HW doesn't support a proper workgroup index for vertex processing stages,
4192 * so we use the vertex ID which is equivalent to the index of the current workgroup
4193 * within the current dispatch.
4194 *
4195 * Due to the register programming of mesh shaders, this value is only filled for
4196 * the first invocation of the first wave. To let other waves know, we use LDS.
4197 */
4198 nir_def *workgroup_index = nir_load_vertex_id_zero_base(b);
4199
4200 if (s->api_workgroup_size <= s->wave_size) {
4201 /* API workgroup is small, so we don't need to use LDS. */
4202 s->workgroup_index = nir_read_first_invocation(b, workgroup_index);
4203 return;
4204 }
4205
4206 unsigned workgroup_index_lds_addr = s->layout.lds.workgroup_info_addr + lds_ms_wg_index;
4207
4208 nir_def *zero = nir_imm_int(b, 0);
4209 nir_def *dont_care = nir_undef(b, 1, 32);
4210 nir_def *loaded_workgroup_index = NULL;
4211
4212 /* Use elect to make sure only 1 invocation uses LDS. */
4213 nir_if *if_elected = nir_push_if(b, nir_elect(b, 1));
4214 {
4215 nir_def *wave_id = nir_load_subgroup_id(b);
4216 nir_if *if_wave_0 = nir_push_if(b, nir_ieq_imm(b, wave_id, 0));
4217 {
4218 nir_store_shared(b, workgroup_index, zero, .base = workgroup_index_lds_addr);
4219 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP,
4220 .memory_scope = SCOPE_WORKGROUP,
4221 .memory_semantics = NIR_MEMORY_ACQ_REL,
4222 .memory_modes = nir_var_mem_shared);
4223 }
4224 nir_push_else(b, if_wave_0);
4225 {
4226 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP,
4227 .memory_scope = SCOPE_WORKGROUP,
4228 .memory_semantics = NIR_MEMORY_ACQ_REL,
4229 .memory_modes = nir_var_mem_shared);
4230 loaded_workgroup_index = nir_load_shared(b, 1, 32, zero, .base = workgroup_index_lds_addr);
4231 }
4232 nir_pop_if(b, if_wave_0);
4233
4234 workgroup_index = nir_if_phi(b, workgroup_index, loaded_workgroup_index);
4235 }
4236 nir_pop_if(b, if_elected);
4237
4238 workgroup_index = nir_if_phi(b, workgroup_index, dont_care);
4239 s->workgroup_index = nir_read_first_invocation(b, workgroup_index);
4240 }
4241
4242 static void
set_ms_final_output_counts(nir_builder * b,lower_ngg_ms_state * s,nir_def ** out_num_prm,nir_def ** out_num_vtx)4243 set_ms_final_output_counts(nir_builder *b,
4244 lower_ngg_ms_state *s,
4245 nir_def **out_num_prm,
4246 nir_def **out_num_vtx)
4247 {
4248 /* The spec allows the numbers to be divergent, and in that case we need to
4249 * use the values from the first invocation. Also the HW requires us to set
4250 * both to 0 if either was 0.
4251 *
4252 * These are already done by the lowering.
4253 */
4254 nir_def *num_prm = nir_load_var(b, s->primitive_count_var);
4255 nir_def *num_vtx = nir_load_var(b, s->vertex_count_var);
4256
4257 if (s->hw_workgroup_size <= s->wave_size) {
4258 /* Single-wave mesh shader workgroup. */
4259 alloc_vertices_and_primitives(b, num_vtx, num_prm);
4260 *out_num_prm = num_prm;
4261 *out_num_vtx = num_vtx;
4262 return;
4263 }
4264
4265 /* Multi-wave mesh shader workgroup:
4266 * We need to use LDS to distribute the correct values to the other waves.
4267 *
4268 * TODO:
4269 * If we can prove that the values are workgroup-uniform, we can skip this
4270 * and just use whatever the current wave has. However, NIR divergence analysis
4271 * currently doesn't support this.
4272 */
4273
4274 nir_def *zero = nir_imm_int(b, 0);
4275
4276 nir_if *if_wave_0 = nir_push_if(b, nir_ieq_imm(b, nir_load_subgroup_id(b), 0));
4277 {
4278 nir_if *if_elected = nir_push_if(b, nir_elect(b, 1));
4279 {
4280 nir_store_shared(b, nir_vec2(b, num_prm, num_vtx), zero,
4281 .base = s->layout.lds.workgroup_info_addr + lds_ms_num_prims);
4282 }
4283 nir_pop_if(b, if_elected);
4284
4285 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP,
4286 .memory_scope = SCOPE_WORKGROUP,
4287 .memory_semantics = NIR_MEMORY_ACQ_REL,
4288 .memory_modes = nir_var_mem_shared);
4289
4290 alloc_vertices_and_primitives(b, num_vtx, num_prm);
4291 }
4292 nir_push_else(b, if_wave_0);
4293 {
4294 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP,
4295 .memory_scope = SCOPE_WORKGROUP,
4296 .memory_semantics = NIR_MEMORY_ACQ_REL,
4297 .memory_modes = nir_var_mem_shared);
4298
4299 nir_def *prm_vtx = NULL;
4300 nir_def *dont_care_2x32 = nir_undef(b, 2, 32);
4301 nir_if *if_elected = nir_push_if(b, nir_elect(b, 1));
4302 {
4303 prm_vtx = nir_load_shared(b, 2, 32, zero,
4304 .base = s->layout.lds.workgroup_info_addr + lds_ms_num_prims);
4305 }
4306 nir_pop_if(b, if_elected);
4307
4308 prm_vtx = nir_if_phi(b, prm_vtx, dont_care_2x32);
4309 num_prm = nir_read_first_invocation(b, nir_channel(b, prm_vtx, 0));
4310 num_vtx = nir_read_first_invocation(b, nir_channel(b, prm_vtx, 1));
4311
4312 nir_store_var(b, s->primitive_count_var, num_prm, 0x1);
4313 nir_store_var(b, s->vertex_count_var, num_vtx, 0x1);
4314 }
4315 nir_pop_if(b, if_wave_0);
4316
4317 *out_num_prm = nir_load_var(b, s->primitive_count_var);
4318 *out_num_vtx = nir_load_var(b, s->vertex_count_var);
4319 }
4320
4321 static void
ms_emit_attribute_ring_output_stores(nir_builder * b,const uint64_t outputs_mask,nir_def * idx,lower_ngg_ms_state * s)4322 ms_emit_attribute_ring_output_stores(nir_builder *b, const uint64_t outputs_mask,
4323 nir_def *idx, lower_ngg_ms_state *s)
4324 {
4325 if (!outputs_mask)
4326 return;
4327
4328 nir_def *ring = nir_load_ring_attr_amd(b);
4329 nir_def *off = nir_load_ring_attr_offset_amd(b);
4330 nir_def *zero = nir_imm_int(b, 0);
4331
4332 u_foreach_bit64 (slot, outputs_mask) {
4333 if (s->vs_output_param_offset[slot] > AC_EXP_PARAM_OFFSET_31)
4334 continue;
4335
4336 nir_def *soffset = nir_iadd_imm(b, off, s->vs_output_param_offset[slot] * 16 * 32);
4337 nir_def *store_val = nir_undef(b, 4, 32);
4338 unsigned store_val_components = 0;
4339 for (unsigned c = 0; c < 4; ++c) {
4340 if (s->outputs[slot][c]) {
4341 store_val = nir_vector_insert_imm(b, store_val, s->outputs[slot][c], c);
4342 store_val_components = c + 1;
4343 }
4344 }
4345
4346 store_val = nir_trim_vector(b, store_val, store_val_components);
4347 nir_store_buffer_amd(b, store_val, ring, zero, soffset, idx,
4348 .memory_modes = nir_var_shader_out,
4349 .access = ACCESS_COHERENT | ACCESS_IS_SWIZZLED_AMD);
4350 }
4351 }
4352
4353 static nir_def *
ms_prim_exp_arg_ch1(nir_builder * b,nir_def * invocation_index,nir_def * num_vtx,lower_ngg_ms_state * s)4354 ms_prim_exp_arg_ch1(nir_builder *b, nir_def *invocation_index, nir_def *num_vtx, lower_ngg_ms_state *s)
4355 {
4356 /* Primitive connectivity data: describes which vertices the primitive uses. */
4357 nir_def *prim_idx_addr = nir_imul_imm(b, invocation_index, s->vertices_per_prim);
4358 nir_def *indices_loaded = NULL;
4359 nir_def *cull_flag = NULL;
4360
4361 if (s->layout.var.prm_attr.mask & BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_INDICES)) {
4362 nir_def *indices[3] = {0};
4363 for (unsigned c = 0; c < s->vertices_per_prim; ++c)
4364 indices[c] = nir_load_var(b, s->out_variables[VARYING_SLOT_PRIMITIVE_INDICES * 4 + c]);
4365 indices_loaded = nir_vec(b, indices, s->vertices_per_prim);
4366 } else {
4367 indices_loaded = nir_load_shared(b, s->vertices_per_prim, 8, prim_idx_addr, .base = s->layout.lds.indices_addr);
4368 indices_loaded = nir_u2u32(b, indices_loaded);
4369 }
4370
4371 if (s->uses_cull_flags) {
4372 nir_def *loaded_cull_flag = NULL;
4373 if (s->layout.var.prm_attr.mask & BITFIELD64_BIT(VARYING_SLOT_CULL_PRIMITIVE))
4374 loaded_cull_flag = nir_load_var(b, s->out_variables[VARYING_SLOT_CULL_PRIMITIVE * 4]);
4375 else
4376 loaded_cull_flag = nir_u2u32(b, nir_load_shared(b, 1, 8, prim_idx_addr, .base = s->layout.lds.cull_flags_addr));
4377
4378 cull_flag = nir_i2b(b, loaded_cull_flag);
4379 }
4380
4381 nir_def *indices[3];
4382 nir_def *max_vtx_idx = nir_iadd_imm(b, num_vtx, -1u);
4383
4384 for (unsigned i = 0; i < s->vertices_per_prim; ++i) {
4385 indices[i] = nir_channel(b, indices_loaded, i);
4386 indices[i] = nir_umin(b, indices[i], max_vtx_idx);
4387 }
4388
4389 return emit_pack_ngg_prim_exp_arg(b, s->vertices_per_prim, indices, cull_flag, s->gfx_level);
4390 }
4391
4392 static nir_def *
ms_prim_exp_arg_ch2(nir_builder * b,uint64_t outputs_mask,lower_ngg_ms_state * s)4393 ms_prim_exp_arg_ch2(nir_builder *b, uint64_t outputs_mask, lower_ngg_ms_state *s)
4394 {
4395 nir_def *prim_exp_arg_ch2 = NULL;
4396
4397 if (outputs_mask) {
4398 /* When layer, viewport etc. are per-primitive, they need to be encoded in
4399 * the primitive export instruction's second channel. The encoding is:
4400 *
4401 * --- GFX10.3 ---
4402 * bits 31..30: VRS rate Y
4403 * bits 29..28: VRS rate X
4404 * bits 23..20: viewport
4405 * bits 19..17: layer
4406 *
4407 * --- GFX11 ---
4408 * bits 31..28: VRS rate enum
4409 * bits 23..20: viewport
4410 * bits 12..00: layer
4411 */
4412 prim_exp_arg_ch2 = nir_imm_int(b, 0);
4413
4414 if (outputs_mask & VARYING_BIT_LAYER) {
4415 nir_def *layer =
4416 nir_ishl_imm(b, s->outputs[VARYING_SLOT_LAYER][0], s->gfx_level >= GFX11 ? 0 : 17);
4417 prim_exp_arg_ch2 = nir_ior(b, prim_exp_arg_ch2, layer);
4418 }
4419
4420 if (outputs_mask & VARYING_BIT_VIEWPORT) {
4421 nir_def *view = nir_ishl_imm(b, s->outputs[VARYING_SLOT_VIEWPORT][0], 20);
4422 prim_exp_arg_ch2 = nir_ior(b, prim_exp_arg_ch2, view);
4423 }
4424
4425 if (outputs_mask & VARYING_BIT_PRIMITIVE_SHADING_RATE) {
4426 nir_def *rate = s->outputs[VARYING_SLOT_PRIMITIVE_SHADING_RATE][0];
4427 prim_exp_arg_ch2 = nir_ior(b, prim_exp_arg_ch2, rate);
4428 }
4429 }
4430
4431 return prim_exp_arg_ch2;
4432 }
4433
4434 static void
ms_prim_gen_query(nir_builder * b,nir_def * invocation_index,nir_def * num_prm,lower_ngg_ms_state * s)4435 ms_prim_gen_query(nir_builder *b,
4436 nir_def *invocation_index,
4437 nir_def *num_prm,
4438 lower_ngg_ms_state *s)
4439 {
4440 if (!s->has_query)
4441 return;
4442
4443 nir_if *if_invocation_index_zero = nir_push_if(b, nir_ieq_imm(b, invocation_index, 0));
4444 {
4445 nir_if *if_shader_query = nir_push_if(b, nir_load_prim_gen_query_enabled_amd(b));
4446 {
4447 nir_atomic_add_gen_prim_count_amd(b, num_prm, .stream_id = 0);
4448 }
4449 nir_pop_if(b, if_shader_query);
4450 }
4451 nir_pop_if(b, if_invocation_index_zero);
4452 }
4453
4454 static void
ms_invocation_query(nir_builder * b,nir_def * invocation_index,lower_ngg_ms_state * s)4455 ms_invocation_query(nir_builder *b,
4456 nir_def *invocation_index,
4457 lower_ngg_ms_state *s)
4458 {
4459 if (!s->has_query)
4460 return;
4461
4462 nir_if *if_invocation_index_zero = nir_push_if(b, nir_ieq_imm(b, invocation_index, 0));
4463 {
4464 nir_if *if_pipeline_query = nir_push_if(b, nir_load_pipeline_stat_query_enabled_amd(b));
4465 {
4466 nir_atomic_add_shader_invocation_count_amd(b, nir_imm_int(b, s->api_workgroup_size));
4467 }
4468 nir_pop_if(b, if_pipeline_query);
4469 }
4470 nir_pop_if(b, if_invocation_index_zero);
4471 }
4472
4473 static void
emit_ms_vertex(nir_builder * b,nir_def * index,nir_def * row,bool exports,bool parameters,uint64_t per_vertex_outputs,lower_ngg_ms_state * s)4474 emit_ms_vertex(nir_builder *b, nir_def *index, nir_def *row, bool exports, bool parameters,
4475 uint64_t per_vertex_outputs, lower_ngg_ms_state *s)
4476 {
4477 ms_emit_arrayed_outputs(b, index, per_vertex_outputs, s);
4478
4479 if (exports) {
4480 ac_nir_export_position(b, s->gfx_level, s->clipdist_enable_mask,
4481 !s->has_param_exports, false, true,
4482 s->per_vertex_outputs | VARYING_BIT_POS, s->outputs, row);
4483 }
4484
4485 if (parameters) {
4486 /* Export generic attributes on GFX10.3
4487 * (On GFX11 they are already stored in the attribute ring.)
4488 */
4489 if (s->has_param_exports && s->gfx_level == GFX10_3) {
4490 ac_nir_export_parameters(b, s->vs_output_param_offset, per_vertex_outputs, 0, s->outputs,
4491 NULL, NULL);
4492 }
4493
4494 /* GFX11+: also store special outputs to the attribute ring so PS can load them. */
4495 if (s->gfx_level >= GFX11 && (per_vertex_outputs & MS_VERT_ARG_EXP_MASK))
4496 ms_emit_attribute_ring_output_stores(b, per_vertex_outputs & MS_VERT_ARG_EXP_MASK, index, s);
4497 }
4498 }
4499
4500 static void
emit_ms_primitive(nir_builder * b,nir_def * index,nir_def * row,bool exports,bool parameters,uint64_t per_primitive_outputs,lower_ngg_ms_state * s)4501 emit_ms_primitive(nir_builder *b, nir_def *index, nir_def *row, bool exports, bool parameters,
4502 uint64_t per_primitive_outputs, lower_ngg_ms_state *s)
4503 {
4504 ms_emit_arrayed_outputs(b, index, per_primitive_outputs, s);
4505
4506 /* Insert layer output store if the pipeline uses multiview but the API shader doesn't write it. */
4507 if (s->insert_layer_output)
4508 s->outputs[VARYING_SLOT_LAYER][0] = nir_load_view_index(b);
4509
4510 if (exports) {
4511 const uint64_t outputs_mask = per_primitive_outputs & MS_PRIM_ARG_EXP_MASK;
4512 nir_def *num_vtx = nir_load_var(b, s->vertex_count_var);
4513 nir_def *prim_exp_arg_ch1 = ms_prim_exp_arg_ch1(b, index, num_vtx, s);
4514 nir_def *prim_exp_arg_ch2 = ms_prim_exp_arg_ch2(b, outputs_mask, s);
4515
4516 nir_def *prim_exp_arg = prim_exp_arg_ch2 ?
4517 nir_vec2(b, prim_exp_arg_ch1, prim_exp_arg_ch2) : prim_exp_arg_ch1;
4518
4519 ac_nir_export_primitive(b, prim_exp_arg, row);
4520 }
4521
4522 if (parameters) {
4523 /* Export generic attributes on GFX10.3
4524 * (On GFX11 they are already stored in the attribute ring.)
4525 */
4526 if (s->has_param_exports && s->gfx_level == GFX10_3) {
4527 ac_nir_export_parameters(b, s->vs_output_param_offset, per_primitive_outputs, 0,
4528 s->outputs, NULL, NULL);
4529 }
4530
4531 /* GFX11+: also store special outputs to the attribute ring so PS can load them. */
4532 if (s->gfx_level >= GFX11)
4533 ms_emit_attribute_ring_output_stores(b, per_primitive_outputs & MS_PRIM_ARG_EXP_MASK, index, s);
4534 }
4535 }
4536
4537 static void
emit_ms_outputs(nir_builder * b,nir_def * invocation_index,nir_def * row_start,nir_def * count,bool exports,bool parameters,uint64_t mask,void (* cb)(nir_builder *,nir_def *,nir_def *,bool,bool,uint64_t,lower_ngg_ms_state *),lower_ngg_ms_state * s)4538 emit_ms_outputs(nir_builder *b, nir_def *invocation_index, nir_def *row_start,
4539 nir_def *count, bool exports, bool parameters, uint64_t mask,
4540 void (*cb)(nir_builder *, nir_def *, nir_def *, bool, bool,
4541 uint64_t, lower_ngg_ms_state *),
4542 lower_ngg_ms_state *s)
4543 {
4544 if (cb == &emit_ms_primitive ? s->prim_multirow_export : s->vert_multirow_export) {
4545 assert(s->hw_workgroup_size % s->wave_size == 0);
4546 const unsigned num_waves = s->hw_workgroup_size / s->wave_size;
4547
4548 nir_loop *row_loop = nir_push_loop(b);
4549 {
4550 nir_block *preheader = nir_cf_node_as_block(nir_cf_node_prev(&row_loop->cf_node));
4551
4552 nir_phi_instr *index = nir_phi_instr_create(b->shader);
4553 nir_phi_instr *row = nir_phi_instr_create(b->shader);
4554 nir_def_init(&index->instr, &index->def, 1, 32);
4555 nir_def_init(&row->instr, &row->def, 1, 32);
4556
4557 nir_phi_instr_add_src(index, preheader, invocation_index);
4558 nir_phi_instr_add_src(row, preheader, row_start);
4559
4560 nir_if *if_break = nir_push_if(b, nir_uge(b, &index->def, count));
4561 {
4562 nir_jump(b, nir_jump_break);
4563 }
4564 nir_pop_if(b, if_break);
4565
4566 cb(b, &index->def, &row->def, exports, parameters, mask, s);
4567
4568 nir_block *body = nir_cursor_current_block(b->cursor);
4569 nir_phi_instr_add_src(index, body,
4570 nir_iadd_imm(b, &index->def, s->hw_workgroup_size));
4571 nir_phi_instr_add_src(row, body,
4572 nir_iadd_imm(b, &row->def, num_waves));
4573
4574 nir_instr_insert_before_cf_list(&row_loop->body, &row->instr);
4575 nir_instr_insert_before_cf_list(&row_loop->body, &index->instr);
4576 }
4577 nir_pop_loop(b, row_loop);
4578 } else {
4579 nir_def *has_output = nir_ilt(b, invocation_index, count);
4580 nir_if *if_has_output = nir_push_if(b, has_output);
4581 {
4582 cb(b, invocation_index, row_start, exports, parameters, mask, s);
4583 }
4584 nir_pop_if(b, if_has_output);
4585 }
4586 }
4587
4588 static void
emit_ms_finale(nir_builder * b,lower_ngg_ms_state * s)4589 emit_ms_finale(nir_builder *b, lower_ngg_ms_state *s)
4590 {
4591 /* We assume there is always a single end block in the shader. */
4592 nir_block *last_block = nir_impl_last_block(b->impl);
4593 b->cursor = nir_after_block(last_block);
4594
4595 nir_barrier(b, .execution_scope=SCOPE_WORKGROUP, .memory_scope=SCOPE_WORKGROUP,
4596 .memory_semantics=NIR_MEMORY_ACQ_REL, .memory_modes=nir_var_shader_out|nir_var_mem_shared);
4597
4598 nir_def *num_prm;
4599 nir_def *num_vtx;
4600
4601 set_ms_final_output_counts(b, s, &num_prm, &num_vtx);
4602
4603 nir_def *invocation_index = nir_load_local_invocation_index(b);
4604
4605 ms_prim_gen_query(b, invocation_index, num_prm, s);
4606
4607 nir_def *row_start = NULL;
4608 if (s->fast_launch_2)
4609 row_start = s->hw_workgroup_size <= s->wave_size ? nir_imm_int(b, 0) : nir_load_subgroup_id(b);
4610
4611 /* Load vertex/primitive attributes from shared memory and
4612 * emit store_output intrinsics for them.
4613 *
4614 * Contrary to the semantics of the API mesh shader, these are now
4615 * compliant with NGG HW semantics, meaning that these store the
4616 * current thread's vertex attributes in a way the HW can export.
4617 */
4618
4619 uint64_t per_vertex_outputs =
4620 s->per_vertex_outputs & ~s->layout.attr_ring.vtx_attr.mask;
4621 uint64_t per_primitive_outputs =
4622 s->per_primitive_outputs & ~s->layout.attr_ring.prm_attr.mask & ~SPECIAL_MS_OUT_MASK;
4623
4624 /* Insert layer output store if the pipeline uses multiview but the API shader doesn't write it. */
4625 if (s->insert_layer_output) {
4626 b->shader->info.outputs_written |= VARYING_BIT_LAYER;
4627 b->shader->info.per_primitive_outputs |= VARYING_BIT_LAYER;
4628 per_primitive_outputs |= VARYING_BIT_LAYER;
4629 }
4630
4631 const bool has_special_param_exports =
4632 (per_vertex_outputs & MS_VERT_ARG_EXP_MASK) ||
4633 (per_primitive_outputs & MS_PRIM_ARG_EXP_MASK);
4634
4635 const bool wait_attr_ring = must_wait_attr_ring(s->gfx_level, has_special_param_exports);
4636
4637 /* Export vertices. */
4638 if ((per_vertex_outputs & ~VARYING_BIT_POS) || !wait_attr_ring) {
4639 emit_ms_outputs(b, invocation_index, row_start, num_vtx, !wait_attr_ring, true,
4640 per_vertex_outputs, &emit_ms_vertex, s);
4641 }
4642
4643 /* Export primitives. */
4644 if (per_primitive_outputs || !wait_attr_ring) {
4645 emit_ms_outputs(b, invocation_index, row_start, num_prm, !wait_attr_ring, true,
4646 per_primitive_outputs, &emit_ms_primitive, s);
4647 }
4648
4649 /* When we need to wait for attribute ring stores, we emit both position and primitive
4650 * export instructions after a barrier to make sure both per-vertex and per-primitive
4651 * attribute ring stores are finished before the GPU starts rasterization.
4652 */
4653 if (wait_attr_ring) {
4654 /* Wait for attribute stores to finish. */
4655 nir_barrier(b, .execution_scope = SCOPE_SUBGROUP,
4656 .memory_scope = SCOPE_DEVICE,
4657 .memory_semantics = NIR_MEMORY_RELEASE,
4658 .memory_modes = nir_var_shader_out);
4659
4660 /* Position/primitive export only */
4661 emit_ms_outputs(b, invocation_index, row_start, num_vtx, true, false,
4662 per_vertex_outputs, &emit_ms_vertex, s);
4663 emit_ms_outputs(b, invocation_index, row_start, num_prm, true, false,
4664 per_primitive_outputs, &emit_ms_primitive, s);
4665 }
4666 }
4667
4668 static void
handle_smaller_ms_api_workgroup(nir_builder * b,lower_ngg_ms_state * s)4669 handle_smaller_ms_api_workgroup(nir_builder *b,
4670 lower_ngg_ms_state *s)
4671 {
4672 if (s->api_workgroup_size >= s->hw_workgroup_size)
4673 return;
4674
4675 /* Handle barriers manually when the API workgroup
4676 * size is less than the HW workgroup size.
4677 *
4678 * The problem is that the real workgroup launched on NGG HW
4679 * will be larger than the size specified by the API, and the
4680 * extra waves need to keep up with barriers in the API waves.
4681 *
4682 * There are 2 different cases:
4683 * 1. The whole API workgroup fits in a single wave.
4684 * We can shrink the barriers to subgroup scope and
4685 * don't need to insert any extra ones.
4686 * 2. The API workgroup occupies multiple waves, but not
4687 * all. In this case, we emit code that consumes every
4688 * barrier on the extra waves.
4689 */
4690 assert(s->hw_workgroup_size % s->wave_size == 0);
4691 bool scan_barriers = ALIGN(s->api_workgroup_size, s->wave_size) < s->hw_workgroup_size;
4692 bool can_shrink_barriers = s->api_workgroup_size <= s->wave_size;
4693 bool need_additional_barriers = scan_barriers && !can_shrink_barriers;
4694
4695 unsigned api_waves_in_flight_addr = s->layout.lds.workgroup_info_addr + lds_ms_num_api_waves;
4696 unsigned num_api_waves = DIV_ROUND_UP(s->api_workgroup_size, s->wave_size);
4697
4698 /* Scan the shader for workgroup barriers. */
4699 if (scan_barriers) {
4700 bool has_any_workgroup_barriers = false;
4701
4702 nir_foreach_block(block, b->impl) {
4703 nir_foreach_instr_safe(instr, block) {
4704 if (instr->type != nir_instr_type_intrinsic)
4705 continue;
4706
4707 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
4708 bool is_workgroup_barrier =
4709 intrin->intrinsic == nir_intrinsic_barrier &&
4710 nir_intrinsic_execution_scope(intrin) == SCOPE_WORKGROUP;
4711
4712 if (!is_workgroup_barrier)
4713 continue;
4714
4715 if (can_shrink_barriers) {
4716 /* Every API invocation runs in the first wave.
4717 * In this case, we can change the barriers to subgroup scope
4718 * and avoid adding additional barriers.
4719 */
4720 nir_intrinsic_set_memory_scope(intrin, SCOPE_SUBGROUP);
4721 nir_intrinsic_set_execution_scope(intrin, SCOPE_SUBGROUP);
4722 } else {
4723 has_any_workgroup_barriers = true;
4724 }
4725 }
4726 }
4727
4728 need_additional_barriers &= has_any_workgroup_barriers;
4729 }
4730
4731 /* Extract the full control flow of the shader. */
4732 nir_cf_list extracted;
4733 nir_cf_extract(&extracted, nir_before_impl(b->impl),
4734 nir_after_cf_list(&b->impl->body));
4735 b->cursor = nir_before_impl(b->impl);
4736
4737 /* Wrap the shader in an if to ensure that only the necessary amount of lanes run it. */
4738 nir_def *invocation_index = nir_load_local_invocation_index(b);
4739 nir_def *zero = nir_imm_int(b, 0);
4740
4741 if (need_additional_barriers) {
4742 /* First invocation stores 0 to number of API waves in flight. */
4743 nir_if *if_first_in_workgroup = nir_push_if(b, nir_ieq_imm(b, invocation_index, 0));
4744 {
4745 nir_store_shared(b, nir_imm_int(b, num_api_waves), zero, .base = api_waves_in_flight_addr);
4746 }
4747 nir_pop_if(b, if_first_in_workgroup);
4748
4749 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP,
4750 .memory_scope = SCOPE_WORKGROUP,
4751 .memory_semantics = NIR_MEMORY_ACQ_REL,
4752 .memory_modes = nir_var_shader_out | nir_var_mem_shared);
4753 }
4754
4755 nir_def *has_api_ms_invocation = nir_ult_imm(b, invocation_index, s->api_workgroup_size);
4756 nir_if *if_has_api_ms_invocation = nir_push_if(b, has_api_ms_invocation);
4757 {
4758 nir_cf_reinsert(&extracted, b->cursor);
4759 b->cursor = nir_after_cf_list(&if_has_api_ms_invocation->then_list);
4760
4761 if (need_additional_barriers) {
4762 /* One invocation in each API wave decrements the number of API waves in flight. */
4763 nir_if *if_elected_again = nir_push_if(b, nir_elect(b, 1));
4764 {
4765 nir_shared_atomic(b, 32, zero, nir_imm_int(b, -1u),
4766 .base = api_waves_in_flight_addr,
4767 .atomic_op = nir_atomic_op_iadd);
4768 }
4769 nir_pop_if(b, if_elected_again);
4770
4771 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP,
4772 .memory_scope = SCOPE_WORKGROUP,
4773 .memory_semantics = NIR_MEMORY_ACQ_REL,
4774 .memory_modes = nir_var_shader_out | nir_var_mem_shared);
4775 }
4776
4777 ms_invocation_query(b, invocation_index, s);
4778 }
4779 nir_pop_if(b, if_has_api_ms_invocation);
4780
4781 if (need_additional_barriers) {
4782 /* Make sure that waves that don't run any API invocations execute
4783 * the same amount of barriers as those that do.
4784 *
4785 * We do this by executing a barrier until the number of API waves
4786 * in flight becomes zero.
4787 */
4788 nir_def *has_api_ms_ballot = nir_ballot(b, 1, s->wave_size, has_api_ms_invocation);
4789 nir_def *wave_has_no_api_ms = nir_ieq_imm(b, has_api_ms_ballot, 0);
4790 nir_if *if_wave_has_no_api_ms = nir_push_if(b, wave_has_no_api_ms);
4791 {
4792 nir_if *if_elected = nir_push_if(b, nir_elect(b, 1));
4793 {
4794 nir_loop *loop = nir_push_loop(b);
4795 {
4796 nir_barrier(b, .execution_scope = SCOPE_WORKGROUP,
4797 .memory_scope = SCOPE_WORKGROUP,
4798 .memory_semantics = NIR_MEMORY_ACQ_REL,
4799 .memory_modes = nir_var_shader_out | nir_var_mem_shared);
4800
4801 nir_def *loaded = nir_load_shared(b, 1, 32, zero, .base = api_waves_in_flight_addr);
4802 nir_if *if_break = nir_push_if(b, nir_ieq_imm(b, loaded, 0));
4803 {
4804 nir_jump(b, nir_jump_break);
4805 }
4806 nir_pop_if(b, if_break);
4807 }
4808 nir_pop_loop(b, loop);
4809 }
4810 nir_pop_if(b, if_elected);
4811 }
4812 nir_pop_if(b, if_wave_has_no_api_ms);
4813 }
4814 }
4815
4816 static void
ms_move_output(ms_out_part * from,ms_out_part * to)4817 ms_move_output(ms_out_part *from, ms_out_part *to)
4818 {
4819 uint64_t loc = util_logbase2_64(from->mask);
4820 uint64_t bit = BITFIELD64_BIT(loc);
4821 from->mask ^= bit;
4822 to->mask |= bit;
4823 }
4824
4825 static void
ms_calculate_arrayed_output_layout(ms_out_mem_layout * l,unsigned max_vertices,unsigned max_primitives)4826 ms_calculate_arrayed_output_layout(ms_out_mem_layout *l,
4827 unsigned max_vertices,
4828 unsigned max_primitives)
4829 {
4830 uint32_t lds_vtx_attr_size = util_bitcount64(l->lds.vtx_attr.mask) * max_vertices * 16;
4831 uint32_t lds_prm_attr_size = util_bitcount64(l->lds.prm_attr.mask) * max_primitives * 16;
4832 l->lds.prm_attr.addr = ALIGN(l->lds.vtx_attr.addr + lds_vtx_attr_size, 16);
4833 l->lds.total_size = l->lds.prm_attr.addr + lds_prm_attr_size;
4834
4835 uint32_t scratch_ring_vtx_attr_size =
4836 util_bitcount64(l->scratch_ring.vtx_attr.mask) * max_vertices * 16;
4837 l->scratch_ring.prm_attr.addr =
4838 ALIGN(l->scratch_ring.vtx_attr.addr + scratch_ring_vtx_attr_size, 16);
4839 }
4840
4841 static ms_out_mem_layout
ms_calculate_output_layout(enum amd_gfx_level gfx_level,unsigned api_shared_size,uint64_t per_vertex_output_mask,uint64_t per_primitive_output_mask,uint64_t cross_invocation_output_access,unsigned max_vertices,unsigned max_primitives,unsigned vertices_per_prim)4842 ms_calculate_output_layout(enum amd_gfx_level gfx_level, unsigned api_shared_size,
4843 uint64_t per_vertex_output_mask, uint64_t per_primitive_output_mask,
4844 uint64_t cross_invocation_output_access, unsigned max_vertices,
4845 unsigned max_primitives, unsigned vertices_per_prim)
4846 {
4847 /* These outputs always need export instructions and can't use the attributes ring. */
4848 const uint64_t always_export_mask =
4849 VARYING_BIT_POS | VARYING_BIT_CULL_DIST0 | VARYING_BIT_CULL_DIST1 | VARYING_BIT_CLIP_DIST0 |
4850 VARYING_BIT_CLIP_DIST1 | VARYING_BIT_PSIZ | VARYING_BIT_VIEWPORT |
4851 VARYING_BIT_PRIMITIVE_SHADING_RATE | VARYING_BIT_LAYER |
4852 BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_COUNT) |
4853 BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_INDICES) | BITFIELD64_BIT(VARYING_SLOT_CULL_PRIMITIVE);
4854
4855 const bool use_attr_ring = gfx_level >= GFX11;
4856 const uint64_t attr_ring_per_vertex_output_mask =
4857 use_attr_ring ? per_vertex_output_mask & ~always_export_mask : 0;
4858 const uint64_t attr_ring_per_primitive_output_mask =
4859 use_attr_ring ? per_primitive_output_mask & ~always_export_mask : 0;
4860
4861 const uint64_t lds_per_vertex_output_mask =
4862 per_vertex_output_mask & ~attr_ring_per_vertex_output_mask & cross_invocation_output_access &
4863 ~SPECIAL_MS_OUT_MASK;
4864 const uint64_t lds_per_primitive_output_mask =
4865 per_primitive_output_mask & ~attr_ring_per_primitive_output_mask &
4866 cross_invocation_output_access & ~SPECIAL_MS_OUT_MASK;
4867
4868 const bool cross_invocation_indices =
4869 cross_invocation_output_access & BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_INDICES);
4870 const bool cross_invocation_cull_primitive =
4871 cross_invocation_output_access & BITFIELD64_BIT(VARYING_SLOT_CULL_PRIMITIVE);
4872
4873 /* Shared memory used by the API shader. */
4874 ms_out_mem_layout l = { .lds = { .total_size = api_shared_size } };
4875
4876 /* GFX11+: use attribute ring for all generic attributes. */
4877 l.attr_ring.vtx_attr.mask = attr_ring_per_vertex_output_mask;
4878 l.attr_ring.prm_attr.mask = attr_ring_per_primitive_output_mask;
4879
4880 /* Outputs without cross-invocation access can be stored in variables. */
4881 l.var.vtx_attr.mask =
4882 per_vertex_output_mask & ~attr_ring_per_vertex_output_mask & ~cross_invocation_output_access;
4883 l.var.prm_attr.mask = per_primitive_output_mask & ~attr_ring_per_primitive_output_mask &
4884 ~cross_invocation_output_access;
4885
4886 /* Workgroup information, see ms_workgroup_* for the layout. */
4887 l.lds.workgroup_info_addr = ALIGN(l.lds.total_size, 16);
4888 l.lds.total_size = l.lds.workgroup_info_addr + 16;
4889
4890 /* Per-vertex and per-primitive output attributes.
4891 * Outputs without cross-invocation access are not included here.
4892 * First, try to put all outputs into LDS (shared memory).
4893 * If they don't fit, try to move them to VRAM one by one.
4894 */
4895 l.lds.vtx_attr.addr = ALIGN(l.lds.total_size, 16);
4896 l.lds.vtx_attr.mask = lds_per_vertex_output_mask;
4897 l.lds.prm_attr.mask = lds_per_primitive_output_mask;
4898 ms_calculate_arrayed_output_layout(&l, max_vertices, max_primitives);
4899
4900 /* NGG shaders can only address up to 32K LDS memory.
4901 * The spec requires us to allow the application to use at least up to 28K
4902 * shared memory. Additionally, we reserve 2K for driver internal use
4903 * (eg. primitive indices and such, see below).
4904 *
4905 * Move the outputs that do not fit LDS, to VRAM.
4906 * Start with per-primitive attributes, because those are grouped at the end.
4907 */
4908 const unsigned usable_lds_kbytes =
4909 (cross_invocation_cull_primitive || cross_invocation_indices) ? 30 : 31;
4910 while (l.lds.total_size >= usable_lds_kbytes * 1024) {
4911 if (l.lds.prm_attr.mask)
4912 ms_move_output(&l.lds.prm_attr, &l.scratch_ring.prm_attr);
4913 else if (l.lds.vtx_attr.mask)
4914 ms_move_output(&l.lds.vtx_attr, &l.scratch_ring.vtx_attr);
4915 else
4916 unreachable("API shader uses too much shared memory.");
4917
4918 ms_calculate_arrayed_output_layout(&l, max_vertices, max_primitives);
4919 }
4920
4921 if (cross_invocation_indices) {
4922 /* Indices: flat array of 8-bit vertex indices for each primitive. */
4923 l.lds.indices_addr = ALIGN(l.lds.total_size, 16);
4924 l.lds.total_size = l.lds.indices_addr + max_primitives * vertices_per_prim;
4925 }
4926
4927 if (cross_invocation_cull_primitive) {
4928 /* Cull flags: array of 8-bit cull flags for each primitive, 1=cull, 0=keep. */
4929 l.lds.cull_flags_addr = ALIGN(l.lds.total_size, 16);
4930 l.lds.total_size = l.lds.cull_flags_addr + max_primitives;
4931 }
4932
4933 /* NGG is only allowed to address up to 32K of LDS. */
4934 assert(l.lds.total_size <= 32 * 1024);
4935 return l;
4936 }
4937
4938 void
ac_nir_lower_ngg_ms(nir_shader * shader,enum amd_gfx_level gfx_level,uint32_t clipdist_enable_mask,const uint8_t * vs_output_param_offset,bool has_param_exports,bool * out_needs_scratch_ring,unsigned wave_size,unsigned hw_workgroup_size,bool multiview,bool has_query,bool fast_launch_2)4939 ac_nir_lower_ngg_ms(nir_shader *shader,
4940 enum amd_gfx_level gfx_level,
4941 uint32_t clipdist_enable_mask,
4942 const uint8_t *vs_output_param_offset,
4943 bool has_param_exports,
4944 bool *out_needs_scratch_ring,
4945 unsigned wave_size,
4946 unsigned hw_workgroup_size,
4947 bool multiview,
4948 bool has_query,
4949 bool fast_launch_2)
4950 {
4951 unsigned vertices_per_prim =
4952 mesa_vertices_per_prim(shader->info.mesh.primitive_type);
4953
4954 uint64_t per_vertex_outputs =
4955 shader->info.outputs_written & ~shader->info.per_primitive_outputs & ~SPECIAL_MS_OUT_MASK;
4956 uint64_t per_primitive_outputs =
4957 shader->info.per_primitive_outputs & shader->info.outputs_written;
4958
4959 /* Whether the shader uses CullPrimitiveEXT */
4960 bool uses_cull = shader->info.outputs_written & BITFIELD64_BIT(VARYING_SLOT_CULL_PRIMITIVE);
4961 /* Can't handle indirect register addressing, pretend as if they were cross-invocation. */
4962 uint64_t cross_invocation_access = shader->info.mesh.ms_cross_invocation_output_access |
4963 shader->info.outputs_accessed_indirectly;
4964
4965 unsigned max_vertices = shader->info.mesh.max_vertices_out;
4966 unsigned max_primitives = shader->info.mesh.max_primitives_out;
4967
4968 ms_out_mem_layout layout = ms_calculate_output_layout(
4969 gfx_level, shader->info.shared_size, per_vertex_outputs, per_primitive_outputs,
4970 cross_invocation_access, max_vertices, max_primitives, vertices_per_prim);
4971
4972 shader->info.shared_size = layout.lds.total_size;
4973 *out_needs_scratch_ring = layout.scratch_ring.vtx_attr.mask || layout.scratch_ring.prm_attr.mask;
4974
4975 /* The workgroup size that is specified by the API shader may be different
4976 * from the size of the workgroup that actually runs on the HW, due to the
4977 * limitations of NGG: max 0/1 vertex and 0/1 primitive per lane is allowed.
4978 *
4979 * Therefore, we must make sure that when the API workgroup size is smaller,
4980 * we don't run the API shader on more HW invocations than is necessary.
4981 */
4982 unsigned api_workgroup_size = shader->info.workgroup_size[0] *
4983 shader->info.workgroup_size[1] *
4984 shader->info.workgroup_size[2];
4985
4986 lower_ngg_ms_state state = {
4987 .layout = layout,
4988 .wave_size = wave_size,
4989 .per_vertex_outputs = per_vertex_outputs,
4990 .per_primitive_outputs = per_primitive_outputs,
4991 .vertices_per_prim = vertices_per_prim,
4992 .api_workgroup_size = api_workgroup_size,
4993 .hw_workgroup_size = hw_workgroup_size,
4994 .insert_layer_output = multiview && !(shader->info.outputs_written & VARYING_BIT_LAYER),
4995 .uses_cull_flags = uses_cull,
4996 .gfx_level = gfx_level,
4997 .fast_launch_2 = fast_launch_2,
4998 .vert_multirow_export = fast_launch_2 && max_vertices > hw_workgroup_size,
4999 .prim_multirow_export = fast_launch_2 && max_primitives > hw_workgroup_size,
5000 .clipdist_enable_mask = clipdist_enable_mask,
5001 .vs_output_param_offset = vs_output_param_offset,
5002 .has_param_exports = has_param_exports,
5003 .has_query = has_query,
5004 };
5005
5006 nir_function_impl *impl = nir_shader_get_entrypoint(shader);
5007 assert(impl);
5008
5009 state.vertex_count_var =
5010 nir_local_variable_create(impl, glsl_uint_type(), "vertex_count_var");
5011 state.primitive_count_var =
5012 nir_local_variable_create(impl, glsl_uint_type(), "primitive_count_var");
5013
5014 nir_builder builder = nir_builder_at(nir_before_impl(impl));
5015 nir_builder *b = &builder; /* This is to avoid the & */
5016
5017 handle_smaller_ms_api_workgroup(b, &state);
5018 if (!fast_launch_2)
5019 ms_emit_legacy_workgroup_index(b, &state);
5020 ms_create_same_invocation_vars(b, &state);
5021 nir_metadata_preserve(impl, nir_metadata_none);
5022
5023 lower_ms_intrinsics(shader, &state);
5024
5025 emit_ms_finale(b, &state);
5026 nir_metadata_preserve(impl, nir_metadata_none);
5027
5028 /* Cleanup */
5029 nir_lower_vars_to_ssa(shader);
5030 nir_remove_dead_variables(shader, nir_var_function_temp, NULL);
5031 nir_lower_alu_to_scalar(shader, NULL, NULL);
5032 nir_lower_phis_to_scalar(shader, true);
5033
5034 /* Optimize load_local_invocation_index. When the API workgroup is smaller than the HW workgroup,
5035 * local_invocation_id isn't initialized for all lanes and we can't perform this optimization for
5036 * all load_local_invocation_index.
5037 */
5038 if (fast_launch_2 && api_workgroup_size == hw_workgroup_size &&
5039 ((shader->info.workgroup_size[0] == 1) + (shader->info.workgroup_size[1] == 1) +
5040 (shader->info.workgroup_size[2] == 1)) == 2) {
5041 nir_lower_compute_system_values_options csv_options = {
5042 .lower_local_invocation_index = true,
5043 };
5044 nir_lower_compute_system_values(shader, &csv_options);
5045 }
5046
5047 nir_validate_shader(shader, "after emitting NGG MS");
5048 }
5049