xref: /aosp_15_r20/external/mesa3d/src/amd/common/ac_nir_cull.c (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  * Copyright 2021 Valve Corporation
4  *
5  * SPDX-License-Identifier: MIT
6  */
7 
8 #include "ac_nir.h"
9 #include "ac_nir_helpers.h"
10 #include "nir_builder.h"
11 
12 /* This code is adapted from ac_llvm_cull.c, hence the copyright to AMD. */
13 
14 typedef struct
15 {
16    nir_def *w_reflection;
17    nir_def *all_w_negative;
18    nir_def *any_w_negative;
19 } position_w_info;
20 
21 static void
analyze_position_w(nir_builder * b,nir_def * pos[][4],unsigned num_vertices,position_w_info * w_info)22 analyze_position_w(nir_builder *b, nir_def *pos[][4], unsigned num_vertices,
23                    position_w_info *w_info)
24 {
25    w_info->all_w_negative = nir_imm_true(b);
26    w_info->w_reflection = nir_imm_false(b);
27    w_info->any_w_negative = nir_imm_false(b);
28 
29    for (unsigned i = 0; i < num_vertices; ++i) {
30       nir_def *neg_w = nir_flt_imm(b, pos[i][3], 0.0f);
31       w_info->w_reflection = nir_ixor(b, neg_w, w_info->w_reflection);
32       w_info->any_w_negative = nir_ior(b, neg_w, w_info->any_w_negative);
33       w_info->all_w_negative = nir_iand(b, neg_w, w_info->all_w_negative);
34    }
35 }
36 
37 static nir_def *
cull_face_triangle(nir_builder * b,nir_def * pos[3][4],const position_w_info * w_info)38 cull_face_triangle(nir_builder *b, nir_def *pos[3][4], const position_w_info *w_info)
39 {
40    nir_def *det_t0 = nir_fsub(b, pos[2][0], pos[0][0]);
41    nir_def *det_t1 = nir_fsub(b, pos[1][1], pos[0][1]);
42    nir_def *det_t2 = nir_fsub(b, pos[0][0], pos[1][0]);
43    nir_def *det_t3 = nir_fsub(b, pos[0][1], pos[2][1]);
44    nir_def *det_p0 = nir_fmul(b, det_t0, det_t1);
45    nir_def *det_p1 = nir_fmul(b, det_t2, det_t3);
46    nir_def *det = nir_fsub(b, det_p0, det_p1);
47 
48    det = nir_bcsel(b, w_info->w_reflection, nir_fneg(b, det), det);
49 
50    nir_def *front_facing_ccw = nir_fgt_imm(b, det, 0.0f);
51    nir_def *zero_area = nir_feq_imm(b, det, 0.0f);
52    nir_def *ccw = nir_load_cull_ccw_amd(b);
53    nir_def *front_facing = nir_ieq(b, front_facing_ccw, ccw);
54    nir_def *cull_front = nir_load_cull_front_face_enabled_amd(b);
55    nir_def *cull_back = nir_load_cull_back_face_enabled_amd(b);
56 
57    nir_def *face_culled = nir_bcsel(b, front_facing, cull_front, cull_back);
58    face_culled = nir_ior(b, face_culled, zero_area);
59 
60    /* Don't reject NaN and +/-infinity, these are tricky.
61     * Just trust fixed-function HW to handle these cases correctly.
62     */
63    return nir_iand(b, face_culled, nir_fisfinite(b, det));
64 }
65 
66 static void
calc_bbox_triangle(nir_builder * b,nir_def * pos[3][4],nir_def * bbox_min[2],nir_def * bbox_max[2])67 calc_bbox_triangle(nir_builder *b, nir_def *pos[3][4], nir_def *bbox_min[2], nir_def *bbox_max[2])
68 {
69    for (unsigned chan = 0; chan < 2; ++chan) {
70       bbox_min[chan] = nir_fmin(b, pos[0][chan], nir_fmin(b, pos[1][chan], pos[2][chan]));
71       bbox_max[chan] = nir_fmax(b, pos[0][chan], nir_fmax(b, pos[1][chan], pos[2][chan]));
72    }
73 }
74 
75 static nir_def *
cull_frustrum(nir_builder * b,nir_def * bbox_min[2],nir_def * bbox_max[2])76 cull_frustrum(nir_builder *b, nir_def *bbox_min[2], nir_def *bbox_max[2])
77 {
78    nir_def *prim_outside_view = nir_imm_false(b);
79 
80    for (unsigned chan = 0; chan < 2; ++chan) {
81       prim_outside_view = nir_ior(b, prim_outside_view, nir_flt_imm(b, bbox_max[chan], -1.0f));
82       prim_outside_view = nir_ior(b, prim_outside_view, nir_fgt_imm(b, bbox_min[chan], 1.0f));
83    }
84 
85    return prim_outside_view;
86 }
87 
88 static nir_def *
cull_small_primitive_triangle(nir_builder * b,nir_def * bbox_min[2],nir_def * bbox_max[2],nir_def * prim_is_small_else)89 cull_small_primitive_triangle(nir_builder *b, nir_def *bbox_min[2], nir_def *bbox_max[2],
90                               nir_def *prim_is_small_else)
91 {
92    nir_def *prim_is_small = NULL;
93 
94    nir_if *if_cull_small_prims = nir_push_if(b, nir_load_cull_small_primitives_enabled_amd(b));
95    {
96       nir_def *vp = nir_load_viewport_xy_scale_and_offset(b);
97       nir_def *small_prim_precision = nir_load_cull_small_prim_precision_amd(b);
98       prim_is_small = prim_is_small_else;
99 
100       for (unsigned chan = 0; chan < 2; ++chan) {
101          nir_def *vp_scale = nir_channel(b, vp, chan);
102          nir_def *vp_translate = nir_channel(b, vp, 2 + chan);
103 
104          /* Convert the position to screen-space coordinates. */
105          nir_def *min = nir_ffma(b, bbox_min[chan], vp_scale, vp_translate);
106          nir_def *max = nir_ffma(b, bbox_max[chan], vp_scale, vp_translate);
107 
108          /* Scale the bounding box according to precision. */
109          min = nir_fsub(b, min, small_prim_precision);
110          max = nir_fadd(b, max, small_prim_precision);
111 
112          /* Determine if the bbox intersects the sample point, by checking if the min and max round to the same int. */
113          min = nir_fround_even(b, min);
114          max = nir_fround_even(b, max);
115 
116          nir_def *rounded_to_eq = nir_feq(b, min, max);
117          prim_is_small = nir_ior(b, prim_is_small, rounded_to_eq);
118       }
119    }
120    nir_pop_if(b, if_cull_small_prims);
121 
122    return nir_if_phi(b, prim_is_small, prim_is_small_else);
123 }
124 
125 static nir_def *
ac_nir_cull_triangle(nir_builder * b,nir_def * initially_accepted,nir_def * pos[3][4],position_w_info * w_info,ac_nir_cull_accepted accept_func,void * state)126 ac_nir_cull_triangle(nir_builder *b,
127                      nir_def *initially_accepted,
128                      nir_def *pos[3][4],
129                      position_w_info *w_info,
130                      ac_nir_cull_accepted accept_func,
131                      void *state)
132 {
133    nir_def *accepted = initially_accepted;
134    accepted = nir_iand(b, accepted, nir_inot(b, w_info->all_w_negative));
135    accepted = nir_iand(b, accepted, nir_inot(b, cull_face_triangle(b, pos, w_info)));
136 
137    nir_def *bbox_accepted = NULL;
138 
139    nir_if *if_accepted = nir_push_if(b, accepted);
140    {
141       nir_def *bbox_min[2] = {0}, *bbox_max[2] = {0};
142       calc_bbox_triangle(b, pos, bbox_min, bbox_max);
143 
144       nir_def *prim_outside_view = cull_frustrum(b, bbox_min, bbox_max);
145       nir_def *prim_invisible =
146          cull_small_primitive_triangle(b, bbox_min, bbox_max, prim_outside_view);
147 
148       bbox_accepted = nir_ior(b, nir_inot(b, prim_invisible), w_info->any_w_negative);
149 
150       /* for caller which need to react when primitive is accepted */
151       if (accept_func) {
152          nir_if *if_still_accepted = nir_push_if(b, bbox_accepted);
153          if_still_accepted->control = nir_selection_control_divergent_always_taken;
154          {
155             accept_func(b, state);
156          }
157          nir_pop_if(b, if_still_accepted);
158       }
159    }
160    nir_pop_if(b, if_accepted);
161 
162    return nir_if_phi(b, bbox_accepted, accepted);
163 }
164 
165 static void
rotate_45degrees(nir_builder * b,nir_def * v[2])166 rotate_45degrees(nir_builder *b, nir_def *v[2])
167 {
168    /* Rotating a triangle by 45 degrees:
169     *
170     *    x2  =  x*cos(45) - y*sin(45)
171     *    y2  =  x*sin(45) + y*cos(45)
172     *
173     * Since sin(45) == cos(45), we can write:
174     *
175     *    x2  =  x*cos(45) - y*cos(45)  =  (x - y) * cos(45)
176     *    y2  =  x*cos(45) + y*cos(45)  =  (x + y) * cos(45)
177     *
178     * The width of each square (rotated diamond) is sqrt(0.5), so we have to scale it to 1
179     * by multiplying by 1/sqrt(0.5) = sqrt(2) because we want round() to give us the position
180     * of the closest center of the square (rotated diamond). After scaling, we get:
181     *
182     *    x2  =  (x - y) * cos(45) * sqrt(2)
183     *    y2  =  (x + y) * cos(45) * sqrt(2)
184     *
185     * Since cos(45) * sqrt(2) = 1, we get:
186     *
187     *    x2  =  x - y
188     *    y2  =  x + y
189     */
190    nir_def *result[2];
191    result[0] = nir_fsub(b, v[0], v[1]);
192    result[1] = nir_fadd(b, v[0], v[1]);
193 
194    memcpy(v, result, sizeof(result));
195 }
196 
197 static void
calc_bbox_line(nir_builder * b,nir_def * pos[3][4],nir_def * bbox_min[2],nir_def * bbox_max[2])198 calc_bbox_line(nir_builder *b, nir_def *pos[3][4], nir_def *bbox_min[2], nir_def *bbox_max[2])
199 {
200    nir_def *clip_half_line_width = nir_load_clip_half_line_width_amd(b);
201 
202    for (unsigned chan = 0; chan < 2; ++chan) {
203       bbox_min[chan] = nir_fmin(b, pos[0][chan], pos[1][chan]);
204       bbox_max[chan] = nir_fmax(b, pos[0][chan], pos[1][chan]);
205 
206       nir_def *width = nir_channel(b, clip_half_line_width, chan);
207       bbox_min[chan] = nir_fsub(b, bbox_min[chan], width);
208       bbox_max[chan] = nir_fadd(b, bbox_max[chan], width);
209    }
210 }
211 
212 static nir_def *
cull_small_primitive_line(nir_builder * b,nir_def * pos[3][4],nir_def * bbox_min[2],nir_def * bbox_max[2],nir_def * prim_is_small_else)213 cull_small_primitive_line(nir_builder *b, nir_def *pos[3][4],
214                           nir_def *bbox_min[2], nir_def *bbox_max[2],
215                           nir_def *prim_is_small_else)
216 {
217    nir_def *prim_is_small = NULL;
218 
219    /* Small primitive filter - eliminate lines that are too small to affect a sample. */
220    nir_if *if_cull_small_prims = nir_push_if(b, nir_load_cull_small_primitives_enabled_amd(b));
221    {
222       /* This only works with lines without perpendicular end caps (lines with perpendicular
223        * end caps are rasterized as quads and thus can't be culled as small prims in 99% of
224        * cases because line_width >= 1).
225        *
226        * This takes advantage of the diamond exit rule, which says that every pixel
227        * has a diamond inside it touching the pixel boundary and only if a line exits
228        * the diamond, that pixel is filled. If a line enters the diamond or stays
229        * outside the diamond, the pixel isn't filled.
230        *
231        * This algorithm is a little simpler than that. The space outside all diamonds also
232        * has the same diamond shape, which we'll call corner diamonds.
233        *
234        * The idea is to cull all lines that are entirely inside a diamond, including
235        * corner diamonds. If a line is entirely inside a diamond, it can be culled because
236        * it doesn't exit it. If a line is entirely inside a corner diamond, it can be culled
237        * because it doesn't enter any diamond and thus can't exit any diamond.
238        *
239        * The viewport is rotated by 45 degrees to turn diamonds into squares, and a bounding
240        * box test is used to determine whether a line is entirely inside any square (diamond).
241        *
242        * The line width doesn't matter. Wide lines only duplicate filled pixels in either X or
243        * Y direction from the filled pixels. MSAA also doesn't matter. MSAA should ideally use
244        * perpendicular end caps that enable quad rasterization for lines. Thus, this should
245        * always use non-MSAA viewport transformation and non-MSAA small prim precision.
246        *
247        * A good test is piglit/lineloop because it draws 10k subpixel lines in a circle.
248        * It should contain no holes if this matches hw behavior.
249        */
250       nir_def *v0[2], *v1[2];
251       nir_def *vp = nir_load_viewport_xy_scale_and_offset(b);
252 
253       /* Get vertex positions in pixels. */
254       for (unsigned chan = 0; chan < 2; chan++) {
255          nir_def *vp_scale = nir_channel(b, vp, chan);
256          nir_def *vp_translate = nir_channel(b, vp, 2 + chan);
257 
258          v0[chan] = nir_ffma(b, pos[0][chan], vp_scale, vp_translate);
259          v1[chan] = nir_ffma(b, pos[1][chan], vp_scale, vp_translate);
260       }
261 
262       /* Rotate the viewport by 45 degrees, so that diamonds become squares. */
263       rotate_45degrees(b, v0);
264       rotate_45degrees(b, v1);
265 
266       nir_def *small_prim_precision = nir_load_cull_small_prim_precision_amd(b);
267 
268       nir_def *rounded_to_eq[2];
269       for (unsigned chan = 0; chan < 2; chan++) {
270          /* Compute the bounding box around both vertices. We do this because we must
271           * enlarge the line area by the precision of the rasterizer.
272           */
273          nir_def *min = nir_fmin(b, v0[chan], v1[chan]);
274          nir_def *max = nir_fmax(b, v0[chan], v1[chan]);
275 
276          /* Enlarge the bounding box by the precision of the rasterizer. */
277          min = nir_fsub(b, min, small_prim_precision);
278          max = nir_fadd(b, max, small_prim_precision);
279 
280          /* Round the bounding box corners. If both rounded corners are equal,
281           * the bounding box is entirely inside a square (diamond).
282           */
283          min = nir_fround_even(b, min);
284          max = nir_fround_even(b, max);
285 
286          rounded_to_eq[chan] = nir_feq(b, min, max);
287       }
288 
289       prim_is_small = nir_iand(b, rounded_to_eq[0], rounded_to_eq[1]);
290       prim_is_small = nir_ior(b, prim_is_small, prim_is_small_else);
291    }
292    nir_pop_if(b, if_cull_small_prims);
293 
294    return nir_if_phi(b, prim_is_small, prim_is_small_else);
295 }
296 
297 static nir_def *
ac_nir_cull_line(nir_builder * b,nir_def * initially_accepted,nir_def * pos[3][4],position_w_info * w_info,ac_nir_cull_accepted accept_func,void * state)298 ac_nir_cull_line(nir_builder *b,
299                  nir_def *initially_accepted,
300                  nir_def *pos[3][4],
301                  position_w_info *w_info,
302                  ac_nir_cull_accepted accept_func,
303                  void *state)
304 {
305    nir_def *accepted = initially_accepted;
306    accepted = nir_iand(b, accepted, nir_inot(b, w_info->all_w_negative));
307 
308    nir_def *bbox_accepted = NULL;
309 
310    nir_if *if_accepted = nir_push_if(b, accepted);
311    {
312       nir_def *bbox_min[2] = {0}, *bbox_max[2] = {0};
313       calc_bbox_line(b, pos, bbox_min, bbox_max);
314 
315       /* Frustrum culling - eliminate lines that are fully outside the view. */
316       nir_def *prim_outside_view = cull_frustrum(b, bbox_min, bbox_max);
317       nir_def *prim_invisible =
318          cull_small_primitive_line(b, pos, bbox_min, bbox_max, prim_outside_view);
319 
320       bbox_accepted = nir_ior(b, nir_inot(b, prim_invisible), w_info->any_w_negative);
321 
322       /* for caller which need to react when primitive is accepted */
323       if (accept_func) {
324          nir_if *if_still_accepted = nir_push_if(b, bbox_accepted);
325          {
326             accept_func(b, state);
327          }
328          nir_pop_if(b, if_still_accepted);
329       }
330    }
331    nir_pop_if(b, if_accepted);
332 
333    return nir_if_phi(b, bbox_accepted, accepted);
334 }
335 
336 nir_def *
ac_nir_cull_primitive(nir_builder * b,nir_def * initially_accepted,nir_def * pos[3][4],unsigned num_vertices,ac_nir_cull_accepted accept_func,void * state)337 ac_nir_cull_primitive(nir_builder *b,
338                       nir_def *initially_accepted,
339                       nir_def *pos[3][4],
340                       unsigned num_vertices,
341                       ac_nir_cull_accepted accept_func,
342                       void *state)
343 {
344    position_w_info w_info = {0};
345    analyze_position_w(b, pos, num_vertices, &w_info);
346 
347    if (num_vertices == 3)
348       return ac_nir_cull_triangle(b, initially_accepted, pos, &w_info, accept_func, state);
349    else if (num_vertices == 2)
350       return ac_nir_cull_line(b, initially_accepted, pos, &w_info, accept_func, state);
351    else
352       unreachable("point culling not implemented");
353 
354    return NULL;
355 }
356