1 //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements sparse conditional constant propagation and merging:
11 //
12 // Specifically, this:
13 // * Assumes values are constant unless proven otherwise
14 // * Assumes BasicBlocks are dead unless proven otherwise
15 // * Proves values to be constant, and replaces them with constants
16 // * Proves conditional branches to be unconditional
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "llvm/Transforms/IPO/SCCP.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/PointerIntPair.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/GlobalsModRef.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/InstVisitor.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Transforms/IPO.h"
41 #include "llvm/Transforms/Scalar.h"
42 #include "llvm/Transforms/Scalar/SCCP.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <algorithm>
45 using namespace llvm;
46
47 #define DEBUG_TYPE "sccp"
48
49 STATISTIC(NumInstRemoved, "Number of instructions removed");
50 STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
51
52 STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
53 STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
54 STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
55
56 namespace {
57 /// LatticeVal class - This class represents the different lattice values that
58 /// an LLVM value may occupy. It is a simple class with value semantics.
59 ///
60 class LatticeVal {
61 enum LatticeValueTy {
62 /// unknown - This LLVM Value has no known value yet.
63 unknown,
64
65 /// constant - This LLVM Value has a specific constant value.
66 constant,
67
68 /// forcedconstant - This LLVM Value was thought to be undef until
69 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged
70 /// with another (different) constant, it goes to overdefined, instead of
71 /// asserting.
72 forcedconstant,
73
74 /// overdefined - This instruction is not known to be constant, and we know
75 /// it has a value.
76 overdefined
77 };
78
79 /// Val: This stores the current lattice value along with the Constant* for
80 /// the constant if this is a 'constant' or 'forcedconstant' value.
81 PointerIntPair<Constant *, 2, LatticeValueTy> Val;
82
getLatticeValue() const83 LatticeValueTy getLatticeValue() const {
84 return Val.getInt();
85 }
86
87 public:
LatticeVal()88 LatticeVal() : Val(nullptr, unknown) {}
89
isUnknown() const90 bool isUnknown() const { return getLatticeValue() == unknown; }
isConstant() const91 bool isConstant() const {
92 return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
93 }
isOverdefined() const94 bool isOverdefined() const { return getLatticeValue() == overdefined; }
95
getConstant() const96 Constant *getConstant() const {
97 assert(isConstant() && "Cannot get the constant of a non-constant!");
98 return Val.getPointer();
99 }
100
101 /// markOverdefined - Return true if this is a change in status.
markOverdefined()102 bool markOverdefined() {
103 if (isOverdefined())
104 return false;
105
106 Val.setInt(overdefined);
107 return true;
108 }
109
110 /// markConstant - Return true if this is a change in status.
markConstant(Constant * V)111 bool markConstant(Constant *V) {
112 if (getLatticeValue() == constant) { // Constant but not forcedconstant.
113 assert(getConstant() == V && "Marking constant with different value");
114 return false;
115 }
116
117 if (isUnknown()) {
118 Val.setInt(constant);
119 assert(V && "Marking constant with NULL");
120 Val.setPointer(V);
121 } else {
122 assert(getLatticeValue() == forcedconstant &&
123 "Cannot move from overdefined to constant!");
124 // Stay at forcedconstant if the constant is the same.
125 if (V == getConstant()) return false;
126
127 // Otherwise, we go to overdefined. Assumptions made based on the
128 // forced value are possibly wrong. Assuming this is another constant
129 // could expose a contradiction.
130 Val.setInt(overdefined);
131 }
132 return true;
133 }
134
135 /// getConstantInt - If this is a constant with a ConstantInt value, return it
136 /// otherwise return null.
getConstantInt() const137 ConstantInt *getConstantInt() const {
138 if (isConstant())
139 return dyn_cast<ConstantInt>(getConstant());
140 return nullptr;
141 }
142
markForcedConstant(Constant * V)143 void markForcedConstant(Constant *V) {
144 assert(isUnknown() && "Can't force a defined value!");
145 Val.setInt(forcedconstant);
146 Val.setPointer(V);
147 }
148 };
149 } // end anonymous namespace.
150
151
152 namespace {
153
154 //===----------------------------------------------------------------------===//
155 //
156 /// SCCPSolver - This class is a general purpose solver for Sparse Conditional
157 /// Constant Propagation.
158 ///
159 class SCCPSolver : public InstVisitor<SCCPSolver> {
160 const DataLayout &DL;
161 const TargetLibraryInfo *TLI;
162 SmallPtrSet<BasicBlock*, 8> BBExecutable; // The BBs that are executable.
163 DenseMap<Value*, LatticeVal> ValueState; // The state each value is in.
164
165 /// StructValueState - This maintains ValueState for values that have
166 /// StructType, for example for formal arguments, calls, insertelement, etc.
167 ///
168 DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState;
169
170 /// GlobalValue - If we are tracking any values for the contents of a global
171 /// variable, we keep a mapping from the constant accessor to the element of
172 /// the global, to the currently known value. If the value becomes
173 /// overdefined, it's entry is simply removed from this map.
174 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
175
176 /// TrackedRetVals - If we are tracking arguments into and the return
177 /// value out of a function, it will have an entry in this map, indicating
178 /// what the known return value for the function is.
179 DenseMap<Function*, LatticeVal> TrackedRetVals;
180
181 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
182 /// that return multiple values.
183 DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
184
185 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
186 /// represented here for efficient lookup.
187 SmallPtrSet<Function*, 16> MRVFunctionsTracked;
188
189 /// TrackingIncomingArguments - This is the set of functions for whose
190 /// arguments we make optimistic assumptions about and try to prove as
191 /// constants.
192 SmallPtrSet<Function*, 16> TrackingIncomingArguments;
193
194 /// The reason for two worklists is that overdefined is the lowest state
195 /// on the lattice, and moving things to overdefined as fast as possible
196 /// makes SCCP converge much faster.
197 ///
198 /// By having a separate worklist, we accomplish this because everything
199 /// possibly overdefined will become overdefined at the soonest possible
200 /// point.
201 SmallVector<Value*, 64> OverdefinedInstWorkList;
202 SmallVector<Value*, 64> InstWorkList;
203
204
205 SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list
206
207 /// KnownFeasibleEdges - Entries in this set are edges which have already had
208 /// PHI nodes retriggered.
209 typedef std::pair<BasicBlock*, BasicBlock*> Edge;
210 DenseSet<Edge> KnownFeasibleEdges;
211 public:
SCCPSolver(const DataLayout & DL,const TargetLibraryInfo * tli)212 SCCPSolver(const DataLayout &DL, const TargetLibraryInfo *tli)
213 : DL(DL), TLI(tli) {}
214
215 /// MarkBlockExecutable - This method can be used by clients to mark all of
216 /// the blocks that are known to be intrinsically live in the processed unit.
217 ///
218 /// This returns true if the block was not considered live before.
MarkBlockExecutable(BasicBlock * BB)219 bool MarkBlockExecutable(BasicBlock *BB) {
220 if (!BBExecutable.insert(BB).second)
221 return false;
222 DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
223 BBWorkList.push_back(BB); // Add the block to the work list!
224 return true;
225 }
226
227 /// TrackValueOfGlobalVariable - Clients can use this method to
228 /// inform the SCCPSolver that it should track loads and stores to the
229 /// specified global variable if it can. This is only legal to call if
230 /// performing Interprocedural SCCP.
TrackValueOfGlobalVariable(GlobalVariable * GV)231 void TrackValueOfGlobalVariable(GlobalVariable *GV) {
232 // We only track the contents of scalar globals.
233 if (GV->getValueType()->isSingleValueType()) {
234 LatticeVal &IV = TrackedGlobals[GV];
235 if (!isa<UndefValue>(GV->getInitializer()))
236 IV.markConstant(GV->getInitializer());
237 }
238 }
239
240 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
241 /// and out of the specified function (which cannot have its address taken),
242 /// this method must be called.
AddTrackedFunction(Function * F)243 void AddTrackedFunction(Function *F) {
244 // Add an entry, F -> undef.
245 if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
246 MRVFunctionsTracked.insert(F);
247 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
248 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
249 LatticeVal()));
250 } else
251 TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
252 }
253
AddArgumentTrackedFunction(Function * F)254 void AddArgumentTrackedFunction(Function *F) {
255 TrackingIncomingArguments.insert(F);
256 }
257
258 /// Solve - Solve for constants and executable blocks.
259 ///
260 void Solve();
261
262 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
263 /// that branches on undef values cannot reach any of their successors.
264 /// However, this is not a safe assumption. After we solve dataflow, this
265 /// method should be use to handle this. If this returns true, the solver
266 /// should be rerun.
267 bool ResolvedUndefsIn(Function &F);
268
isBlockExecutable(BasicBlock * BB) const269 bool isBlockExecutable(BasicBlock *BB) const {
270 return BBExecutable.count(BB);
271 }
272
getStructLatticeValueFor(Value * V) const273 std::vector<LatticeVal> getStructLatticeValueFor(Value *V) const {
274 std::vector<LatticeVal> StructValues;
275 StructType *STy = dyn_cast<StructType>(V->getType());
276 assert(STy && "getStructLatticeValueFor() can be called only on structs");
277 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
278 auto I = StructValueState.find(std::make_pair(V, i));
279 assert(I != StructValueState.end() && "Value not in valuemap!");
280 StructValues.push_back(I->second);
281 }
282 return StructValues;
283 }
284
getLatticeValueFor(Value * V) const285 LatticeVal getLatticeValueFor(Value *V) const {
286 DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V);
287 assert(I != ValueState.end() && "V is not in valuemap!");
288 return I->second;
289 }
290
291 /// getTrackedRetVals - Get the inferred return value map.
292 ///
getTrackedRetVals()293 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
294 return TrackedRetVals;
295 }
296
297 /// getTrackedGlobals - Get and return the set of inferred initializers for
298 /// global variables.
getTrackedGlobals()299 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
300 return TrackedGlobals;
301 }
302
markOverdefined(Value * V)303 void markOverdefined(Value *V) {
304 assert(!V->getType()->isStructTy() && "Should use other method");
305 markOverdefined(ValueState[V], V);
306 }
307
308 /// markAnythingOverdefined - Mark the specified value overdefined. This
309 /// works with both scalars and structs.
markAnythingOverdefined(Value * V)310 void markAnythingOverdefined(Value *V) {
311 if (StructType *STy = dyn_cast<StructType>(V->getType()))
312 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
313 markOverdefined(getStructValueState(V, i), V);
314 else
315 markOverdefined(V);
316 }
317
318 private:
319 // pushToWorkList - Helper for markConstant/markForcedConstant
pushToWorkList(LatticeVal & IV,Value * V)320 void pushToWorkList(LatticeVal &IV, Value *V) {
321 if (IV.isOverdefined())
322 return OverdefinedInstWorkList.push_back(V);
323 InstWorkList.push_back(V);
324 }
325
326 // markConstant - Make a value be marked as "constant". If the value
327 // is not already a constant, add it to the instruction work list so that
328 // the users of the instruction are updated later.
329 //
markConstant(LatticeVal & IV,Value * V,Constant * C)330 void markConstant(LatticeVal &IV, Value *V, Constant *C) {
331 if (!IV.markConstant(C)) return;
332 DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
333 pushToWorkList(IV, V);
334 }
335
markConstant(Value * V,Constant * C)336 void markConstant(Value *V, Constant *C) {
337 assert(!V->getType()->isStructTy() && "Should use other method");
338 markConstant(ValueState[V], V, C);
339 }
340
markForcedConstant(Value * V,Constant * C)341 void markForcedConstant(Value *V, Constant *C) {
342 assert(!V->getType()->isStructTy() && "Should use other method");
343 LatticeVal &IV = ValueState[V];
344 IV.markForcedConstant(C);
345 DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
346 pushToWorkList(IV, V);
347 }
348
349
350 // markOverdefined - Make a value be marked as "overdefined". If the
351 // value is not already overdefined, add it to the overdefined instruction
352 // work list so that the users of the instruction are updated later.
markOverdefined(LatticeVal & IV,Value * V)353 void markOverdefined(LatticeVal &IV, Value *V) {
354 if (!IV.markOverdefined()) return;
355
356 DEBUG(dbgs() << "markOverdefined: ";
357 if (Function *F = dyn_cast<Function>(V))
358 dbgs() << "Function '" << F->getName() << "'\n";
359 else
360 dbgs() << *V << '\n');
361 // Only instructions go on the work list
362 OverdefinedInstWorkList.push_back(V);
363 }
364
mergeInValue(LatticeVal & IV,Value * V,LatticeVal MergeWithV)365 void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
366 if (IV.isOverdefined() || MergeWithV.isUnknown())
367 return; // Noop.
368 if (MergeWithV.isOverdefined())
369 return markOverdefined(IV, V);
370 if (IV.isUnknown())
371 return markConstant(IV, V, MergeWithV.getConstant());
372 if (IV.getConstant() != MergeWithV.getConstant())
373 return markOverdefined(IV, V);
374 }
375
mergeInValue(Value * V,LatticeVal MergeWithV)376 void mergeInValue(Value *V, LatticeVal MergeWithV) {
377 assert(!V->getType()->isStructTy() && "Should use other method");
378 mergeInValue(ValueState[V], V, MergeWithV);
379 }
380
381
382 /// getValueState - Return the LatticeVal object that corresponds to the
383 /// value. This function handles the case when the value hasn't been seen yet
384 /// by properly seeding constants etc.
getValueState(Value * V)385 LatticeVal &getValueState(Value *V) {
386 assert(!V->getType()->isStructTy() && "Should use getStructValueState");
387
388 std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
389 ValueState.insert(std::make_pair(V, LatticeVal()));
390 LatticeVal &LV = I.first->second;
391
392 if (!I.second)
393 return LV; // Common case, already in the map.
394
395 if (Constant *C = dyn_cast<Constant>(V)) {
396 // Undef values remain unknown.
397 if (!isa<UndefValue>(V))
398 LV.markConstant(C); // Constants are constant
399 }
400
401 // All others are underdefined by default.
402 return LV;
403 }
404
405 /// getStructValueState - Return the LatticeVal object that corresponds to the
406 /// value/field pair. This function handles the case when the value hasn't
407 /// been seen yet by properly seeding constants etc.
getStructValueState(Value * V,unsigned i)408 LatticeVal &getStructValueState(Value *V, unsigned i) {
409 assert(V->getType()->isStructTy() && "Should use getValueState");
410 assert(i < cast<StructType>(V->getType())->getNumElements() &&
411 "Invalid element #");
412
413 std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
414 bool> I = StructValueState.insert(
415 std::make_pair(std::make_pair(V, i), LatticeVal()));
416 LatticeVal &LV = I.first->second;
417
418 if (!I.second)
419 return LV; // Common case, already in the map.
420
421 if (Constant *C = dyn_cast<Constant>(V)) {
422 Constant *Elt = C->getAggregateElement(i);
423
424 if (!Elt)
425 LV.markOverdefined(); // Unknown sort of constant.
426 else if (isa<UndefValue>(Elt))
427 ; // Undef values remain unknown.
428 else
429 LV.markConstant(Elt); // Constants are constant.
430 }
431
432 // All others are underdefined by default.
433 return LV;
434 }
435
436
437 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
438 /// work list if it is not already executable.
markEdgeExecutable(BasicBlock * Source,BasicBlock * Dest)439 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
440 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
441 return; // This edge is already known to be executable!
442
443 if (!MarkBlockExecutable(Dest)) {
444 // If the destination is already executable, we just made an *edge*
445 // feasible that wasn't before. Revisit the PHI nodes in the block
446 // because they have potentially new operands.
447 DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
448 << " -> " << Dest->getName() << '\n');
449
450 PHINode *PN;
451 for (BasicBlock::iterator I = Dest->begin();
452 (PN = dyn_cast<PHINode>(I)); ++I)
453 visitPHINode(*PN);
454 }
455 }
456
457 // getFeasibleSuccessors - Return a vector of booleans to indicate which
458 // successors are reachable from a given terminator instruction.
459 //
460 void getFeasibleSuccessors(TerminatorInst &TI, SmallVectorImpl<bool> &Succs);
461
462 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
463 // block to the 'To' basic block is currently feasible.
464 //
465 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
466
467 // OperandChangedState - This method is invoked on all of the users of an
468 // instruction that was just changed state somehow. Based on this
469 // information, we need to update the specified user of this instruction.
470 //
OperandChangedState(Instruction * I)471 void OperandChangedState(Instruction *I) {
472 if (BBExecutable.count(I->getParent())) // Inst is executable?
473 visit(*I);
474 }
475
476 private:
477 friend class InstVisitor<SCCPSolver>;
478
479 // visit implementations - Something changed in this instruction. Either an
480 // operand made a transition, or the instruction is newly executable. Change
481 // the value type of I to reflect these changes if appropriate.
482 void visitPHINode(PHINode &I);
483
484 // Terminators
485 void visitReturnInst(ReturnInst &I);
486 void visitTerminatorInst(TerminatorInst &TI);
487
488 void visitCastInst(CastInst &I);
489 void visitSelectInst(SelectInst &I);
490 void visitBinaryOperator(Instruction &I);
491 void visitCmpInst(CmpInst &I);
492 void visitExtractElementInst(ExtractElementInst &I);
493 void visitInsertElementInst(InsertElementInst &I);
494 void visitShuffleVectorInst(ShuffleVectorInst &I);
495 void visitExtractValueInst(ExtractValueInst &EVI);
496 void visitInsertValueInst(InsertValueInst &IVI);
visitLandingPadInst(LandingPadInst & I)497 void visitLandingPadInst(LandingPadInst &I) { markAnythingOverdefined(&I); }
visitFuncletPadInst(FuncletPadInst & FPI)498 void visitFuncletPadInst(FuncletPadInst &FPI) {
499 markAnythingOverdefined(&FPI);
500 }
visitCatchSwitchInst(CatchSwitchInst & CPI)501 void visitCatchSwitchInst(CatchSwitchInst &CPI) {
502 markAnythingOverdefined(&CPI);
503 visitTerminatorInst(CPI);
504 }
505
506 // Instructions that cannot be folded away.
507 void visitStoreInst (StoreInst &I);
508 void visitLoadInst (LoadInst &I);
509 void visitGetElementPtrInst(GetElementPtrInst &I);
visitCallInst(CallInst & I)510 void visitCallInst (CallInst &I) {
511 visitCallSite(&I);
512 }
visitInvokeInst(InvokeInst & II)513 void visitInvokeInst (InvokeInst &II) {
514 visitCallSite(&II);
515 visitTerminatorInst(II);
516 }
517 void visitCallSite (CallSite CS);
visitResumeInst(TerminatorInst & I)518 void visitResumeInst (TerminatorInst &I) { /*returns void*/ }
visitUnreachableInst(TerminatorInst & I)519 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
visitFenceInst(FenceInst & I)520 void visitFenceInst (FenceInst &I) { /*returns void*/ }
visitAtomicCmpXchgInst(AtomicCmpXchgInst & I)521 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) {
522 markAnythingOverdefined(&I);
523 }
visitAtomicRMWInst(AtomicRMWInst & I)524 void visitAtomicRMWInst (AtomicRMWInst &I) { markOverdefined(&I); }
visitAllocaInst(Instruction & I)525 void visitAllocaInst (Instruction &I) { markOverdefined(&I); }
visitVAArgInst(Instruction & I)526 void visitVAArgInst (Instruction &I) { markAnythingOverdefined(&I); }
527
visitInstruction(Instruction & I)528 void visitInstruction(Instruction &I) {
529 // If a new instruction is added to LLVM that we don't handle.
530 dbgs() << "SCCP: Don't know how to handle: " << I << '\n';
531 markAnythingOverdefined(&I); // Just in case
532 }
533 };
534
535 } // end anonymous namespace
536
537
538 // getFeasibleSuccessors - Return a vector of booleans to indicate which
539 // successors are reachable from a given terminator instruction.
540 //
getFeasibleSuccessors(TerminatorInst & TI,SmallVectorImpl<bool> & Succs)541 void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
542 SmallVectorImpl<bool> &Succs) {
543 Succs.resize(TI.getNumSuccessors());
544 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
545 if (BI->isUnconditional()) {
546 Succs[0] = true;
547 return;
548 }
549
550 LatticeVal BCValue = getValueState(BI->getCondition());
551 ConstantInt *CI = BCValue.getConstantInt();
552 if (!CI) {
553 // Overdefined condition variables, and branches on unfoldable constant
554 // conditions, mean the branch could go either way.
555 if (!BCValue.isUnknown())
556 Succs[0] = Succs[1] = true;
557 return;
558 }
559
560 // Constant condition variables mean the branch can only go a single way.
561 Succs[CI->isZero()] = true;
562 return;
563 }
564
565 // Unwinding instructions successors are always executable.
566 if (TI.isExceptional()) {
567 Succs.assign(TI.getNumSuccessors(), true);
568 return;
569 }
570
571 if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
572 if (!SI->getNumCases()) {
573 Succs[0] = true;
574 return;
575 }
576 LatticeVal SCValue = getValueState(SI->getCondition());
577 ConstantInt *CI = SCValue.getConstantInt();
578
579 if (!CI) { // Overdefined or unknown condition?
580 // All destinations are executable!
581 if (!SCValue.isUnknown())
582 Succs.assign(TI.getNumSuccessors(), true);
583 return;
584 }
585
586 Succs[SI->findCaseValue(CI).getSuccessorIndex()] = true;
587 return;
588 }
589
590 // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
591 if (isa<IndirectBrInst>(&TI)) {
592 // Just mark all destinations executable!
593 Succs.assign(TI.getNumSuccessors(), true);
594 return;
595 }
596
597 #ifndef NDEBUG
598 dbgs() << "Unknown terminator instruction: " << TI << '\n';
599 #endif
600 llvm_unreachable("SCCP: Don't know how to handle this terminator!");
601 }
602
603
604 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
605 // block to the 'To' basic block is currently feasible.
606 //
isEdgeFeasible(BasicBlock * From,BasicBlock * To)607 bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
608 assert(BBExecutable.count(To) && "Dest should always be alive!");
609
610 // Make sure the source basic block is executable!!
611 if (!BBExecutable.count(From)) return false;
612
613 // Check to make sure this edge itself is actually feasible now.
614 TerminatorInst *TI = From->getTerminator();
615 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
616 if (BI->isUnconditional())
617 return true;
618
619 LatticeVal BCValue = getValueState(BI->getCondition());
620
621 // Overdefined condition variables mean the branch could go either way,
622 // undef conditions mean that neither edge is feasible yet.
623 ConstantInt *CI = BCValue.getConstantInt();
624 if (!CI)
625 return !BCValue.isUnknown();
626
627 // Constant condition variables mean the branch can only go a single way.
628 return BI->getSuccessor(CI->isZero()) == To;
629 }
630
631 // Unwinding instructions successors are always executable.
632 if (TI->isExceptional())
633 return true;
634
635 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
636 if (SI->getNumCases() < 1)
637 return true;
638
639 LatticeVal SCValue = getValueState(SI->getCondition());
640 ConstantInt *CI = SCValue.getConstantInt();
641
642 if (!CI)
643 return !SCValue.isUnknown();
644
645 return SI->findCaseValue(CI).getCaseSuccessor() == To;
646 }
647
648 // Just mark all destinations executable!
649 // TODO: This could be improved if the operand is a [cast of a] BlockAddress.
650 if (isa<IndirectBrInst>(TI))
651 return true;
652
653 #ifndef NDEBUG
654 dbgs() << "Unknown terminator instruction: " << *TI << '\n';
655 #endif
656 llvm_unreachable("SCCP: Don't know how to handle this terminator!");
657 }
658
659 // visit Implementations - Something changed in this instruction, either an
660 // operand made a transition, or the instruction is newly executable. Change
661 // the value type of I to reflect these changes if appropriate. This method
662 // makes sure to do the following actions:
663 //
664 // 1. If a phi node merges two constants in, and has conflicting value coming
665 // from different branches, or if the PHI node merges in an overdefined
666 // value, then the PHI node becomes overdefined.
667 // 2. If a phi node merges only constants in, and they all agree on value, the
668 // PHI node becomes a constant value equal to that.
669 // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
670 // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
671 // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
672 // 6. If a conditional branch has a value that is constant, make the selected
673 // destination executable
674 // 7. If a conditional branch has a value that is overdefined, make all
675 // successors executable.
676 //
visitPHINode(PHINode & PN)677 void SCCPSolver::visitPHINode(PHINode &PN) {
678 // If this PN returns a struct, just mark the result overdefined.
679 // TODO: We could do a lot better than this if code actually uses this.
680 if (PN.getType()->isStructTy())
681 return markAnythingOverdefined(&PN);
682
683 if (getValueState(&PN).isOverdefined())
684 return; // Quick exit
685
686 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
687 // and slow us down a lot. Just mark them overdefined.
688 if (PN.getNumIncomingValues() > 64)
689 return markOverdefined(&PN);
690
691 // Look at all of the executable operands of the PHI node. If any of them
692 // are overdefined, the PHI becomes overdefined as well. If they are all
693 // constant, and they agree with each other, the PHI becomes the identical
694 // constant. If they are constant and don't agree, the PHI is overdefined.
695 // If there are no executable operands, the PHI remains unknown.
696 //
697 Constant *OperandVal = nullptr;
698 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
699 LatticeVal IV = getValueState(PN.getIncomingValue(i));
700 if (IV.isUnknown()) continue; // Doesn't influence PHI node.
701
702 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
703 continue;
704
705 if (IV.isOverdefined()) // PHI node becomes overdefined!
706 return markOverdefined(&PN);
707
708 if (!OperandVal) { // Grab the first value.
709 OperandVal = IV.getConstant();
710 continue;
711 }
712
713 // There is already a reachable operand. If we conflict with it,
714 // then the PHI node becomes overdefined. If we agree with it, we
715 // can continue on.
716
717 // Check to see if there are two different constants merging, if so, the PHI
718 // node is overdefined.
719 if (IV.getConstant() != OperandVal)
720 return markOverdefined(&PN);
721 }
722
723 // If we exited the loop, this means that the PHI node only has constant
724 // arguments that agree with each other(and OperandVal is the constant) or
725 // OperandVal is null because there are no defined incoming arguments. If
726 // this is the case, the PHI remains unknown.
727 //
728 if (OperandVal)
729 markConstant(&PN, OperandVal); // Acquire operand value
730 }
731
visitReturnInst(ReturnInst & I)732 void SCCPSolver::visitReturnInst(ReturnInst &I) {
733 if (I.getNumOperands() == 0) return; // ret void
734
735 Function *F = I.getParent()->getParent();
736 Value *ResultOp = I.getOperand(0);
737
738 // If we are tracking the return value of this function, merge it in.
739 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
740 DenseMap<Function*, LatticeVal>::iterator TFRVI =
741 TrackedRetVals.find(F);
742 if (TFRVI != TrackedRetVals.end()) {
743 mergeInValue(TFRVI->second, F, getValueState(ResultOp));
744 return;
745 }
746 }
747
748 // Handle functions that return multiple values.
749 if (!TrackedMultipleRetVals.empty()) {
750 if (StructType *STy = dyn_cast<StructType>(ResultOp->getType()))
751 if (MRVFunctionsTracked.count(F))
752 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
753 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
754 getStructValueState(ResultOp, i));
755
756 }
757 }
758
visitTerminatorInst(TerminatorInst & TI)759 void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
760 SmallVector<bool, 16> SuccFeasible;
761 getFeasibleSuccessors(TI, SuccFeasible);
762
763 BasicBlock *BB = TI.getParent();
764
765 // Mark all feasible successors executable.
766 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
767 if (SuccFeasible[i])
768 markEdgeExecutable(BB, TI.getSuccessor(i));
769 }
770
visitCastInst(CastInst & I)771 void SCCPSolver::visitCastInst(CastInst &I) {
772 LatticeVal OpSt = getValueState(I.getOperand(0));
773 if (OpSt.isOverdefined()) // Inherit overdefinedness of operand
774 markOverdefined(&I);
775 else if (OpSt.isConstant()) {
776 // Fold the constant as we build.
777 Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpSt.getConstant(),
778 I.getType(), DL);
779 if (isa<UndefValue>(C))
780 return;
781 // Propagate constant value
782 markConstant(&I, C);
783 }
784 }
785
786
visitExtractValueInst(ExtractValueInst & EVI)787 void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
788 // If this returns a struct, mark all elements over defined, we don't track
789 // structs in structs.
790 if (EVI.getType()->isStructTy())
791 return markAnythingOverdefined(&EVI);
792
793 // If this is extracting from more than one level of struct, we don't know.
794 if (EVI.getNumIndices() != 1)
795 return markOverdefined(&EVI);
796
797 Value *AggVal = EVI.getAggregateOperand();
798 if (AggVal->getType()->isStructTy()) {
799 unsigned i = *EVI.idx_begin();
800 LatticeVal EltVal = getStructValueState(AggVal, i);
801 mergeInValue(getValueState(&EVI), &EVI, EltVal);
802 } else {
803 // Otherwise, must be extracting from an array.
804 return markOverdefined(&EVI);
805 }
806 }
807
visitInsertValueInst(InsertValueInst & IVI)808 void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
809 StructType *STy = dyn_cast<StructType>(IVI.getType());
810 if (!STy)
811 return markOverdefined(&IVI);
812
813 // If this has more than one index, we can't handle it, drive all results to
814 // undef.
815 if (IVI.getNumIndices() != 1)
816 return markAnythingOverdefined(&IVI);
817
818 Value *Aggr = IVI.getAggregateOperand();
819 unsigned Idx = *IVI.idx_begin();
820
821 // Compute the result based on what we're inserting.
822 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
823 // This passes through all values that aren't the inserted element.
824 if (i != Idx) {
825 LatticeVal EltVal = getStructValueState(Aggr, i);
826 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
827 continue;
828 }
829
830 Value *Val = IVI.getInsertedValueOperand();
831 if (Val->getType()->isStructTy())
832 // We don't track structs in structs.
833 markOverdefined(getStructValueState(&IVI, i), &IVI);
834 else {
835 LatticeVal InVal = getValueState(Val);
836 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
837 }
838 }
839 }
840
visitSelectInst(SelectInst & I)841 void SCCPSolver::visitSelectInst(SelectInst &I) {
842 // If this select returns a struct, just mark the result overdefined.
843 // TODO: We could do a lot better than this if code actually uses this.
844 if (I.getType()->isStructTy())
845 return markAnythingOverdefined(&I);
846
847 LatticeVal CondValue = getValueState(I.getCondition());
848 if (CondValue.isUnknown())
849 return;
850
851 if (ConstantInt *CondCB = CondValue.getConstantInt()) {
852 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
853 mergeInValue(&I, getValueState(OpVal));
854 return;
855 }
856
857 // Otherwise, the condition is overdefined or a constant we can't evaluate.
858 // See if we can produce something better than overdefined based on the T/F
859 // value.
860 LatticeVal TVal = getValueState(I.getTrueValue());
861 LatticeVal FVal = getValueState(I.getFalseValue());
862
863 // select ?, C, C -> C.
864 if (TVal.isConstant() && FVal.isConstant() &&
865 TVal.getConstant() == FVal.getConstant())
866 return markConstant(&I, FVal.getConstant());
867
868 if (TVal.isUnknown()) // select ?, undef, X -> X.
869 return mergeInValue(&I, FVal);
870 if (FVal.isUnknown()) // select ?, X, undef -> X.
871 return mergeInValue(&I, TVal);
872 markOverdefined(&I);
873 }
874
875 // Handle Binary Operators.
visitBinaryOperator(Instruction & I)876 void SCCPSolver::visitBinaryOperator(Instruction &I) {
877 LatticeVal V1State = getValueState(I.getOperand(0));
878 LatticeVal V2State = getValueState(I.getOperand(1));
879
880 LatticeVal &IV = ValueState[&I];
881 if (IV.isOverdefined()) return;
882
883 if (V1State.isConstant() && V2State.isConstant()) {
884 Constant *C = ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
885 V2State.getConstant());
886 // X op Y -> undef.
887 if (isa<UndefValue>(C))
888 return;
889 return markConstant(IV, &I, C);
890 }
891
892 // If something is undef, wait for it to resolve.
893 if (!V1State.isOverdefined() && !V2State.isOverdefined())
894 return;
895
896 // Otherwise, one of our operands is overdefined. Try to produce something
897 // better than overdefined with some tricks.
898
899 // If this is an AND or OR with 0 or -1, it doesn't matter that the other
900 // operand is overdefined.
901 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
902 LatticeVal *NonOverdefVal = nullptr;
903 if (!V1State.isOverdefined())
904 NonOverdefVal = &V1State;
905 else if (!V2State.isOverdefined())
906 NonOverdefVal = &V2State;
907
908 if (NonOverdefVal) {
909 if (NonOverdefVal->isUnknown()) {
910 // Could annihilate value.
911 if (I.getOpcode() == Instruction::And)
912 markConstant(IV, &I, Constant::getNullValue(I.getType()));
913 else if (VectorType *PT = dyn_cast<VectorType>(I.getType()))
914 markConstant(IV, &I, Constant::getAllOnesValue(PT));
915 else
916 markConstant(IV, &I,
917 Constant::getAllOnesValue(I.getType()));
918 return;
919 }
920
921 if (I.getOpcode() == Instruction::And) {
922 // X and 0 = 0
923 if (NonOverdefVal->getConstant()->isNullValue())
924 return markConstant(IV, &I, NonOverdefVal->getConstant());
925 } else {
926 if (ConstantInt *CI = NonOverdefVal->getConstantInt())
927 if (CI->isAllOnesValue()) // X or -1 = -1
928 return markConstant(IV, &I, NonOverdefVal->getConstant());
929 }
930 }
931 }
932
933
934 markOverdefined(&I);
935 }
936
937 // Handle ICmpInst instruction.
visitCmpInst(CmpInst & I)938 void SCCPSolver::visitCmpInst(CmpInst &I) {
939 LatticeVal V1State = getValueState(I.getOperand(0));
940 LatticeVal V2State = getValueState(I.getOperand(1));
941
942 LatticeVal &IV = ValueState[&I];
943 if (IV.isOverdefined()) return;
944
945 if (V1State.isConstant() && V2State.isConstant()) {
946 Constant *C = ConstantExpr::getCompare(
947 I.getPredicate(), V1State.getConstant(), V2State.getConstant());
948 if (isa<UndefValue>(C))
949 return;
950 return markConstant(IV, &I, C);
951 }
952
953 // If operands are still unknown, wait for it to resolve.
954 if (!V1State.isOverdefined() && !V2State.isOverdefined())
955 return;
956
957 markOverdefined(&I);
958 }
959
visitExtractElementInst(ExtractElementInst & I)960 void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
961 // TODO : SCCP does not handle vectors properly.
962 return markOverdefined(&I);
963 }
964
visitInsertElementInst(InsertElementInst & I)965 void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
966 // TODO : SCCP does not handle vectors properly.
967 return markOverdefined(&I);
968 }
969
visitShuffleVectorInst(ShuffleVectorInst & I)970 void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
971 // TODO : SCCP does not handle vectors properly.
972 return markOverdefined(&I);
973 }
974
975 // Handle getelementptr instructions. If all operands are constants then we
976 // can turn this into a getelementptr ConstantExpr.
977 //
visitGetElementPtrInst(GetElementPtrInst & I)978 void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
979 if (ValueState[&I].isOverdefined()) return;
980
981 SmallVector<Constant*, 8> Operands;
982 Operands.reserve(I.getNumOperands());
983
984 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
985 LatticeVal State = getValueState(I.getOperand(i));
986 if (State.isUnknown())
987 return; // Operands are not resolved yet.
988
989 if (State.isOverdefined())
990 return markOverdefined(&I);
991
992 assert(State.isConstant() && "Unknown state!");
993 Operands.push_back(State.getConstant());
994 }
995
996 Constant *Ptr = Operands[0];
997 auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
998 Constant *C =
999 ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
1000 if (isa<UndefValue>(C))
1001 return;
1002 markConstant(&I, C);
1003 }
1004
visitStoreInst(StoreInst & SI)1005 void SCCPSolver::visitStoreInst(StoreInst &SI) {
1006 // If this store is of a struct, ignore it.
1007 if (SI.getOperand(0)->getType()->isStructTy())
1008 return;
1009
1010 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1011 return;
1012
1013 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1014 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1015 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1016
1017 // Get the value we are storing into the global, then merge it.
1018 mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
1019 if (I->second.isOverdefined())
1020 TrackedGlobals.erase(I); // No need to keep tracking this!
1021 }
1022
1023
1024 // Handle load instructions. If the operand is a constant pointer to a constant
1025 // global, we can replace the load with the loaded constant value!
visitLoadInst(LoadInst & I)1026 void SCCPSolver::visitLoadInst(LoadInst &I) {
1027 // If this load is of a struct, just mark the result overdefined.
1028 if (I.getType()->isStructTy())
1029 return markAnythingOverdefined(&I);
1030
1031 LatticeVal PtrVal = getValueState(I.getOperand(0));
1032 if (PtrVal.isUnknown()) return; // The pointer is not resolved yet!
1033
1034 LatticeVal &IV = ValueState[&I];
1035 if (IV.isOverdefined()) return;
1036
1037 if (!PtrVal.isConstant() || I.isVolatile())
1038 return markOverdefined(IV, &I);
1039
1040 Constant *Ptr = PtrVal.getConstant();
1041
1042 // load null is undefined.
1043 if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0)
1044 return;
1045
1046 // Transform load (constant global) into the value loaded.
1047 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1048 if (!TrackedGlobals.empty()) {
1049 // If we are tracking this global, merge in the known value for it.
1050 DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1051 TrackedGlobals.find(GV);
1052 if (It != TrackedGlobals.end()) {
1053 mergeInValue(IV, &I, It->second);
1054 return;
1055 }
1056 }
1057 }
1058
1059 // Transform load from a constant into a constant if possible.
1060 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) {
1061 if (isa<UndefValue>(C))
1062 return;
1063 return markConstant(IV, &I, C);
1064 }
1065
1066 // Otherwise we cannot say for certain what value this load will produce.
1067 // Bail out.
1068 markOverdefined(IV, &I);
1069 }
1070
visitCallSite(CallSite CS)1071 void SCCPSolver::visitCallSite(CallSite CS) {
1072 Function *F = CS.getCalledFunction();
1073 Instruction *I = CS.getInstruction();
1074
1075 // The common case is that we aren't tracking the callee, either because we
1076 // are not doing interprocedural analysis or the callee is indirect, or is
1077 // external. Handle these cases first.
1078 if (!F || F->isDeclaration()) {
1079 CallOverdefined:
1080 // Void return and not tracking callee, just bail.
1081 if (I->getType()->isVoidTy()) return;
1082
1083 // Otherwise, if we have a single return value case, and if the function is
1084 // a declaration, maybe we can constant fold it.
1085 if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
1086 canConstantFoldCallTo(F)) {
1087
1088 SmallVector<Constant*, 8> Operands;
1089 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1090 AI != E; ++AI) {
1091 LatticeVal State = getValueState(*AI);
1092
1093 if (State.isUnknown())
1094 return; // Operands are not resolved yet.
1095 if (State.isOverdefined())
1096 return markOverdefined(I);
1097 assert(State.isConstant() && "Unknown state!");
1098 Operands.push_back(State.getConstant());
1099 }
1100
1101 if (getValueState(I).isOverdefined())
1102 return;
1103
1104 // If we can constant fold this, mark the result of the call as a
1105 // constant.
1106 if (Constant *C = ConstantFoldCall(F, Operands, TLI)) {
1107 // call -> undef.
1108 if (isa<UndefValue>(C))
1109 return;
1110 return markConstant(I, C);
1111 }
1112 }
1113
1114 // Otherwise, we don't know anything about this call, mark it overdefined.
1115 return markAnythingOverdefined(I);
1116 }
1117
1118 // If this is a local function that doesn't have its address taken, mark its
1119 // entry block executable and merge in the actual arguments to the call into
1120 // the formal arguments of the function.
1121 if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
1122 MarkBlockExecutable(&F->front());
1123
1124 // Propagate information from this call site into the callee.
1125 CallSite::arg_iterator CAI = CS.arg_begin();
1126 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1127 AI != E; ++AI, ++CAI) {
1128 // If this argument is byval, and if the function is not readonly, there
1129 // will be an implicit copy formed of the input aggregate.
1130 if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1131 markOverdefined(&*AI);
1132 continue;
1133 }
1134
1135 if (StructType *STy = dyn_cast<StructType>(AI->getType())) {
1136 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1137 LatticeVal CallArg = getStructValueState(*CAI, i);
1138 mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg);
1139 }
1140 } else {
1141 mergeInValue(&*AI, getValueState(*CAI));
1142 }
1143 }
1144 }
1145
1146 // If this is a single/zero retval case, see if we're tracking the function.
1147 if (StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
1148 if (!MRVFunctionsTracked.count(F))
1149 goto CallOverdefined; // Not tracking this callee.
1150
1151 // If we are tracking this callee, propagate the result of the function
1152 // into this call site.
1153 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1154 mergeInValue(getStructValueState(I, i), I,
1155 TrackedMultipleRetVals[std::make_pair(F, i)]);
1156 } else {
1157 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1158 if (TFRVI == TrackedRetVals.end())
1159 goto CallOverdefined; // Not tracking this callee.
1160
1161 // If so, propagate the return value of the callee into this call result.
1162 mergeInValue(I, TFRVI->second);
1163 }
1164 }
1165
Solve()1166 void SCCPSolver::Solve() {
1167 // Process the work lists until they are empty!
1168 while (!BBWorkList.empty() || !InstWorkList.empty() ||
1169 !OverdefinedInstWorkList.empty()) {
1170 // Process the overdefined instruction's work list first, which drives other
1171 // things to overdefined more quickly.
1172 while (!OverdefinedInstWorkList.empty()) {
1173 Value *I = OverdefinedInstWorkList.pop_back_val();
1174
1175 DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1176
1177 // "I" got into the work list because it either made the transition from
1178 // bottom to constant, or to overdefined.
1179 //
1180 // Anything on this worklist that is overdefined need not be visited
1181 // since all of its users will have already been marked as overdefined
1182 // Update all of the users of this instruction's value.
1183 //
1184 for (User *U : I->users())
1185 if (Instruction *UI = dyn_cast<Instruction>(U))
1186 OperandChangedState(UI);
1187 }
1188
1189 // Process the instruction work list.
1190 while (!InstWorkList.empty()) {
1191 Value *I = InstWorkList.pop_back_val();
1192
1193 DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1194
1195 // "I" got into the work list because it made the transition from undef to
1196 // constant.
1197 //
1198 // Anything on this worklist that is overdefined need not be visited
1199 // since all of its users will have already been marked as overdefined.
1200 // Update all of the users of this instruction's value.
1201 //
1202 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1203 for (User *U : I->users())
1204 if (Instruction *UI = dyn_cast<Instruction>(U))
1205 OperandChangedState(UI);
1206 }
1207
1208 // Process the basic block work list.
1209 while (!BBWorkList.empty()) {
1210 BasicBlock *BB = BBWorkList.back();
1211 BBWorkList.pop_back();
1212
1213 DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1214
1215 // Notify all instructions in this basic block that they are newly
1216 // executable.
1217 visit(BB);
1218 }
1219 }
1220 }
1221
1222 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1223 /// that branches on undef values cannot reach any of their successors.
1224 /// However, this is not a safe assumption. After we solve dataflow, this
1225 /// method should be use to handle this. If this returns true, the solver
1226 /// should be rerun.
1227 ///
1228 /// This method handles this by finding an unresolved branch and marking it one
1229 /// of the edges from the block as being feasible, even though the condition
1230 /// doesn't say it would otherwise be. This allows SCCP to find the rest of the
1231 /// CFG and only slightly pessimizes the analysis results (by marking one,
1232 /// potentially infeasible, edge feasible). This cannot usefully modify the
1233 /// constraints on the condition of the branch, as that would impact other users
1234 /// of the value.
1235 ///
1236 /// This scan also checks for values that use undefs, whose results are actually
1237 /// defined. For example, 'zext i8 undef to i32' should produce all zeros
1238 /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1239 /// even if X isn't defined.
ResolvedUndefsIn(Function & F)1240 bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1241 for (BasicBlock &BB : F) {
1242 if (!BBExecutable.count(&BB))
1243 continue;
1244
1245 for (Instruction &I : BB) {
1246 // Look for instructions which produce undef values.
1247 if (I.getType()->isVoidTy()) continue;
1248
1249 if (StructType *STy = dyn_cast<StructType>(I.getType())) {
1250 // Only a few things that can be structs matter for undef.
1251
1252 // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
1253 if (CallSite CS = CallSite(&I))
1254 if (Function *F = CS.getCalledFunction())
1255 if (MRVFunctionsTracked.count(F))
1256 continue;
1257
1258 // extractvalue and insertvalue don't need to be marked; they are
1259 // tracked as precisely as their operands.
1260 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1261 continue;
1262
1263 // Send the results of everything else to overdefined. We could be
1264 // more precise than this but it isn't worth bothering.
1265 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1266 LatticeVal &LV = getStructValueState(&I, i);
1267 if (LV.isUnknown())
1268 markOverdefined(LV, &I);
1269 }
1270 continue;
1271 }
1272
1273 LatticeVal &LV = getValueState(&I);
1274 if (!LV.isUnknown()) continue;
1275
1276 // extractvalue is safe; check here because the argument is a struct.
1277 if (isa<ExtractValueInst>(I))
1278 continue;
1279
1280 // Compute the operand LatticeVals, for convenience below.
1281 // Anything taking a struct is conservatively assumed to require
1282 // overdefined markings.
1283 if (I.getOperand(0)->getType()->isStructTy()) {
1284 markOverdefined(&I);
1285 return true;
1286 }
1287 LatticeVal Op0LV = getValueState(I.getOperand(0));
1288 LatticeVal Op1LV;
1289 if (I.getNumOperands() == 2) {
1290 if (I.getOperand(1)->getType()->isStructTy()) {
1291 markOverdefined(&I);
1292 return true;
1293 }
1294
1295 Op1LV = getValueState(I.getOperand(1));
1296 }
1297 // If this is an instructions whose result is defined even if the input is
1298 // not fully defined, propagate the information.
1299 Type *ITy = I.getType();
1300 switch (I.getOpcode()) {
1301 case Instruction::Add:
1302 case Instruction::Sub:
1303 case Instruction::Trunc:
1304 case Instruction::FPTrunc:
1305 case Instruction::BitCast:
1306 break; // Any undef -> undef
1307 case Instruction::FSub:
1308 case Instruction::FAdd:
1309 case Instruction::FMul:
1310 case Instruction::FDiv:
1311 case Instruction::FRem:
1312 // Floating-point binary operation: be conservative.
1313 if (Op0LV.isUnknown() && Op1LV.isUnknown())
1314 markForcedConstant(&I, Constant::getNullValue(ITy));
1315 else
1316 markOverdefined(&I);
1317 return true;
1318 case Instruction::ZExt:
1319 case Instruction::SExt:
1320 case Instruction::FPToUI:
1321 case Instruction::FPToSI:
1322 case Instruction::FPExt:
1323 case Instruction::PtrToInt:
1324 case Instruction::IntToPtr:
1325 case Instruction::SIToFP:
1326 case Instruction::UIToFP:
1327 // undef -> 0; some outputs are impossible
1328 markForcedConstant(&I, Constant::getNullValue(ITy));
1329 return true;
1330 case Instruction::Mul:
1331 case Instruction::And:
1332 // Both operands undef -> undef
1333 if (Op0LV.isUnknown() && Op1LV.isUnknown())
1334 break;
1335 // undef * X -> 0. X could be zero.
1336 // undef & X -> 0. X could be zero.
1337 markForcedConstant(&I, Constant::getNullValue(ITy));
1338 return true;
1339
1340 case Instruction::Or:
1341 // Both operands undef -> undef
1342 if (Op0LV.isUnknown() && Op1LV.isUnknown())
1343 break;
1344 // undef | X -> -1. X could be -1.
1345 markForcedConstant(&I, Constant::getAllOnesValue(ITy));
1346 return true;
1347
1348 case Instruction::Xor:
1349 // undef ^ undef -> 0; strictly speaking, this is not strictly
1350 // necessary, but we try to be nice to people who expect this
1351 // behavior in simple cases
1352 if (Op0LV.isUnknown() && Op1LV.isUnknown()) {
1353 markForcedConstant(&I, Constant::getNullValue(ITy));
1354 return true;
1355 }
1356 // undef ^ X -> undef
1357 break;
1358
1359 case Instruction::SDiv:
1360 case Instruction::UDiv:
1361 case Instruction::SRem:
1362 case Instruction::URem:
1363 // X / undef -> undef. No change.
1364 // X % undef -> undef. No change.
1365 if (Op1LV.isUnknown()) break;
1366
1367 // X / 0 -> undef. No change.
1368 // X % 0 -> undef. No change.
1369 if (Op1LV.isConstant() && Op1LV.getConstant()->isZeroValue())
1370 break;
1371
1372 // undef / X -> 0. X could be maxint.
1373 // undef % X -> 0. X could be 1.
1374 markForcedConstant(&I, Constant::getNullValue(ITy));
1375 return true;
1376
1377 case Instruction::AShr:
1378 // X >>a undef -> undef.
1379 if (Op1LV.isUnknown()) break;
1380
1381 // Shifting by the bitwidth or more is undefined.
1382 if (Op1LV.isConstant()) {
1383 if (auto *ShiftAmt = Op1LV.getConstantInt())
1384 if (ShiftAmt->getLimitedValue() >=
1385 ShiftAmt->getType()->getScalarSizeInBits())
1386 break;
1387 }
1388
1389 // undef >>a X -> all ones
1390 markForcedConstant(&I, Constant::getAllOnesValue(ITy));
1391 return true;
1392 case Instruction::LShr:
1393 case Instruction::Shl:
1394 // X << undef -> undef.
1395 // X >> undef -> undef.
1396 if (Op1LV.isUnknown()) break;
1397
1398 // Shifting by the bitwidth or more is undefined.
1399 if (Op1LV.isConstant()) {
1400 if (auto *ShiftAmt = Op1LV.getConstantInt())
1401 if (ShiftAmt->getLimitedValue() >=
1402 ShiftAmt->getType()->getScalarSizeInBits())
1403 break;
1404 }
1405
1406 // undef << X -> 0
1407 // undef >> X -> 0
1408 markForcedConstant(&I, Constant::getNullValue(ITy));
1409 return true;
1410 case Instruction::Select:
1411 Op1LV = getValueState(I.getOperand(1));
1412 // undef ? X : Y -> X or Y. There could be commonality between X/Y.
1413 if (Op0LV.isUnknown()) {
1414 if (!Op1LV.isConstant()) // Pick the constant one if there is any.
1415 Op1LV = getValueState(I.getOperand(2));
1416 } else if (Op1LV.isUnknown()) {
1417 // c ? undef : undef -> undef. No change.
1418 Op1LV = getValueState(I.getOperand(2));
1419 if (Op1LV.isUnknown())
1420 break;
1421 // Otherwise, c ? undef : x -> x.
1422 } else {
1423 // Leave Op1LV as Operand(1)'s LatticeValue.
1424 }
1425
1426 if (Op1LV.isConstant())
1427 markForcedConstant(&I, Op1LV.getConstant());
1428 else
1429 markOverdefined(&I);
1430 return true;
1431 case Instruction::Load:
1432 // A load here means one of two things: a load of undef from a global,
1433 // a load from an unknown pointer. Either way, having it return undef
1434 // is okay.
1435 break;
1436 case Instruction::ICmp:
1437 // X == undef -> undef. Other comparisons get more complicated.
1438 if (cast<ICmpInst>(&I)->isEquality())
1439 break;
1440 markOverdefined(&I);
1441 return true;
1442 case Instruction::Call:
1443 case Instruction::Invoke: {
1444 // There are two reasons a call can have an undef result
1445 // 1. It could be tracked.
1446 // 2. It could be constant-foldable.
1447 // Because of the way we solve return values, tracked calls must
1448 // never be marked overdefined in ResolvedUndefsIn.
1449 if (Function *F = CallSite(&I).getCalledFunction())
1450 if (TrackedRetVals.count(F))
1451 break;
1452
1453 // If the call is constant-foldable, we mark it overdefined because
1454 // we do not know what return values are valid.
1455 markOverdefined(&I);
1456 return true;
1457 }
1458 default:
1459 // If we don't know what should happen here, conservatively mark it
1460 // overdefined.
1461 markOverdefined(&I);
1462 return true;
1463 }
1464 }
1465
1466 // Check to see if we have a branch or switch on an undefined value. If so
1467 // we force the branch to go one way or the other to make the successor
1468 // values live. It doesn't really matter which way we force it.
1469 TerminatorInst *TI = BB.getTerminator();
1470 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1471 if (!BI->isConditional()) continue;
1472 if (!getValueState(BI->getCondition()).isUnknown())
1473 continue;
1474
1475 // If the input to SCCP is actually branch on undef, fix the undef to
1476 // false.
1477 if (isa<UndefValue>(BI->getCondition())) {
1478 BI->setCondition(ConstantInt::getFalse(BI->getContext()));
1479 markEdgeExecutable(&BB, TI->getSuccessor(1));
1480 return true;
1481 }
1482
1483 // Otherwise, it is a branch on a symbolic value which is currently
1484 // considered to be undef. Handle this by forcing the input value to the
1485 // branch to false.
1486 markForcedConstant(BI->getCondition(),
1487 ConstantInt::getFalse(TI->getContext()));
1488 return true;
1489 }
1490
1491 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1492 if (!SI->getNumCases())
1493 continue;
1494 if (!getValueState(SI->getCondition()).isUnknown())
1495 continue;
1496
1497 // If the input to SCCP is actually switch on undef, fix the undef to
1498 // the first constant.
1499 if (isa<UndefValue>(SI->getCondition())) {
1500 SI->setCondition(SI->case_begin().getCaseValue());
1501 markEdgeExecutable(&BB, SI->case_begin().getCaseSuccessor());
1502 return true;
1503 }
1504
1505 markForcedConstant(SI->getCondition(), SI->case_begin().getCaseValue());
1506 return true;
1507 }
1508 }
1509
1510 return false;
1511 }
1512
tryToReplaceWithConstant(SCCPSolver & Solver,Value * V)1513 static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) {
1514 Constant *Const = nullptr;
1515 if (V->getType()->isStructTy()) {
1516 std::vector<LatticeVal> IVs = Solver.getStructLatticeValueFor(V);
1517 if (std::any_of(IVs.begin(), IVs.end(),
1518 [](LatticeVal &LV) { return LV.isOverdefined(); }))
1519 return false;
1520 std::vector<Constant *> ConstVals;
1521 StructType *ST = dyn_cast<StructType>(V->getType());
1522 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
1523 LatticeVal V = IVs[i];
1524 ConstVals.push_back(V.isConstant()
1525 ? V.getConstant()
1526 : UndefValue::get(ST->getElementType(i)));
1527 }
1528 Const = ConstantStruct::get(ST, ConstVals);
1529 } else {
1530 LatticeVal IV = Solver.getLatticeValueFor(V);
1531 if (IV.isOverdefined())
1532 return false;
1533 Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(V->getType());
1534 }
1535 assert(Const && "Constant is nullptr here!");
1536 DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n');
1537
1538 // Replaces all of the uses of a variable with uses of the constant.
1539 V->replaceAllUsesWith(Const);
1540 return true;
1541 }
1542
tryToReplaceInstWithConstant(SCCPSolver & Solver,Instruction * Inst,bool shouldEraseFromParent)1543 static bool tryToReplaceInstWithConstant(SCCPSolver &Solver, Instruction *Inst,
1544 bool shouldEraseFromParent) {
1545 if (!tryToReplaceWithConstant(Solver, Inst))
1546 return false;
1547
1548 // Delete the instruction.
1549 if (shouldEraseFromParent)
1550 Inst->eraseFromParent();
1551 return true;
1552 }
1553
1554 // runSCCP() - Run the Sparse Conditional Constant Propagation algorithm,
1555 // and return true if the function was modified.
1556 //
runSCCP(Function & F,const DataLayout & DL,const TargetLibraryInfo * TLI)1557 static bool runSCCP(Function &F, const DataLayout &DL,
1558 const TargetLibraryInfo *TLI) {
1559 DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
1560 SCCPSolver Solver(DL, TLI);
1561
1562 // Mark the first block of the function as being executable.
1563 Solver.MarkBlockExecutable(&F.front());
1564
1565 // Mark all arguments to the function as being overdefined.
1566 for (Argument &AI : F.args())
1567 Solver.markAnythingOverdefined(&AI);
1568
1569 // Solve for constants.
1570 bool ResolvedUndefs = true;
1571 while (ResolvedUndefs) {
1572 Solver.Solve();
1573 DEBUG(dbgs() << "RESOLVING UNDEFs\n");
1574 ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1575 }
1576
1577 bool MadeChanges = false;
1578
1579 // If we decided that there are basic blocks that are dead in this function,
1580 // delete their contents now. Note that we cannot actually delete the blocks,
1581 // as we cannot modify the CFG of the function.
1582
1583 for (BasicBlock &BB : F) {
1584 if (!Solver.isBlockExecutable(&BB)) {
1585 DEBUG(dbgs() << " BasicBlock Dead:" << BB);
1586
1587 ++NumDeadBlocks;
1588 NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB);
1589
1590 MadeChanges = true;
1591 continue;
1592 }
1593
1594 // Iterate over all of the instructions in a function, replacing them with
1595 // constants if we have found them to be of constant values.
1596 //
1597 for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
1598 Instruction *Inst = &*BI++;
1599 if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst))
1600 continue;
1601
1602 if (tryToReplaceInstWithConstant(Solver, Inst,
1603 true /* shouldEraseFromParent */)) {
1604 // Hey, we just changed something!
1605 MadeChanges = true;
1606 ++NumInstRemoved;
1607 }
1608 }
1609 }
1610
1611 return MadeChanges;
1612 }
1613
run(Function & F,AnalysisManager<Function> & AM)1614 PreservedAnalyses SCCPPass::run(Function &F, AnalysisManager<Function> &AM) {
1615 const DataLayout &DL = F.getParent()->getDataLayout();
1616 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1617 if (!runSCCP(F, DL, &TLI))
1618 return PreservedAnalyses::all();
1619
1620 auto PA = PreservedAnalyses();
1621 PA.preserve<GlobalsAA>();
1622 return PA;
1623 }
1624
1625 namespace {
1626 //===--------------------------------------------------------------------===//
1627 //
1628 /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1629 /// Sparse Conditional Constant Propagator.
1630 ///
1631 class SCCPLegacyPass : public FunctionPass {
1632 public:
getAnalysisUsage(AnalysisUsage & AU) const1633 void getAnalysisUsage(AnalysisUsage &AU) const override {
1634 AU.addRequired<TargetLibraryInfoWrapperPass>();
1635 AU.addPreserved<GlobalsAAWrapperPass>();
1636 }
1637 static char ID; // Pass identification, replacement for typeid
SCCPLegacyPass()1638 SCCPLegacyPass() : FunctionPass(ID) {
1639 initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry());
1640 }
1641
1642 // runOnFunction - Run the Sparse Conditional Constant Propagation
1643 // algorithm, and return true if the function was modified.
1644 //
runOnFunction(Function & F)1645 bool runOnFunction(Function &F) override {
1646 if (skipFunction(F))
1647 return false;
1648 const DataLayout &DL = F.getParent()->getDataLayout();
1649 const TargetLibraryInfo *TLI =
1650 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1651 return runSCCP(F, DL, TLI);
1652 }
1653 };
1654 } // end anonymous namespace
1655
1656 char SCCPLegacyPass::ID = 0;
1657 INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp",
1658 "Sparse Conditional Constant Propagation", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)1659 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1660 INITIALIZE_PASS_END(SCCPLegacyPass, "sccp",
1661 "Sparse Conditional Constant Propagation", false, false)
1662
1663 // createSCCPPass - This is the public interface to this file.
1664 FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); }
1665
AddressIsTaken(const GlobalValue * GV)1666 static bool AddressIsTaken(const GlobalValue *GV) {
1667 // Delete any dead constantexpr klingons.
1668 GV->removeDeadConstantUsers();
1669
1670 for (const Use &U : GV->uses()) {
1671 const User *UR = U.getUser();
1672 if (const StoreInst *SI = dyn_cast<StoreInst>(UR)) {
1673 if (SI->getOperand(0) == GV || SI->isVolatile())
1674 return true; // Storing addr of GV.
1675 } else if (isa<InvokeInst>(UR) || isa<CallInst>(UR)) {
1676 // Make sure we are calling the function, not passing the address.
1677 ImmutableCallSite CS(cast<Instruction>(UR));
1678 if (!CS.isCallee(&U))
1679 return true;
1680 } else if (const LoadInst *LI = dyn_cast<LoadInst>(UR)) {
1681 if (LI->isVolatile())
1682 return true;
1683 } else if (isa<BlockAddress>(UR)) {
1684 // blockaddress doesn't take the address of the function, it takes addr
1685 // of label.
1686 } else {
1687 return true;
1688 }
1689 }
1690 return false;
1691 }
1692
runIPSCCP(Module & M,const DataLayout & DL,const TargetLibraryInfo * TLI)1693 static bool runIPSCCP(Module &M, const DataLayout &DL,
1694 const TargetLibraryInfo *TLI) {
1695 SCCPSolver Solver(DL, TLI);
1696
1697 // AddressTakenFunctions - This set keeps track of the address-taken functions
1698 // that are in the input. As IPSCCP runs through and simplifies code,
1699 // functions that were address taken can end up losing their
1700 // address-taken-ness. Because of this, we keep track of their addresses from
1701 // the first pass so we can use them for the later simplification pass.
1702 SmallPtrSet<Function*, 32> AddressTakenFunctions;
1703
1704 // Loop over all functions, marking arguments to those with their addresses
1705 // taken or that are external as overdefined.
1706 //
1707 for (Function &F : M) {
1708 if (F.isDeclaration())
1709 continue;
1710
1711 // If this is an exact definition of this function, then we can propagate
1712 // information about its result into callsites of it.
1713 if (F.hasExactDefinition())
1714 Solver.AddTrackedFunction(&F);
1715
1716 // If this function only has direct calls that we can see, we can track its
1717 // arguments and return value aggressively, and can assume it is not called
1718 // unless we see evidence to the contrary.
1719 if (F.hasLocalLinkage()) {
1720 if (AddressIsTaken(&F))
1721 AddressTakenFunctions.insert(&F);
1722 else {
1723 Solver.AddArgumentTrackedFunction(&F);
1724 continue;
1725 }
1726 }
1727
1728 // Assume the function is called.
1729 Solver.MarkBlockExecutable(&F.front());
1730
1731 // Assume nothing about the incoming arguments.
1732 for (Argument &AI : F.args())
1733 Solver.markAnythingOverdefined(&AI);
1734 }
1735
1736 // Loop over global variables. We inform the solver about any internal global
1737 // variables that do not have their 'addresses taken'. If they don't have
1738 // their addresses taken, we can propagate constants through them.
1739 for (GlobalVariable &G : M.globals())
1740 if (!G.isConstant() && G.hasLocalLinkage() && !AddressIsTaken(&G))
1741 Solver.TrackValueOfGlobalVariable(&G);
1742
1743 // Solve for constants.
1744 bool ResolvedUndefs = true;
1745 while (ResolvedUndefs) {
1746 Solver.Solve();
1747
1748 DEBUG(dbgs() << "RESOLVING UNDEFS\n");
1749 ResolvedUndefs = false;
1750 for (Function &F : M)
1751 ResolvedUndefs |= Solver.ResolvedUndefsIn(F);
1752 }
1753
1754 bool MadeChanges = false;
1755
1756 // Iterate over all of the instructions in the module, replacing them with
1757 // constants if we have found them to be of constant values.
1758 //
1759 SmallVector<BasicBlock*, 512> BlocksToErase;
1760
1761 for (Function &F : M) {
1762 if (F.isDeclaration())
1763 continue;
1764
1765 if (Solver.isBlockExecutable(&F.front())) {
1766 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;
1767 ++AI) {
1768 if (AI->use_empty())
1769 continue;
1770 if (tryToReplaceWithConstant(Solver, &*AI))
1771 ++IPNumArgsElimed;
1772 }
1773 }
1774
1775 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1776 if (!Solver.isBlockExecutable(&*BB)) {
1777 DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
1778
1779 ++NumDeadBlocks;
1780 NumInstRemoved +=
1781 changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false);
1782
1783 MadeChanges = true;
1784
1785 if (&*BB != &F.front())
1786 BlocksToErase.push_back(&*BB);
1787 continue;
1788 }
1789
1790 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1791 Instruction *Inst = &*BI++;
1792 if (Inst->getType()->isVoidTy())
1793 continue;
1794 if (tryToReplaceInstWithConstant(
1795 Solver, Inst,
1796 !isa<CallInst>(Inst) &&
1797 !isa<TerminatorInst>(Inst) /* shouldEraseFromParent */)) {
1798 // Hey, we just changed something!
1799 MadeChanges = true;
1800 ++IPNumInstRemoved;
1801 }
1802 }
1803 }
1804
1805 // Now that all instructions in the function are constant folded, erase dead
1806 // blocks, because we can now use ConstantFoldTerminator to get rid of
1807 // in-edges.
1808 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1809 // If there are any PHI nodes in this successor, drop entries for BB now.
1810 BasicBlock *DeadBB = BlocksToErase[i];
1811 for (Value::user_iterator UI = DeadBB->user_begin(),
1812 UE = DeadBB->user_end();
1813 UI != UE;) {
1814 // Grab the user and then increment the iterator early, as the user
1815 // will be deleted. Step past all adjacent uses from the same user.
1816 Instruction *I = dyn_cast<Instruction>(*UI);
1817 do { ++UI; } while (UI != UE && *UI == I);
1818
1819 // Ignore blockaddress users; BasicBlock's dtor will handle them.
1820 if (!I) continue;
1821
1822 bool Folded = ConstantFoldTerminator(I->getParent());
1823 if (!Folded) {
1824 // The constant folder may not have been able to fold the terminator
1825 // if this is a branch or switch on undef. Fold it manually as a
1826 // branch to the first successor.
1827 #ifndef NDEBUG
1828 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1829 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1830 "Branch should be foldable!");
1831 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1832 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1833 } else {
1834 llvm_unreachable("Didn't fold away reference to block!");
1835 }
1836 #endif
1837
1838 // Make this an uncond branch to the first successor.
1839 TerminatorInst *TI = I->getParent()->getTerminator();
1840 BranchInst::Create(TI->getSuccessor(0), TI);
1841
1842 // Remove entries in successor phi nodes to remove edges.
1843 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1844 TI->getSuccessor(i)->removePredecessor(TI->getParent());
1845
1846 // Remove the old terminator.
1847 TI->eraseFromParent();
1848 }
1849 }
1850
1851 // Finally, delete the basic block.
1852 F.getBasicBlockList().erase(DeadBB);
1853 }
1854 BlocksToErase.clear();
1855 }
1856
1857 // If we inferred constant or undef return values for a function, we replaced
1858 // all call uses with the inferred value. This means we don't need to bother
1859 // actually returning anything from the function. Replace all return
1860 // instructions with return undef.
1861 //
1862 // Do this in two stages: first identify the functions we should process, then
1863 // actually zap their returns. This is important because we can only do this
1864 // if the address of the function isn't taken. In cases where a return is the
1865 // last use of a function, the order of processing functions would affect
1866 // whether other functions are optimizable.
1867 SmallVector<ReturnInst*, 8> ReturnsToZap;
1868
1869 // TODO: Process multiple value ret instructions also.
1870 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
1871 for (const auto &I : RV) {
1872 Function *F = I.first;
1873 if (I.second.isOverdefined() || F->getReturnType()->isVoidTy())
1874 continue;
1875
1876 // We can only do this if we know that nothing else can call the function.
1877 if (!F->hasLocalLinkage() || AddressTakenFunctions.count(F))
1878 continue;
1879
1880 for (BasicBlock &BB : *F)
1881 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1882 if (!isa<UndefValue>(RI->getOperand(0)))
1883 ReturnsToZap.push_back(RI);
1884 }
1885
1886 // Zap all returns which we've identified as zap to change.
1887 for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
1888 Function *F = ReturnsToZap[i]->getParent()->getParent();
1889 ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
1890 }
1891
1892 // If we inferred constant or undef values for globals variables, we can
1893 // delete the global and any stores that remain to it.
1894 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1895 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1896 E = TG.end(); I != E; ++I) {
1897 GlobalVariable *GV = I->first;
1898 assert(!I->second.isOverdefined() &&
1899 "Overdefined values should have been taken out of the map!");
1900 DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n");
1901 while (!GV->use_empty()) {
1902 StoreInst *SI = cast<StoreInst>(GV->user_back());
1903 SI->eraseFromParent();
1904 }
1905 M.getGlobalList().erase(GV);
1906 ++IPNumGlobalConst;
1907 }
1908
1909 return MadeChanges;
1910 }
1911
run(Module & M,AnalysisManager<Module> & AM)1912 PreservedAnalyses IPSCCPPass::run(Module &M, AnalysisManager<Module> &AM) {
1913 const DataLayout &DL = M.getDataLayout();
1914 auto &TLI = AM.getResult<TargetLibraryAnalysis>(M);
1915 if (!runIPSCCP(M, DL, &TLI))
1916 return PreservedAnalyses::all();
1917 return PreservedAnalyses::none();
1918 }
1919
1920 namespace {
1921 //===--------------------------------------------------------------------===//
1922 //
1923 /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1924 /// Constant Propagation.
1925 ///
1926 class IPSCCPLegacyPass : public ModulePass {
1927 public:
1928 static char ID;
1929
IPSCCPLegacyPass()1930 IPSCCPLegacyPass() : ModulePass(ID) {
1931 initializeIPSCCPLegacyPassPass(*PassRegistry::getPassRegistry());
1932 }
1933
runOnModule(Module & M)1934 bool runOnModule(Module &M) override {
1935 if (skipModule(M))
1936 return false;
1937 const DataLayout &DL = M.getDataLayout();
1938 const TargetLibraryInfo *TLI =
1939 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1940 return runIPSCCP(M, DL, TLI);
1941 }
1942
getAnalysisUsage(AnalysisUsage & AU) const1943 void getAnalysisUsage(AnalysisUsage &AU) const override {
1944 AU.addRequired<TargetLibraryInfoWrapperPass>();
1945 }
1946 };
1947 } // end anonymous namespace
1948
1949 char IPSCCPLegacyPass::ID = 0;
1950 INITIALIZE_PASS_BEGIN(IPSCCPLegacyPass, "ipsccp",
1951 "Interprocedural Sparse Conditional Constant Propagation",
1952 false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)1953 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1954 INITIALIZE_PASS_END(IPSCCPLegacyPass, "ipsccp",
1955 "Interprocedural Sparse Conditional Constant Propagation",
1956 false, false)
1957
1958 // createIPSCCPPass - This is the public interface to this file.
1959 ModulePass *llvm::createIPSCCPPass() { return new IPSCCPLegacyPass(); }
1960