xref: /aosp_15_r20/external/llvm/lib/Target/ARM/ARMISelLowering.cpp (revision 9880d6810fe72a1726cb53787c6711e909410d58)
1 //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that ARM uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "ARMISelLowering.h"
16 #include "ARMCallingConv.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMPerfectShuffle.h"
20 #include "ARMSubtarget.h"
21 #include "ARMTargetMachine.h"
22 #include "ARMTargetObjectFile.h"
23 #include "MCTargetDesc/ARMAddressingModes.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/CodeGen/CallingConvLower.h"
28 #include "llvm/CodeGen/IntrinsicLowering.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
34 #include "llvm/CodeGen/MachineModuleInfo.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/MC/MCSectionMachO.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetOptions.h"
54 #include <utility>
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "arm-isel"
58 
59 STATISTIC(NumTailCalls, "Number of tail calls");
60 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
61 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
62 
63 static cl::opt<bool>
64 ARMInterworking("arm-interworking", cl::Hidden,
65   cl::desc("Enable / disable ARM interworking (for debugging only)"),
66   cl::init(true));
67 
68 namespace {
69   class ARMCCState : public CCState {
70   public:
ARMCCState(CallingConv::ID CC,bool isVarArg,MachineFunction & MF,SmallVectorImpl<CCValAssign> & locs,LLVMContext & C,ParmContext PC)71     ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
72                SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
73                ParmContext PC)
74         : CCState(CC, isVarArg, MF, locs, C) {
75       assert(((PC == Call) || (PC == Prologue)) &&
76              "ARMCCState users must specify whether their context is call"
77              "or prologue generation.");
78       CallOrPrologue = PC;
79     }
80   };
81 }
82 
83 // The APCS parameter registers.
84 static const MCPhysReg GPRArgRegs[] = {
85   ARM::R0, ARM::R1, ARM::R2, ARM::R3
86 };
87 
addTypeForNEON(MVT VT,MVT PromotedLdStVT,MVT PromotedBitwiseVT)88 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
89                                        MVT PromotedBitwiseVT) {
90   if (VT != PromotedLdStVT) {
91     setOperationAction(ISD::LOAD, VT, Promote);
92     AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
93 
94     setOperationAction(ISD::STORE, VT, Promote);
95     AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
96   }
97 
98   MVT ElemTy = VT.getVectorElementType();
99   if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
100     setOperationAction(ISD::SETCC, VT, Custom);
101   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
102   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
103   if (ElemTy == MVT::i32) {
104     setOperationAction(ISD::SINT_TO_FP, VT, Custom);
105     setOperationAction(ISD::UINT_TO_FP, VT, Custom);
106     setOperationAction(ISD::FP_TO_SINT, VT, Custom);
107     setOperationAction(ISD::FP_TO_UINT, VT, Custom);
108   } else {
109     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
110     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
111     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
112     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
113   }
114   setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
115   setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
116   setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
117   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
118   setOperationAction(ISD::SELECT,            VT, Expand);
119   setOperationAction(ISD::SELECT_CC,         VT, Expand);
120   setOperationAction(ISD::VSELECT,           VT, Expand);
121   setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
122   if (VT.isInteger()) {
123     setOperationAction(ISD::SHL, VT, Custom);
124     setOperationAction(ISD::SRA, VT, Custom);
125     setOperationAction(ISD::SRL, VT, Custom);
126   }
127 
128   // Promote all bit-wise operations.
129   if (VT.isInteger() && VT != PromotedBitwiseVT) {
130     setOperationAction(ISD::AND, VT, Promote);
131     AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
132     setOperationAction(ISD::OR,  VT, Promote);
133     AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
134     setOperationAction(ISD::XOR, VT, Promote);
135     AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
136   }
137 
138   // Neon does not support vector divide/remainder operations.
139   setOperationAction(ISD::SDIV, VT, Expand);
140   setOperationAction(ISD::UDIV, VT, Expand);
141   setOperationAction(ISD::FDIV, VT, Expand);
142   setOperationAction(ISD::SREM, VT, Expand);
143   setOperationAction(ISD::UREM, VT, Expand);
144   setOperationAction(ISD::FREM, VT, Expand);
145 
146   if (!VT.isFloatingPoint() &&
147       VT != MVT::v2i64 && VT != MVT::v1i64)
148     for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
149       setOperationAction(Opcode, VT, Legal);
150 }
151 
addDRTypeForNEON(MVT VT)152 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
153   addRegisterClass(VT, &ARM::DPRRegClass);
154   addTypeForNEON(VT, MVT::f64, MVT::v2i32);
155 }
156 
addQRTypeForNEON(MVT VT)157 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
158   addRegisterClass(VT, &ARM::DPairRegClass);
159   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
160 }
161 
ARMTargetLowering(const TargetMachine & TM,const ARMSubtarget & STI)162 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
163                                      const ARMSubtarget &STI)
164     : TargetLowering(TM), Subtarget(&STI) {
165   RegInfo = Subtarget->getRegisterInfo();
166   Itins = Subtarget->getInstrItineraryData();
167 
168   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
169 
170   if (Subtarget->isTargetMachO()) {
171     // Uses VFP for Thumb libfuncs if available.
172     if (Subtarget->isThumb() && Subtarget->hasVFP2() &&
173         Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
174       static const struct {
175         const RTLIB::Libcall Op;
176         const char * const Name;
177         const ISD::CondCode Cond;
178       } LibraryCalls[] = {
179         // Single-precision floating-point arithmetic.
180         { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
181         { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
182         { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
183         { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
184 
185         // Double-precision floating-point arithmetic.
186         { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
187         { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
188         { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
189         { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
190 
191         // Single-precision comparisons.
192         { RTLIB::OEQ_F32, "__eqsf2vfp",    ISD::SETNE },
193         { RTLIB::UNE_F32, "__nesf2vfp",    ISD::SETNE },
194         { RTLIB::OLT_F32, "__ltsf2vfp",    ISD::SETNE },
195         { RTLIB::OLE_F32, "__lesf2vfp",    ISD::SETNE },
196         { RTLIB::OGE_F32, "__gesf2vfp",    ISD::SETNE },
197         { RTLIB::OGT_F32, "__gtsf2vfp",    ISD::SETNE },
198         { RTLIB::UO_F32,  "__unordsf2vfp", ISD::SETNE },
199         { RTLIB::O_F32,   "__unordsf2vfp", ISD::SETEQ },
200 
201         // Double-precision comparisons.
202         { RTLIB::OEQ_F64, "__eqdf2vfp",    ISD::SETNE },
203         { RTLIB::UNE_F64, "__nedf2vfp",    ISD::SETNE },
204         { RTLIB::OLT_F64, "__ltdf2vfp",    ISD::SETNE },
205         { RTLIB::OLE_F64, "__ledf2vfp",    ISD::SETNE },
206         { RTLIB::OGE_F64, "__gedf2vfp",    ISD::SETNE },
207         { RTLIB::OGT_F64, "__gtdf2vfp",    ISD::SETNE },
208         { RTLIB::UO_F64,  "__unorddf2vfp", ISD::SETNE },
209         { RTLIB::O_F64,   "__unorddf2vfp", ISD::SETEQ },
210 
211         // Floating-point to integer conversions.
212         // i64 conversions are done via library routines even when generating VFP
213         // instructions, so use the same ones.
214         { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp",    ISD::SETCC_INVALID },
215         { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
216         { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp",    ISD::SETCC_INVALID },
217         { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
218 
219         // Conversions between floating types.
220         { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp",  ISD::SETCC_INVALID },
221         { RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp", ISD::SETCC_INVALID },
222 
223         // Integer to floating-point conversions.
224         // i64 conversions are done via library routines even when generating VFP
225         // instructions, so use the same ones.
226         // FIXME: There appears to be some naming inconsistency in ARM libgcc:
227         // e.g., __floatunsidf vs. __floatunssidfvfp.
228         { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp",    ISD::SETCC_INVALID },
229         { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
230         { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp",    ISD::SETCC_INVALID },
231         { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
232       };
233 
234       for (const auto &LC : LibraryCalls) {
235         setLibcallName(LC.Op, LC.Name);
236         if (LC.Cond != ISD::SETCC_INVALID)
237           setCmpLibcallCC(LC.Op, LC.Cond);
238       }
239     }
240 
241     // Set the correct calling convention for ARMv7k WatchOS. It's just
242     // AAPCS_VFP for functions as simple as libcalls.
243     if (Subtarget->isTargetWatchABI()) {
244       for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i)
245         setLibcallCallingConv((RTLIB::Libcall)i, CallingConv::ARM_AAPCS_VFP);
246     }
247   }
248 
249   // These libcalls are not available in 32-bit.
250   setLibcallName(RTLIB::SHL_I128, nullptr);
251   setLibcallName(RTLIB::SRL_I128, nullptr);
252   setLibcallName(RTLIB::SRA_I128, nullptr);
253 
254   // RTLIB
255   if (Subtarget->isAAPCS_ABI() &&
256       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
257        Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
258     static const struct {
259       const RTLIB::Libcall Op;
260       const char * const Name;
261       const CallingConv::ID CC;
262       const ISD::CondCode Cond;
263     } LibraryCalls[] = {
264       // Double-precision floating-point arithmetic helper functions
265       // RTABI chapter 4.1.2, Table 2
266       { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
267       { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
268       { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
269       { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
270 
271       // Double-precision floating-point comparison helper functions
272       // RTABI chapter 4.1.2, Table 3
273       { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
274       { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
275       { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
276       { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
277       { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
278       { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
279       { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
280       { RTLIB::O_F64,   "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
281 
282       // Single-precision floating-point arithmetic helper functions
283       // RTABI chapter 4.1.2, Table 4
284       { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
285       { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
286       { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
287       { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
288 
289       // Single-precision floating-point comparison helper functions
290       // RTABI chapter 4.1.2, Table 5
291       { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
292       { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
293       { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
294       { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
295       { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
296       { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
297       { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
298       { RTLIB::O_F32,   "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
299 
300       // Floating-point to integer conversions.
301       // RTABI chapter 4.1.2, Table 6
302       { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
303       { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
304       { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
305       { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
306       { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
307       { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
308       { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
309       { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
310 
311       // Conversions between floating types.
312       // RTABI chapter 4.1.2, Table 7
313       { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
314       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
315       { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
316 
317       // Integer to floating-point conversions.
318       // RTABI chapter 4.1.2, Table 8
319       { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
320       { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
321       { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
322       { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
323       { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
324       { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
325       { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
326       { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
327 
328       // Long long helper functions
329       // RTABI chapter 4.2, Table 9
330       { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
331       { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
332       { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
333       { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
334 
335       // Integer division functions
336       // RTABI chapter 4.3.1
337       { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
338       { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
339       { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
340       { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
341       { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
342       { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
343       { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
344       { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
345     };
346 
347     for (const auto &LC : LibraryCalls) {
348       setLibcallName(LC.Op, LC.Name);
349       setLibcallCallingConv(LC.Op, LC.CC);
350       if (LC.Cond != ISD::SETCC_INVALID)
351         setCmpLibcallCC(LC.Op, LC.Cond);
352     }
353 
354     // EABI dependent RTLIB
355     if (TM.Options.EABIVersion == EABI::EABI4 ||
356         TM.Options.EABIVersion == EABI::EABI5) {
357       static const struct {
358         const RTLIB::Libcall Op;
359         const char *const Name;
360         const CallingConv::ID CC;
361         const ISD::CondCode Cond;
362       } MemOpsLibraryCalls[] = {
363         // Memory operations
364         // RTABI chapter 4.3.4
365         { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
366         { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
367         { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
368       };
369 
370       for (const auto &LC : MemOpsLibraryCalls) {
371         setLibcallName(LC.Op, LC.Name);
372         setLibcallCallingConv(LC.Op, LC.CC);
373         if (LC.Cond != ISD::SETCC_INVALID)
374           setCmpLibcallCC(LC.Op, LC.Cond);
375       }
376     }
377   }
378 
379   if (Subtarget->isTargetWindows()) {
380     static const struct {
381       const RTLIB::Libcall Op;
382       const char * const Name;
383       const CallingConv::ID CC;
384     } LibraryCalls[] = {
385       { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
386       { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
387       { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
388       { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
389       { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
390       { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
391       { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
392       { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
393     };
394 
395     for (const auto &LC : LibraryCalls) {
396       setLibcallName(LC.Op, LC.Name);
397       setLibcallCallingConv(LC.Op, LC.CC);
398     }
399   }
400 
401   // Use divmod compiler-rt calls for iOS 5.0 and later.
402   if (Subtarget->isTargetWatchOS() ||
403       (Subtarget->isTargetIOS() &&
404        !Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
405     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
406     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
407   }
408 
409   // The half <-> float conversion functions are always soft-float on
410   // non-watchos platforms, but are needed for some targets which use a
411   // hard-float calling convention by default.
412   if (!Subtarget->isTargetWatchABI()) {
413     if (Subtarget->isAAPCS_ABI()) {
414       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
415       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
416       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
417     } else {
418       setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
419       setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
420       setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
421     }
422   }
423 
424   // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
425   // a __gnu_ prefix (which is the default).
426   if (Subtarget->isTargetAEABI()) {
427     setLibcallName(RTLIB::FPROUND_F32_F16, "__aeabi_f2h");
428     setLibcallName(RTLIB::FPROUND_F64_F16, "__aeabi_d2h");
429     setLibcallName(RTLIB::FPEXT_F16_F32,   "__aeabi_h2f");
430   }
431 
432   if (Subtarget->isThumb1Only())
433     addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
434   else
435     addRegisterClass(MVT::i32, &ARM::GPRRegClass);
436   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
437       !Subtarget->isThumb1Only()) {
438     addRegisterClass(MVT::f32, &ARM::SPRRegClass);
439     addRegisterClass(MVT::f64, &ARM::DPRRegClass);
440   }
441 
442   for (MVT VT : MVT::vector_valuetypes()) {
443     for (MVT InnerVT : MVT::vector_valuetypes()) {
444       setTruncStoreAction(VT, InnerVT, Expand);
445       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
446       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
447       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
448     }
449 
450     setOperationAction(ISD::MULHS, VT, Expand);
451     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
452     setOperationAction(ISD::MULHU, VT, Expand);
453     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
454 
455     setOperationAction(ISD::BSWAP, VT, Expand);
456   }
457 
458   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
459   setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
460 
461   setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
462   setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
463 
464   if (Subtarget->hasNEON()) {
465     addDRTypeForNEON(MVT::v2f32);
466     addDRTypeForNEON(MVT::v8i8);
467     addDRTypeForNEON(MVT::v4i16);
468     addDRTypeForNEON(MVT::v2i32);
469     addDRTypeForNEON(MVT::v1i64);
470 
471     addQRTypeForNEON(MVT::v4f32);
472     addQRTypeForNEON(MVT::v2f64);
473     addQRTypeForNEON(MVT::v16i8);
474     addQRTypeForNEON(MVT::v8i16);
475     addQRTypeForNEON(MVT::v4i32);
476     addQRTypeForNEON(MVT::v2i64);
477 
478     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
479     // neither Neon nor VFP support any arithmetic operations on it.
480     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
481     // supported for v4f32.
482     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
483     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
484     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
485     // FIXME: Code duplication: FDIV and FREM are expanded always, see
486     // ARMTargetLowering::addTypeForNEON method for details.
487     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
488     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
489     // FIXME: Create unittest.
490     // In another words, find a way when "copysign" appears in DAG with vector
491     // operands.
492     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
493     // FIXME: Code duplication: SETCC has custom operation action, see
494     // ARMTargetLowering::addTypeForNEON method for details.
495     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
496     // FIXME: Create unittest for FNEG and for FABS.
497     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
498     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
499     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
500     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
501     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
502     setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
503     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
504     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
505     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
506     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
507     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
508     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
509     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
510     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
511     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
512     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
513     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
514     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
515     setOperationAction(ISD::FMA, MVT::v2f64, Expand);
516 
517     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
518     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
519     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
520     setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
521     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
522     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
523     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
524     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
525     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
526     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
527     setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
528     setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
529     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
530     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
531     setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
532 
533     // Mark v2f32 intrinsics.
534     setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
535     setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
536     setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
537     setOperationAction(ISD::FPOWI, MVT::v2f32, Expand);
538     setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
539     setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
540     setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
541     setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
542     setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
543     setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
544     setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
545     setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
546     setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
547     setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
548     setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
549 
550     // Neon does not support some operations on v1i64 and v2i64 types.
551     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
552     // Custom handling for some quad-vector types to detect VMULL.
553     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
554     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
555     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
556     // Custom handling for some vector types to avoid expensive expansions
557     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
558     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
559     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
560     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
561     setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
562     setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
563     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
564     // a destination type that is wider than the source, and nor does
565     // it have a FP_TO_[SU]INT instruction with a narrower destination than
566     // source.
567     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
568     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
569     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
570     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
571 
572     setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
573     setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
574 
575     // NEON does not have single instruction CTPOP for vectors with element
576     // types wider than 8-bits.  However, custom lowering can leverage the
577     // v8i8/v16i8 vcnt instruction.
578     setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
579     setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
580     setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
581     setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
582     setOperationAction(ISD::CTPOP,      MVT::v1i64, Expand);
583     setOperationAction(ISD::CTPOP,      MVT::v2i64, Expand);
584 
585     setOperationAction(ISD::CTLZ,       MVT::v1i64, Expand);
586     setOperationAction(ISD::CTLZ,       MVT::v2i64, Expand);
587 
588     // NEON does not have single instruction CTTZ for vectors.
589     setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
590     setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
591     setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
592     setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
593 
594     setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
595     setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
596     setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
597     setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
598 
599     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
600     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
601     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
602     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
603 
604     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
605     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
606     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
607     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
608 
609     // NEON only has FMA instructions as of VFP4.
610     if (!Subtarget->hasVFP4()) {
611       setOperationAction(ISD::FMA, MVT::v2f32, Expand);
612       setOperationAction(ISD::FMA, MVT::v4f32, Expand);
613     }
614 
615     setTargetDAGCombine(ISD::INTRINSIC_VOID);
616     setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
617     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
618     setTargetDAGCombine(ISD::SHL);
619     setTargetDAGCombine(ISD::SRL);
620     setTargetDAGCombine(ISD::SRA);
621     setTargetDAGCombine(ISD::SIGN_EXTEND);
622     setTargetDAGCombine(ISD::ZERO_EXTEND);
623     setTargetDAGCombine(ISD::ANY_EXTEND);
624     setTargetDAGCombine(ISD::BUILD_VECTOR);
625     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
626     setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
627     setTargetDAGCombine(ISD::STORE);
628     setTargetDAGCombine(ISD::FP_TO_SINT);
629     setTargetDAGCombine(ISD::FP_TO_UINT);
630     setTargetDAGCombine(ISD::FDIV);
631     setTargetDAGCombine(ISD::LOAD);
632 
633     // It is legal to extload from v4i8 to v4i16 or v4i32.
634     for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
635                    MVT::v2i32}) {
636       for (MVT VT : MVT::integer_vector_valuetypes()) {
637         setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
638         setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
639         setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
640       }
641     }
642   }
643 
644   // ARM and Thumb2 support UMLAL/SMLAL.
645   if (!Subtarget->isThumb1Only())
646     setTargetDAGCombine(ISD::ADDC);
647 
648   if (Subtarget->isFPOnlySP()) {
649     // When targeting a floating-point unit with only single-precision
650     // operations, f64 is legal for the few double-precision instructions which
651     // are present However, no double-precision operations other than moves,
652     // loads and stores are provided by the hardware.
653     setOperationAction(ISD::FADD,       MVT::f64, Expand);
654     setOperationAction(ISD::FSUB,       MVT::f64, Expand);
655     setOperationAction(ISD::FMUL,       MVT::f64, Expand);
656     setOperationAction(ISD::FMA,        MVT::f64, Expand);
657     setOperationAction(ISD::FDIV,       MVT::f64, Expand);
658     setOperationAction(ISD::FREM,       MVT::f64, Expand);
659     setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
660     setOperationAction(ISD::FGETSIGN,   MVT::f64, Expand);
661     setOperationAction(ISD::FNEG,       MVT::f64, Expand);
662     setOperationAction(ISD::FABS,       MVT::f64, Expand);
663     setOperationAction(ISD::FSQRT,      MVT::f64, Expand);
664     setOperationAction(ISD::FSIN,       MVT::f64, Expand);
665     setOperationAction(ISD::FCOS,       MVT::f64, Expand);
666     setOperationAction(ISD::FPOWI,      MVT::f64, Expand);
667     setOperationAction(ISD::FPOW,       MVT::f64, Expand);
668     setOperationAction(ISD::FLOG,       MVT::f64, Expand);
669     setOperationAction(ISD::FLOG2,      MVT::f64, Expand);
670     setOperationAction(ISD::FLOG10,     MVT::f64, Expand);
671     setOperationAction(ISD::FEXP,       MVT::f64, Expand);
672     setOperationAction(ISD::FEXP2,      MVT::f64, Expand);
673     setOperationAction(ISD::FCEIL,      MVT::f64, Expand);
674     setOperationAction(ISD::FTRUNC,     MVT::f64, Expand);
675     setOperationAction(ISD::FRINT,      MVT::f64, Expand);
676     setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
677     setOperationAction(ISD::FFLOOR,     MVT::f64, Expand);
678     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
679     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
680     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
681     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
682     setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
683     setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
684     setOperationAction(ISD::FP_ROUND,   MVT::f32, Custom);
685     setOperationAction(ISD::FP_EXTEND,  MVT::f64, Custom);
686   }
687 
688   computeRegisterProperties(Subtarget->getRegisterInfo());
689 
690   // ARM does not have floating-point extending loads.
691   for (MVT VT : MVT::fp_valuetypes()) {
692     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
693     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
694   }
695 
696   // ... or truncating stores
697   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
698   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
699   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
700 
701   // ARM does not have i1 sign extending load.
702   for (MVT VT : MVT::integer_valuetypes())
703     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
704 
705   // ARM supports all 4 flavors of integer indexed load / store.
706   if (!Subtarget->isThumb1Only()) {
707     for (unsigned im = (unsigned)ISD::PRE_INC;
708          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
709       setIndexedLoadAction(im,  MVT::i1,  Legal);
710       setIndexedLoadAction(im,  MVT::i8,  Legal);
711       setIndexedLoadAction(im,  MVT::i16, Legal);
712       setIndexedLoadAction(im,  MVT::i32, Legal);
713       setIndexedStoreAction(im, MVT::i1,  Legal);
714       setIndexedStoreAction(im, MVT::i8,  Legal);
715       setIndexedStoreAction(im, MVT::i16, Legal);
716       setIndexedStoreAction(im, MVT::i32, Legal);
717     }
718   }
719 
720   setOperationAction(ISD::SADDO, MVT::i32, Custom);
721   setOperationAction(ISD::UADDO, MVT::i32, Custom);
722   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
723   setOperationAction(ISD::USUBO, MVT::i32, Custom);
724 
725   // i64 operation support.
726   setOperationAction(ISD::MUL,     MVT::i64, Expand);
727   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
728   if (Subtarget->isThumb1Only()) {
729     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
730     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
731   }
732   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
733       || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
734     setOperationAction(ISD::MULHS, MVT::i32, Expand);
735 
736   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
737   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
738   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
739   setOperationAction(ISD::SRL,       MVT::i64, Custom);
740   setOperationAction(ISD::SRA,       MVT::i64, Custom);
741 
742   if (!Subtarget->isThumb1Only()) {
743     // FIXME: We should do this for Thumb1 as well.
744     setOperationAction(ISD::ADDC,    MVT::i32, Custom);
745     setOperationAction(ISD::ADDE,    MVT::i32, Custom);
746     setOperationAction(ISD::SUBC,    MVT::i32, Custom);
747     setOperationAction(ISD::SUBE,    MVT::i32, Custom);
748   }
749 
750   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
751     setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
752 
753   // ARM does not have ROTL.
754   setOperationAction(ISD::ROTL, MVT::i32, Expand);
755   for (MVT VT : MVT::vector_valuetypes()) {
756     setOperationAction(ISD::ROTL, VT, Expand);
757     setOperationAction(ISD::ROTR, VT, Expand);
758   }
759   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
760   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
761   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
762     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
763 
764   // @llvm.readcyclecounter requires the Performance Monitors extension.
765   // Default to the 0 expansion on unsupported platforms.
766   // FIXME: Technically there are older ARM CPUs that have
767   // implementation-specific ways of obtaining this information.
768   if (Subtarget->hasPerfMon())
769     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
770 
771   // Only ARMv6 has BSWAP.
772   if (!Subtarget->hasV6Ops())
773     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
774 
775   bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivide()
776                                         : Subtarget->hasDivideInARMMode();
777   if (!hasDivide) {
778     // These are expanded into libcalls if the cpu doesn't have HW divider.
779     setOperationAction(ISD::SDIV,  MVT::i32, LibCall);
780     setOperationAction(ISD::UDIV,  MVT::i32, LibCall);
781   }
782 
783   if (Subtarget->isTargetWindows() && !Subtarget->hasDivide()) {
784     setOperationAction(ISD::SDIV, MVT::i32, Custom);
785     setOperationAction(ISD::UDIV, MVT::i32, Custom);
786 
787     setOperationAction(ISD::SDIV, MVT::i64, Custom);
788     setOperationAction(ISD::UDIV, MVT::i64, Custom);
789   }
790 
791   setOperationAction(ISD::SREM,  MVT::i32, Expand);
792   setOperationAction(ISD::UREM,  MVT::i32, Expand);
793   // Register based DivRem for AEABI (RTABI 4.2)
794   if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
795       Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI()) {
796     setOperationAction(ISD::SREM, MVT::i64, Custom);
797     setOperationAction(ISD::UREM, MVT::i64, Custom);
798 
799     setLibcallName(RTLIB::SDIVREM_I8,  "__aeabi_idivmod");
800     setLibcallName(RTLIB::SDIVREM_I16, "__aeabi_idivmod");
801     setLibcallName(RTLIB::SDIVREM_I32, "__aeabi_idivmod");
802     setLibcallName(RTLIB::SDIVREM_I64, "__aeabi_ldivmod");
803     setLibcallName(RTLIB::UDIVREM_I8,  "__aeabi_uidivmod");
804     setLibcallName(RTLIB::UDIVREM_I16, "__aeabi_uidivmod");
805     setLibcallName(RTLIB::UDIVREM_I32, "__aeabi_uidivmod");
806     setLibcallName(RTLIB::UDIVREM_I64, "__aeabi_uldivmod");
807 
808     setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::ARM_AAPCS);
809     setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::ARM_AAPCS);
810     setLibcallCallingConv(RTLIB::SDIVREM_I32, CallingConv::ARM_AAPCS);
811     setLibcallCallingConv(RTLIB::SDIVREM_I64, CallingConv::ARM_AAPCS);
812     setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::ARM_AAPCS);
813     setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::ARM_AAPCS);
814     setLibcallCallingConv(RTLIB::UDIVREM_I32, CallingConv::ARM_AAPCS);
815     setLibcallCallingConv(RTLIB::UDIVREM_I64, CallingConv::ARM_AAPCS);
816 
817     setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
818     setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
819     setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
820     setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
821   } else {
822     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
823     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
824   }
825 
826   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
827   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
828   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
829   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
830 
831   setOperationAction(ISD::TRAP, MVT::Other, Legal);
832 
833   // Use the default implementation.
834   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
835   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
836   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
837   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
838   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
839   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
840 
841   if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
842     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
843   else
844     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
845 
846   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
847   // the default expansion.
848   InsertFencesForAtomic = false;
849   if (Subtarget->hasAnyDataBarrier() &&
850       (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
851     // ATOMIC_FENCE needs custom lowering; the others should have been expanded
852     // to ldrex/strex loops already.
853     setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
854     if (!Subtarget->isThumb() || !Subtarget->isMClass())
855       setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i64, Custom);
856 
857     // On v8, we have particularly efficient implementations of atomic fences
858     // if they can be combined with nearby atomic loads and stores.
859     if (!Subtarget->hasV8Ops() || getTargetMachine().getOptLevel() == 0) {
860       // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
861       InsertFencesForAtomic = true;
862     }
863   } else {
864     // If there's anything we can use as a barrier, go through custom lowering
865     // for ATOMIC_FENCE.
866     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
867                        Subtarget->hasAnyDataBarrier() ? Custom : Expand);
868 
869     // Set them all for expansion, which will force libcalls.
870     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
871     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
872     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
873     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
874     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
875     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
876     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
877     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
878     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
879     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
880     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
881     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
882     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
883     // Unordered/Monotonic case.
884     setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
885     setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
886   }
887 
888   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
889 
890   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
891   if (!Subtarget->hasV6Ops()) {
892     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
893     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
894   }
895   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
896 
897   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
898       !Subtarget->isThumb1Only()) {
899     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
900     // iff target supports vfp2.
901     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
902     setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
903   }
904 
905   // We want to custom lower some of our intrinsics.
906   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
907   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
908   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
909   setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
910   if (Subtarget->useSjLjEH())
911     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
912 
913   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
914   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
915   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
916   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
917   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
918   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
919   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
920   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
921   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
922 
923   // Thumb-1 cannot currently select ARMISD::SUBE.
924   if (!Subtarget->isThumb1Only())
925     setOperationAction(ISD::SETCCE, MVT::i32, Custom);
926 
927   setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
928   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
929   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
930   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
931   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
932 
933   // We don't support sin/cos/fmod/copysign/pow
934   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
935   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
936   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
937   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
938   setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
939   setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
940   setOperationAction(ISD::FREM,      MVT::f64, Expand);
941   setOperationAction(ISD::FREM,      MVT::f32, Expand);
942   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
943       !Subtarget->isThumb1Only()) {
944     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
945     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
946   }
947   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
948   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
949 
950   if (!Subtarget->hasVFP4()) {
951     setOperationAction(ISD::FMA, MVT::f64, Expand);
952     setOperationAction(ISD::FMA, MVT::f32, Expand);
953   }
954 
955   // Various VFP goodness
956   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
957     // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
958     if (!Subtarget->hasFPARMv8() || Subtarget->isFPOnlySP()) {
959       setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
960       setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
961     }
962 
963     // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
964     if (!Subtarget->hasFP16()) {
965       setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
966       setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
967     }
968   }
969 
970   // Combine sin / cos into one node or libcall if possible.
971   if (Subtarget->hasSinCos()) {
972     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
973     setLibcallName(RTLIB::SINCOS_F64, "sincos");
974     if (Subtarget->isTargetWatchABI()) {
975       setLibcallCallingConv(RTLIB::SINCOS_F32, CallingConv::ARM_AAPCS_VFP);
976       setLibcallCallingConv(RTLIB::SINCOS_F64, CallingConv::ARM_AAPCS_VFP);
977     }
978     if (Subtarget->isTargetIOS() || Subtarget->isTargetWatchOS()) {
979       // For iOS, we don't want to the normal expansion of a libcall to
980       // sincos. We want to issue a libcall to __sincos_stret.
981       setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
982       setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
983     }
984   }
985 
986   // FP-ARMv8 implements a lot of rounding-like FP operations.
987   if (Subtarget->hasFPARMv8()) {
988     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
989     setOperationAction(ISD::FCEIL, MVT::f32, Legal);
990     setOperationAction(ISD::FROUND, MVT::f32, Legal);
991     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
992     setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
993     setOperationAction(ISD::FRINT, MVT::f32, Legal);
994     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
995     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
996     setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
997     setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
998     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
999     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1000 
1001     if (!Subtarget->isFPOnlySP()) {
1002       setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1003       setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1004       setOperationAction(ISD::FROUND, MVT::f64, Legal);
1005       setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1006       setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1007       setOperationAction(ISD::FRINT, MVT::f64, Legal);
1008       setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1009       setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1010     }
1011   }
1012 
1013   if (Subtarget->hasNEON()) {
1014     // vmin and vmax aren't available in a scalar form, so we use
1015     // a NEON instruction with an undef lane instead.
1016     setOperationAction(ISD::FMINNAN, MVT::f32, Legal);
1017     setOperationAction(ISD::FMAXNAN, MVT::f32, Legal);
1018     setOperationAction(ISD::FMINNAN, MVT::v2f32, Legal);
1019     setOperationAction(ISD::FMAXNAN, MVT::v2f32, Legal);
1020     setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal);
1021     setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal);
1022   }
1023 
1024   // We have target-specific dag combine patterns for the following nodes:
1025   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
1026   setTargetDAGCombine(ISD::ADD);
1027   setTargetDAGCombine(ISD::SUB);
1028   setTargetDAGCombine(ISD::MUL);
1029   setTargetDAGCombine(ISD::AND);
1030   setTargetDAGCombine(ISD::OR);
1031   setTargetDAGCombine(ISD::XOR);
1032 
1033   if (Subtarget->hasV6Ops())
1034     setTargetDAGCombine(ISD::SRL);
1035 
1036   setStackPointerRegisterToSaveRestore(ARM::SP);
1037 
1038   if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
1039       !Subtarget->hasVFP2())
1040     setSchedulingPreference(Sched::RegPressure);
1041   else
1042     setSchedulingPreference(Sched::Hybrid);
1043 
1044   //// temporary - rewrite interface to use type
1045   MaxStoresPerMemset = 8;
1046   MaxStoresPerMemsetOptSize = 4;
1047   MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
1048   MaxStoresPerMemcpyOptSize = 2;
1049   MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
1050   MaxStoresPerMemmoveOptSize = 2;
1051 
1052   // On ARM arguments smaller than 4 bytes are extended, so all arguments
1053   // are at least 4 bytes aligned.
1054   setMinStackArgumentAlignment(4);
1055 
1056   // Prefer likely predicted branches to selects on out-of-order cores.
1057   PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
1058 
1059   setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
1060 }
1061 
useSoftFloat() const1062 bool ARMTargetLowering::useSoftFloat() const {
1063   return Subtarget->useSoftFloat();
1064 }
1065 
1066 // FIXME: It might make sense to define the representative register class as the
1067 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1068 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1069 // SPR's representative would be DPR_VFP2. This should work well if register
1070 // pressure tracking were modified such that a register use would increment the
1071 // pressure of the register class's representative and all of it's super
1072 // classes' representatives transitively. We have not implemented this because
1073 // of the difficulty prior to coalescing of modeling operand register classes
1074 // due to the common occurrence of cross class copies and subregister insertions
1075 // and extractions.
1076 std::pair<const TargetRegisterClass *, uint8_t>
findRepresentativeClass(const TargetRegisterInfo * TRI,MVT VT) const1077 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1078                                            MVT VT) const {
1079   const TargetRegisterClass *RRC = nullptr;
1080   uint8_t Cost = 1;
1081   switch (VT.SimpleTy) {
1082   default:
1083     return TargetLowering::findRepresentativeClass(TRI, VT);
1084   // Use DPR as representative register class for all floating point
1085   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1086   // the cost is 1 for both f32 and f64.
1087   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
1088   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
1089     RRC = &ARM::DPRRegClass;
1090     // When NEON is used for SP, only half of the register file is available
1091     // because operations that define both SP and DP results will be constrained
1092     // to the VFP2 class (D0-D15). We currently model this constraint prior to
1093     // coalescing by double-counting the SP regs. See the FIXME above.
1094     if (Subtarget->useNEONForSinglePrecisionFP())
1095       Cost = 2;
1096     break;
1097   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1098   case MVT::v4f32: case MVT::v2f64:
1099     RRC = &ARM::DPRRegClass;
1100     Cost = 2;
1101     break;
1102   case MVT::v4i64:
1103     RRC = &ARM::DPRRegClass;
1104     Cost = 4;
1105     break;
1106   case MVT::v8i64:
1107     RRC = &ARM::DPRRegClass;
1108     Cost = 8;
1109     break;
1110   }
1111   return std::make_pair(RRC, Cost);
1112 }
1113 
getTargetNodeName(unsigned Opcode) const1114 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1115   switch ((ARMISD::NodeType)Opcode) {
1116   case ARMISD::FIRST_NUMBER:  break;
1117   case ARMISD::Wrapper:       return "ARMISD::Wrapper";
1118   case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
1119   case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
1120   case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
1121   case ARMISD::CALL:          return "ARMISD::CALL";
1122   case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
1123   case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
1124   case ARMISD::BRCOND:        return "ARMISD::BRCOND";
1125   case ARMISD::BR_JT:         return "ARMISD::BR_JT";
1126   case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
1127   case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
1128   case ARMISD::INTRET_FLAG:   return "ARMISD::INTRET_FLAG";
1129   case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
1130   case ARMISD::CMP:           return "ARMISD::CMP";
1131   case ARMISD::CMN:           return "ARMISD::CMN";
1132   case ARMISD::CMPZ:          return "ARMISD::CMPZ";
1133   case ARMISD::CMPFP:         return "ARMISD::CMPFP";
1134   case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
1135   case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
1136   case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
1137 
1138   case ARMISD::CMOV:          return "ARMISD::CMOV";
1139 
1140   case ARMISD::SSAT:          return "ARMISD::SSAT";
1141 
1142   case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
1143   case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
1144   case ARMISD::RRX:           return "ARMISD::RRX";
1145 
1146   case ARMISD::ADDC:          return "ARMISD::ADDC";
1147   case ARMISD::ADDE:          return "ARMISD::ADDE";
1148   case ARMISD::SUBC:          return "ARMISD::SUBC";
1149   case ARMISD::SUBE:          return "ARMISD::SUBE";
1150 
1151   case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
1152   case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
1153 
1154   case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
1155   case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
1156   case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1157 
1158   case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
1159 
1160   case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
1161 
1162   case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
1163 
1164   case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
1165 
1166   case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
1167 
1168   case ARMISD::WIN__CHKSTK:   return "ARMISD:::WIN__CHKSTK";
1169   case ARMISD::WIN__DBZCHK:   return "ARMISD::WIN__DBZCHK";
1170 
1171   case ARMISD::VCEQ:          return "ARMISD::VCEQ";
1172   case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
1173   case ARMISD::VCGE:          return "ARMISD::VCGE";
1174   case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
1175   case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
1176   case ARMISD::VCGEU:         return "ARMISD::VCGEU";
1177   case ARMISD::VCGT:          return "ARMISD::VCGT";
1178   case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
1179   case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
1180   case ARMISD::VCGTU:         return "ARMISD::VCGTU";
1181   case ARMISD::VTST:          return "ARMISD::VTST";
1182 
1183   case ARMISD::VSHL:          return "ARMISD::VSHL";
1184   case ARMISD::VSHRs:         return "ARMISD::VSHRs";
1185   case ARMISD::VSHRu:         return "ARMISD::VSHRu";
1186   case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
1187   case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
1188   case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
1189   case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
1190   case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
1191   case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
1192   case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
1193   case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
1194   case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
1195   case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
1196   case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
1197   case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
1198   case ARMISD::VSLI:          return "ARMISD::VSLI";
1199   case ARMISD::VSRI:          return "ARMISD::VSRI";
1200   case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
1201   case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
1202   case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
1203   case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
1204   case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
1205   case ARMISD::VDUP:          return "ARMISD::VDUP";
1206   case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
1207   case ARMISD::VEXT:          return "ARMISD::VEXT";
1208   case ARMISD::VREV64:        return "ARMISD::VREV64";
1209   case ARMISD::VREV32:        return "ARMISD::VREV32";
1210   case ARMISD::VREV16:        return "ARMISD::VREV16";
1211   case ARMISD::VZIP:          return "ARMISD::VZIP";
1212   case ARMISD::VUZP:          return "ARMISD::VUZP";
1213   case ARMISD::VTRN:          return "ARMISD::VTRN";
1214   case ARMISD::VTBL1:         return "ARMISD::VTBL1";
1215   case ARMISD::VTBL2:         return "ARMISD::VTBL2";
1216   case ARMISD::VMULLs:        return "ARMISD::VMULLs";
1217   case ARMISD::VMULLu:        return "ARMISD::VMULLu";
1218   case ARMISD::UMAAL:         return "ARMISD::UMAAL";
1219   case ARMISD::UMLAL:         return "ARMISD::UMLAL";
1220   case ARMISD::SMLAL:         return "ARMISD::SMLAL";
1221   case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
1222   case ARMISD::BFI:           return "ARMISD::BFI";
1223   case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
1224   case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
1225   case ARMISD::VBSL:          return "ARMISD::VBSL";
1226   case ARMISD::MEMCPY:        return "ARMISD::MEMCPY";
1227   case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
1228   case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
1229   case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
1230   case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
1231   case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
1232   case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
1233   case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
1234   case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
1235   case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
1236   case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
1237   case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
1238   case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
1239   case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
1240   case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
1241   case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
1242   case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
1243   case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
1244   case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
1245   case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
1246   case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
1247   }
1248   return nullptr;
1249 }
1250 
getSetCCResultType(const DataLayout & DL,LLVMContext &,EVT VT) const1251 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1252                                           EVT VT) const {
1253   if (!VT.isVector())
1254     return getPointerTy(DL);
1255   return VT.changeVectorElementTypeToInteger();
1256 }
1257 
1258 /// getRegClassFor - Return the register class that should be used for the
1259 /// specified value type.
getRegClassFor(MVT VT) const1260 const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
1261   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1262   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1263   // load / store 4 to 8 consecutive D registers.
1264   if (Subtarget->hasNEON()) {
1265     if (VT == MVT::v4i64)
1266       return &ARM::QQPRRegClass;
1267     if (VT == MVT::v8i64)
1268       return &ARM::QQQQPRRegClass;
1269   }
1270   return TargetLowering::getRegClassFor(VT);
1271 }
1272 
1273 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1274 // source/dest is aligned and the copy size is large enough. We therefore want
1275 // to align such objects passed to memory intrinsics.
shouldAlignPointerArgs(CallInst * CI,unsigned & MinSize,unsigned & PrefAlign) const1276 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1277                                                unsigned &PrefAlign) const {
1278   if (!isa<MemIntrinsic>(CI))
1279     return false;
1280   MinSize = 8;
1281   // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1282   // cycle faster than 4-byte aligned LDM.
1283   PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
1284   return true;
1285 }
1286 
1287 // Create a fast isel object.
1288 FastISel *
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo) const1289 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1290                                   const TargetLibraryInfo *libInfo) const {
1291   return ARM::createFastISel(funcInfo, libInfo);
1292 }
1293 
getSchedulingPreference(SDNode * N) const1294 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1295   unsigned NumVals = N->getNumValues();
1296   if (!NumVals)
1297     return Sched::RegPressure;
1298 
1299   for (unsigned i = 0; i != NumVals; ++i) {
1300     EVT VT = N->getValueType(i);
1301     if (VT == MVT::Glue || VT == MVT::Other)
1302       continue;
1303     if (VT.isFloatingPoint() || VT.isVector())
1304       return Sched::ILP;
1305   }
1306 
1307   if (!N->isMachineOpcode())
1308     return Sched::RegPressure;
1309 
1310   // Load are scheduled for latency even if there instruction itinerary
1311   // is not available.
1312   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1313   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1314 
1315   if (MCID.getNumDefs() == 0)
1316     return Sched::RegPressure;
1317   if (!Itins->isEmpty() &&
1318       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1319     return Sched::ILP;
1320 
1321   return Sched::RegPressure;
1322 }
1323 
1324 //===----------------------------------------------------------------------===//
1325 // Lowering Code
1326 //===----------------------------------------------------------------------===//
1327 
1328 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
IntCCToARMCC(ISD::CondCode CC)1329 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1330   switch (CC) {
1331   default: llvm_unreachable("Unknown condition code!");
1332   case ISD::SETNE:  return ARMCC::NE;
1333   case ISD::SETEQ:  return ARMCC::EQ;
1334   case ISD::SETGT:  return ARMCC::GT;
1335   case ISD::SETGE:  return ARMCC::GE;
1336   case ISD::SETLT:  return ARMCC::LT;
1337   case ISD::SETLE:  return ARMCC::LE;
1338   case ISD::SETUGT: return ARMCC::HI;
1339   case ISD::SETUGE: return ARMCC::HS;
1340   case ISD::SETULT: return ARMCC::LO;
1341   case ISD::SETULE: return ARMCC::LS;
1342   }
1343 }
1344 
1345 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
FPCCToARMCC(ISD::CondCode CC,ARMCC::CondCodes & CondCode,ARMCC::CondCodes & CondCode2)1346 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1347                         ARMCC::CondCodes &CondCode2) {
1348   CondCode2 = ARMCC::AL;
1349   switch (CC) {
1350   default: llvm_unreachable("Unknown FP condition!");
1351   case ISD::SETEQ:
1352   case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1353   case ISD::SETGT:
1354   case ISD::SETOGT: CondCode = ARMCC::GT; break;
1355   case ISD::SETGE:
1356   case ISD::SETOGE: CondCode = ARMCC::GE; break;
1357   case ISD::SETOLT: CondCode = ARMCC::MI; break;
1358   case ISD::SETOLE: CondCode = ARMCC::LS; break;
1359   case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1360   case ISD::SETO:   CondCode = ARMCC::VC; break;
1361   case ISD::SETUO:  CondCode = ARMCC::VS; break;
1362   case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1363   case ISD::SETUGT: CondCode = ARMCC::HI; break;
1364   case ISD::SETUGE: CondCode = ARMCC::PL; break;
1365   case ISD::SETLT:
1366   case ISD::SETULT: CondCode = ARMCC::LT; break;
1367   case ISD::SETLE:
1368   case ISD::SETULE: CondCode = ARMCC::LE; break;
1369   case ISD::SETNE:
1370   case ISD::SETUNE: CondCode = ARMCC::NE; break;
1371   }
1372 }
1373 
1374 //===----------------------------------------------------------------------===//
1375 //                      Calling Convention Implementation
1376 //===----------------------------------------------------------------------===//
1377 
1378 #include "ARMGenCallingConv.inc"
1379 
1380 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1381 /// account presence of floating point hardware and calling convention
1382 /// limitations, such as support for variadic functions.
1383 CallingConv::ID
getEffectiveCallingConv(CallingConv::ID CC,bool isVarArg) const1384 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
1385                                            bool isVarArg) const {
1386   switch (CC) {
1387   default:
1388     llvm_unreachable("Unsupported calling convention");
1389   case CallingConv::ARM_AAPCS:
1390   case CallingConv::ARM_APCS:
1391   case CallingConv::GHC:
1392     return CC;
1393   case CallingConv::PreserveMost:
1394     return CallingConv::PreserveMost;
1395   case CallingConv::ARM_AAPCS_VFP:
1396   case CallingConv::Swift:
1397     return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
1398   case CallingConv::C:
1399     if (!Subtarget->isAAPCS_ABI())
1400       return CallingConv::ARM_APCS;
1401     else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() &&
1402              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1403              !isVarArg)
1404       return CallingConv::ARM_AAPCS_VFP;
1405     else
1406       return CallingConv::ARM_AAPCS;
1407   case CallingConv::Fast:
1408   case CallingConv::CXX_FAST_TLS:
1409     if (!Subtarget->isAAPCS_ABI()) {
1410       if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
1411         return CallingConv::Fast;
1412       return CallingConv::ARM_APCS;
1413     } else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
1414       return CallingConv::ARM_AAPCS_VFP;
1415     else
1416       return CallingConv::ARM_AAPCS;
1417   }
1418 }
1419 
1420 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1421 /// CallingConvention.
CCAssignFnForNode(CallingConv::ID CC,bool Return,bool isVarArg) const1422 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1423                                                  bool Return,
1424                                                  bool isVarArg) const {
1425   switch (getEffectiveCallingConv(CC, isVarArg)) {
1426   default:
1427     llvm_unreachable("Unsupported calling convention");
1428   case CallingConv::ARM_APCS:
1429     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1430   case CallingConv::ARM_AAPCS:
1431     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1432   case CallingConv::ARM_AAPCS_VFP:
1433     return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1434   case CallingConv::Fast:
1435     return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1436   case CallingConv::GHC:
1437     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1438   case CallingConv::PreserveMost:
1439     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1440   }
1441 }
1442 
1443 /// LowerCallResult - Lower the result values of a call into the
1444 /// appropriate copies out of appropriate physical registers.
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,bool isThisReturn,SDValue ThisVal) const1445 SDValue ARMTargetLowering::LowerCallResult(
1446     SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1447     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1448     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
1449     SDValue ThisVal) const {
1450 
1451   // Assign locations to each value returned by this call.
1452   SmallVector<CCValAssign, 16> RVLocs;
1453   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1454                     *DAG.getContext(), Call);
1455   CCInfo.AnalyzeCallResult(Ins,
1456                            CCAssignFnForNode(CallConv, /* Return*/ true,
1457                                              isVarArg));
1458 
1459   // Copy all of the result registers out of their specified physreg.
1460   for (unsigned i = 0; i != RVLocs.size(); ++i) {
1461     CCValAssign VA = RVLocs[i];
1462 
1463     // Pass 'this' value directly from the argument to return value, to avoid
1464     // reg unit interference
1465     if (i == 0 && isThisReturn) {
1466       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
1467              "unexpected return calling convention register assignment");
1468       InVals.push_back(ThisVal);
1469       continue;
1470     }
1471 
1472     SDValue Val;
1473     if (VA.needsCustom()) {
1474       // Handle f64 or half of a v2f64.
1475       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1476                                       InFlag);
1477       Chain = Lo.getValue(1);
1478       InFlag = Lo.getValue(2);
1479       VA = RVLocs[++i]; // skip ahead to next loc
1480       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1481                                       InFlag);
1482       Chain = Hi.getValue(1);
1483       InFlag = Hi.getValue(2);
1484       if (!Subtarget->isLittle())
1485         std::swap (Lo, Hi);
1486       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1487 
1488       if (VA.getLocVT() == MVT::v2f64) {
1489         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
1490         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1491                           DAG.getConstant(0, dl, MVT::i32));
1492 
1493         VA = RVLocs[++i]; // skip ahead to next loc
1494         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1495         Chain = Lo.getValue(1);
1496         InFlag = Lo.getValue(2);
1497         VA = RVLocs[++i]; // skip ahead to next loc
1498         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
1499         Chain = Hi.getValue(1);
1500         InFlag = Hi.getValue(2);
1501         if (!Subtarget->isLittle())
1502           std::swap (Lo, Hi);
1503         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1504         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
1505                           DAG.getConstant(1, dl, MVT::i32));
1506       }
1507     } else {
1508       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
1509                                InFlag);
1510       Chain = Val.getValue(1);
1511       InFlag = Val.getValue(2);
1512     }
1513 
1514     switch (VA.getLocInfo()) {
1515     default: llvm_unreachable("Unknown loc info!");
1516     case CCValAssign::Full: break;
1517     case CCValAssign::BCvt:
1518       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
1519       break;
1520     }
1521 
1522     InVals.push_back(Val);
1523   }
1524 
1525   return Chain;
1526 }
1527 
1528 /// LowerMemOpCallTo - Store the argument to the stack.
LowerMemOpCallTo(SDValue Chain,SDValue StackPtr,SDValue Arg,const SDLoc & dl,SelectionDAG & DAG,const CCValAssign & VA,ISD::ArgFlagsTy Flags) const1529 SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
1530                                             SDValue Arg, const SDLoc &dl,
1531                                             SelectionDAG &DAG,
1532                                             const CCValAssign &VA,
1533                                             ISD::ArgFlagsTy Flags) const {
1534   unsigned LocMemOffset = VA.getLocMemOffset();
1535   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1536   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
1537                        StackPtr, PtrOff);
1538   return DAG.getStore(
1539       Chain, dl, Arg, PtrOff,
1540       MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset),
1541       false, false, 0);
1542 }
1543 
PassF64ArgInRegs(const SDLoc & dl,SelectionDAG & DAG,SDValue Chain,SDValue & Arg,RegsToPassVector & RegsToPass,CCValAssign & VA,CCValAssign & NextVA,SDValue & StackPtr,SmallVectorImpl<SDValue> & MemOpChains,ISD::ArgFlagsTy Flags) const1544 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
1545                                          SDValue Chain, SDValue &Arg,
1546                                          RegsToPassVector &RegsToPass,
1547                                          CCValAssign &VA, CCValAssign &NextVA,
1548                                          SDValue &StackPtr,
1549                                          SmallVectorImpl<SDValue> &MemOpChains,
1550                                          ISD::ArgFlagsTy Flags) const {
1551 
1552   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
1553                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
1554   unsigned id = Subtarget->isLittle() ? 0 : 1;
1555   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
1556 
1557   if (NextVA.isRegLoc())
1558     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
1559   else {
1560     assert(NextVA.isMemLoc());
1561     if (!StackPtr.getNode())
1562       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
1563                                     getPointerTy(DAG.getDataLayout()));
1564 
1565     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
1566                                            dl, DAG, NextVA,
1567                                            Flags));
1568   }
1569 }
1570 
1571 /// LowerCall - Lowering a call into a callseq_start <-
1572 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
1573 /// nodes.
1574 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const1575 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1576                              SmallVectorImpl<SDValue> &InVals) const {
1577   SelectionDAG &DAG                     = CLI.DAG;
1578   SDLoc &dl                             = CLI.DL;
1579   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1580   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
1581   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
1582   SDValue Chain                         = CLI.Chain;
1583   SDValue Callee                        = CLI.Callee;
1584   bool &isTailCall                      = CLI.IsTailCall;
1585   CallingConv::ID CallConv              = CLI.CallConv;
1586   bool doesNotRet                       = CLI.DoesNotReturn;
1587   bool isVarArg                         = CLI.IsVarArg;
1588 
1589   MachineFunction &MF = DAG.getMachineFunction();
1590   bool isStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
1591   bool isThisReturn   = false;
1592   bool isSibCall      = false;
1593   auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls");
1594 
1595   // Disable tail calls if they're not supported.
1596   if (!Subtarget->supportsTailCall() || Attr.getValueAsString() == "true")
1597     isTailCall = false;
1598 
1599   if (isTailCall) {
1600     // Check if it's really possible to do a tail call.
1601     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
1602                     isVarArg, isStructRet, MF.getFunction()->hasStructRetAttr(),
1603                                                    Outs, OutVals, Ins, DAG);
1604     if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall())
1605       report_fatal_error("failed to perform tail call elimination on a call "
1606                          "site marked musttail");
1607     // We don't support GuaranteedTailCallOpt for ARM, only automatically
1608     // detected sibcalls.
1609     if (isTailCall) {
1610       ++NumTailCalls;
1611       isSibCall = true;
1612     }
1613   }
1614 
1615   // Analyze operands of the call, assigning locations to each operand.
1616   SmallVector<CCValAssign, 16> ArgLocs;
1617   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1618                     *DAG.getContext(), Call);
1619   CCInfo.AnalyzeCallOperands(Outs,
1620                              CCAssignFnForNode(CallConv, /* Return*/ false,
1621                                                isVarArg));
1622 
1623   // Get a count of how many bytes are to be pushed on the stack.
1624   unsigned NumBytes = CCInfo.getNextStackOffset();
1625 
1626   // For tail calls, memory operands are available in our caller's stack.
1627   if (isSibCall)
1628     NumBytes = 0;
1629 
1630   // Adjust the stack pointer for the new arguments...
1631   // These operations are automatically eliminated by the prolog/epilog pass
1632   if (!isSibCall)
1633     Chain = DAG.getCALLSEQ_START(Chain,
1634                                  DAG.getIntPtrConstant(NumBytes, dl, true), dl);
1635 
1636   SDValue StackPtr =
1637       DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
1638 
1639   RegsToPassVector RegsToPass;
1640   SmallVector<SDValue, 8> MemOpChains;
1641 
1642   // Walk the register/memloc assignments, inserting copies/loads.  In the case
1643   // of tail call optimization, arguments are handled later.
1644   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
1645        i != e;
1646        ++i, ++realArgIdx) {
1647     CCValAssign &VA = ArgLocs[i];
1648     SDValue Arg = OutVals[realArgIdx];
1649     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
1650     bool isByVal = Flags.isByVal();
1651 
1652     // Promote the value if needed.
1653     switch (VA.getLocInfo()) {
1654     default: llvm_unreachable("Unknown loc info!");
1655     case CCValAssign::Full: break;
1656     case CCValAssign::SExt:
1657       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
1658       break;
1659     case CCValAssign::ZExt:
1660       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
1661       break;
1662     case CCValAssign::AExt:
1663       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
1664       break;
1665     case CCValAssign::BCvt:
1666       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
1667       break;
1668     }
1669 
1670     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
1671     if (VA.needsCustom()) {
1672       if (VA.getLocVT() == MVT::v2f64) {
1673         SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1674                                   DAG.getConstant(0, dl, MVT::i32));
1675         SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
1676                                   DAG.getConstant(1, dl, MVT::i32));
1677 
1678         PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
1679                          VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1680 
1681         VA = ArgLocs[++i]; // skip ahead to next loc
1682         if (VA.isRegLoc()) {
1683           PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
1684                            VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
1685         } else {
1686           assert(VA.isMemLoc());
1687 
1688           MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
1689                                                  dl, DAG, VA, Flags));
1690         }
1691       } else {
1692         PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
1693                          StackPtr, MemOpChains, Flags);
1694       }
1695     } else if (VA.isRegLoc()) {
1696       if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i32) {
1697         assert(VA.getLocVT() == MVT::i32 &&
1698                "unexpected calling convention register assignment");
1699         assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
1700                "unexpected use of 'returned'");
1701         isThisReturn = true;
1702       }
1703       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1704     } else if (isByVal) {
1705       assert(VA.isMemLoc());
1706       unsigned offset = 0;
1707 
1708       // True if this byval aggregate will be split between registers
1709       // and memory.
1710       unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
1711       unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
1712 
1713       if (CurByValIdx < ByValArgsCount) {
1714 
1715         unsigned RegBegin, RegEnd;
1716         CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
1717 
1718         EVT PtrVT =
1719             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1720         unsigned int i, j;
1721         for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
1722           SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
1723           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
1724           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
1725                                      MachinePointerInfo(),
1726                                      false, false, false,
1727                                      DAG.InferPtrAlignment(AddArg));
1728           MemOpChains.push_back(Load.getValue(1));
1729           RegsToPass.push_back(std::make_pair(j, Load));
1730         }
1731 
1732         // If parameter size outsides register area, "offset" value
1733         // helps us to calculate stack slot for remained part properly.
1734         offset = RegEnd - RegBegin;
1735 
1736         CCInfo.nextInRegsParam();
1737       }
1738 
1739       if (Flags.getByValSize() > 4*offset) {
1740         auto PtrVT = getPointerTy(DAG.getDataLayout());
1741         unsigned LocMemOffset = VA.getLocMemOffset();
1742         SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
1743         SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
1744         SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
1745         SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
1746         SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
1747                                            MVT::i32);
1748         SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl,
1749                                             MVT::i32);
1750 
1751         SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
1752         SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
1753         MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
1754                                           Ops));
1755       }
1756     } else if (!isSibCall) {
1757       assert(VA.isMemLoc());
1758 
1759       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
1760                                              dl, DAG, VA, Flags));
1761     }
1762   }
1763 
1764   if (!MemOpChains.empty())
1765     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
1766 
1767   // Build a sequence of copy-to-reg nodes chained together with token chain
1768   // and flag operands which copy the outgoing args into the appropriate regs.
1769   SDValue InFlag;
1770   // Tail call byval lowering might overwrite argument registers so in case of
1771   // tail call optimization the copies to registers are lowered later.
1772   if (!isTailCall)
1773     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1774       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1775                                RegsToPass[i].second, InFlag);
1776       InFlag = Chain.getValue(1);
1777     }
1778 
1779   // For tail calls lower the arguments to the 'real' stack slot.
1780   if (isTailCall) {
1781     // Force all the incoming stack arguments to be loaded from the stack
1782     // before any new outgoing arguments are stored to the stack, because the
1783     // outgoing stack slots may alias the incoming argument stack slots, and
1784     // the alias isn't otherwise explicit. This is slightly more conservative
1785     // than necessary, because it means that each store effectively depends
1786     // on every argument instead of just those arguments it would clobber.
1787 
1788     // Do not flag preceding copytoreg stuff together with the following stuff.
1789     InFlag = SDValue();
1790     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1791       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
1792                                RegsToPass[i].second, InFlag);
1793       InFlag = Chain.getValue(1);
1794     }
1795     InFlag = SDValue();
1796   }
1797 
1798   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1799   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1800   // node so that legalize doesn't hack it.
1801   bool isDirect = false;
1802 
1803   const TargetMachine &TM = getTargetMachine();
1804   const Module *Mod = MF.getFunction()->getParent();
1805   const GlobalValue *GV = nullptr;
1806   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1807     GV = G->getGlobal();
1808   bool isStub =
1809       !TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();
1810 
1811   bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
1812   bool isLocalARMFunc = false;
1813   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1814   auto PtrVt = getPointerTy(DAG.getDataLayout());
1815 
1816   if (Subtarget->genLongCalls()) {
1817     assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
1818            "long-calls codegen is not position independent!");
1819     // Handle a global address or an external symbol. If it's not one of
1820     // those, the target's already in a register, so we don't need to do
1821     // anything extra.
1822     if (isa<GlobalAddressSDNode>(Callee)) {
1823       // Create a constant pool entry for the callee address
1824       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1825       ARMConstantPoolValue *CPV =
1826         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
1827 
1828       // Get the address of the callee into a register
1829       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
1830       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1831       Callee = DAG.getLoad(
1832           PtrVt, dl, DAG.getEntryNode(), CPAddr,
1833           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
1834           false, false, 0);
1835     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
1836       const char *Sym = S->getSymbol();
1837 
1838       // Create a constant pool entry for the callee address
1839       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1840       ARMConstantPoolValue *CPV =
1841         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1842                                       ARMPCLabelIndex, 0);
1843       // Get the address of the callee into a register
1844       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
1845       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1846       Callee = DAG.getLoad(
1847           PtrVt, dl, DAG.getEntryNode(), CPAddr,
1848           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
1849           false, false, 0);
1850     }
1851   } else if (isa<GlobalAddressSDNode>(Callee)) {
1852     isDirect = true;
1853     bool isDef = GV->isStrongDefinitionForLinker();
1854 
1855     // ARM call to a local ARM function is predicable.
1856     isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
1857     // tBX takes a register source operand.
1858     if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1859       assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
1860       Callee = DAG.getNode(
1861           ARMISD::WrapperPIC, dl, PtrVt,
1862           DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
1863       Callee = DAG.getLoad(PtrVt, dl, DAG.getEntryNode(), Callee,
1864                            MachinePointerInfo::getGOT(DAG.getMachineFunction()),
1865                            false, false, true, 0);
1866     } else if (Subtarget->isTargetCOFF()) {
1867       assert(Subtarget->isTargetWindows() &&
1868              "Windows is the only supported COFF target");
1869       unsigned TargetFlags = GV->hasDLLImportStorageClass()
1870                                  ? ARMII::MO_DLLIMPORT
1871                                  : ARMII::MO_NO_FLAG;
1872       Callee =
1873           DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*Offset=*/0, TargetFlags);
1874       if (GV->hasDLLImportStorageClass())
1875         Callee =
1876             DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
1877                         DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
1878                         MachinePointerInfo::getGOT(DAG.getMachineFunction()),
1879                         false, false, false, 0);
1880     } else {
1881       Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
1882     }
1883   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1884     isDirect = true;
1885     // tBX takes a register source operand.
1886     const char *Sym = S->getSymbol();
1887     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
1888       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
1889       ARMConstantPoolValue *CPV =
1890         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
1891                                       ARMPCLabelIndex, 4);
1892       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
1893       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
1894       Callee = DAG.getLoad(
1895           PtrVt, dl, DAG.getEntryNode(), CPAddr,
1896           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
1897           false, false, 0);
1898       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
1899       Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
1900     } else {
1901       Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
1902     }
1903   }
1904 
1905   // FIXME: handle tail calls differently.
1906   unsigned CallOpc;
1907   if (Subtarget->isThumb()) {
1908     if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
1909       CallOpc = ARMISD::CALL_NOLINK;
1910     else
1911       CallOpc = ARMISD::CALL;
1912   } else {
1913     if (!isDirect && !Subtarget->hasV5TOps())
1914       CallOpc = ARMISD::CALL_NOLINK;
1915     else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
1916              // Emit regular call when code size is the priority
1917              !MF.getFunction()->optForMinSize())
1918       // "mov lr, pc; b _foo" to avoid confusing the RSP
1919       CallOpc = ARMISD::CALL_NOLINK;
1920     else
1921       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
1922   }
1923 
1924   std::vector<SDValue> Ops;
1925   Ops.push_back(Chain);
1926   Ops.push_back(Callee);
1927 
1928   // Add argument registers to the end of the list so that they are known live
1929   // into the call.
1930   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1931     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1932                                   RegsToPass[i].second.getValueType()));
1933 
1934   // Add a register mask operand representing the call-preserved registers.
1935   if (!isTailCall) {
1936     const uint32_t *Mask;
1937     const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
1938     if (isThisReturn) {
1939       // For 'this' returns, use the R0-preserving mask if applicable
1940       Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
1941       if (!Mask) {
1942         // Set isThisReturn to false if the calling convention is not one that
1943         // allows 'returned' to be modeled in this way, so LowerCallResult does
1944         // not try to pass 'this' straight through
1945         isThisReturn = false;
1946         Mask = ARI->getCallPreservedMask(MF, CallConv);
1947       }
1948     } else
1949       Mask = ARI->getCallPreservedMask(MF, CallConv);
1950 
1951     assert(Mask && "Missing call preserved mask for calling convention");
1952     Ops.push_back(DAG.getRegisterMask(Mask));
1953   }
1954 
1955   if (InFlag.getNode())
1956     Ops.push_back(InFlag);
1957 
1958   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1959   if (isTailCall) {
1960     MF.getFrameInfo()->setHasTailCall();
1961     return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
1962   }
1963 
1964   // Returns a chain and a flag for retval copy to use.
1965   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
1966   InFlag = Chain.getValue(1);
1967 
1968   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
1969                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
1970   if (!Ins.empty())
1971     InFlag = Chain.getValue(1);
1972 
1973   // Handle result values, copying them out of physregs into vregs that we
1974   // return.
1975   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
1976                          InVals, isThisReturn,
1977                          isThisReturn ? OutVals[0] : SDValue());
1978 }
1979 
1980 /// HandleByVal - Every parameter *after* a byval parameter is passed
1981 /// on the stack.  Remember the next parameter register to allocate,
1982 /// and then confiscate the rest of the parameter registers to insure
1983 /// this.
HandleByVal(CCState * State,unsigned & Size,unsigned Align) const1984 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
1985                                     unsigned Align) const {
1986   assert((State->getCallOrPrologue() == Prologue ||
1987           State->getCallOrPrologue() == Call) &&
1988          "unhandled ParmContext");
1989 
1990   // Byval (as with any stack) slots are always at least 4 byte aligned.
1991   Align = std::max(Align, 4U);
1992 
1993   unsigned Reg = State->AllocateReg(GPRArgRegs);
1994   if (!Reg)
1995     return;
1996 
1997   unsigned AlignInRegs = Align / 4;
1998   unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
1999   for (unsigned i = 0; i < Waste; ++i)
2000     Reg = State->AllocateReg(GPRArgRegs);
2001 
2002   if (!Reg)
2003     return;
2004 
2005   unsigned Excess = 4 * (ARM::R4 - Reg);
2006 
2007   // Special case when NSAA != SP and parameter size greater than size of
2008   // all remained GPR regs. In that case we can't split parameter, we must
2009   // send it to stack. We also must set NCRN to R4, so waste all
2010   // remained registers.
2011   const unsigned NSAAOffset = State->getNextStackOffset();
2012   if (NSAAOffset != 0 && Size > Excess) {
2013     while (State->AllocateReg(GPRArgRegs))
2014       ;
2015     return;
2016   }
2017 
2018   // First register for byval parameter is the first register that wasn't
2019   // allocated before this method call, so it would be "reg".
2020   // If parameter is small enough to be saved in range [reg, r4), then
2021   // the end (first after last) register would be reg + param-size-in-regs,
2022   // else parameter would be splitted between registers and stack,
2023   // end register would be r4 in this case.
2024   unsigned ByValRegBegin = Reg;
2025   unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
2026   State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
2027   // Note, first register is allocated in the beginning of function already,
2028   // allocate remained amount of registers we need.
2029   for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
2030     State->AllocateReg(GPRArgRegs);
2031   // A byval parameter that is split between registers and memory needs its
2032   // size truncated here.
2033   // In the case where the entire structure fits in registers, we set the
2034   // size in memory to zero.
2035   Size = std::max<int>(Size - Excess, 0);
2036 }
2037 
2038 /// MatchingStackOffset - Return true if the given stack call argument is
2039 /// already available in the same position (relatively) of the caller's
2040 /// incoming argument stack.
2041 static
MatchingStackOffset(SDValue Arg,unsigned Offset,ISD::ArgFlagsTy Flags,MachineFrameInfo * MFI,const MachineRegisterInfo * MRI,const TargetInstrInfo * TII)2042 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2043                          MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2044                          const TargetInstrInfo *TII) {
2045   unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2046   int FI = INT_MAX;
2047   if (Arg.getOpcode() == ISD::CopyFromReg) {
2048     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2049     if (!TargetRegisterInfo::isVirtualRegister(VR))
2050       return false;
2051     MachineInstr *Def = MRI->getVRegDef(VR);
2052     if (!Def)
2053       return false;
2054     if (!Flags.isByVal()) {
2055       if (!TII->isLoadFromStackSlot(*Def, FI))
2056         return false;
2057     } else {
2058       return false;
2059     }
2060   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2061     if (Flags.isByVal())
2062       // ByVal argument is passed in as a pointer but it's now being
2063       // dereferenced. e.g.
2064       // define @foo(%struct.X* %A) {
2065       //   tail call @bar(%struct.X* byval %A)
2066       // }
2067       return false;
2068     SDValue Ptr = Ld->getBasePtr();
2069     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2070     if (!FINode)
2071       return false;
2072     FI = FINode->getIndex();
2073   } else
2074     return false;
2075 
2076   assert(FI != INT_MAX);
2077   if (!MFI->isFixedObjectIndex(FI))
2078     return false;
2079   return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2080 }
2081 
2082 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2083 /// for tail call optimization. Targets which want to do tail call
2084 /// optimization should implement this function.
2085 bool
IsEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,bool isCalleeStructRet,bool isCallerStructRet,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const2086 ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2087                                                      CallingConv::ID CalleeCC,
2088                                                      bool isVarArg,
2089                                                      bool isCalleeStructRet,
2090                                                      bool isCallerStructRet,
2091                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
2092                                     const SmallVectorImpl<SDValue> &OutVals,
2093                                     const SmallVectorImpl<ISD::InputArg> &Ins,
2094                                                      SelectionDAG& DAG) const {
2095   MachineFunction &MF = DAG.getMachineFunction();
2096   const Function *CallerF = MF.getFunction();
2097   CallingConv::ID CallerCC = CallerF->getCallingConv();
2098 
2099   assert(Subtarget->supportsTailCall());
2100 
2101   // Look for obvious safe cases to perform tail call optimization that do not
2102   // require ABI changes. This is what gcc calls sibcall.
2103 
2104   // Do not sibcall optimize vararg calls unless the call site is not passing
2105   // any arguments.
2106   if (isVarArg && !Outs.empty())
2107     return false;
2108 
2109   // Exception-handling functions need a special set of instructions to indicate
2110   // a return to the hardware. Tail-calling another function would probably
2111   // break this.
2112   if (CallerF->hasFnAttribute("interrupt"))
2113     return false;
2114 
2115   // Also avoid sibcall optimization if either caller or callee uses struct
2116   // return semantics.
2117   if (isCalleeStructRet || isCallerStructRet)
2118     return false;
2119 
2120   // Externally-defined functions with weak linkage should not be
2121   // tail-called on ARM when the OS does not support dynamic
2122   // pre-emption of symbols, as the AAELF spec requires normal calls
2123   // to undefined weak functions to be replaced with a NOP or jump to the
2124   // next instruction. The behaviour of branch instructions in this
2125   // situation (as used for tail calls) is implementation-defined, so we
2126   // cannot rely on the linker replacing the tail call with a return.
2127   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2128     const GlobalValue *GV = G->getGlobal();
2129     const Triple &TT = getTargetMachine().getTargetTriple();
2130     if (GV->hasExternalWeakLinkage() &&
2131         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2132       return false;
2133   }
2134 
2135   // Check that the call results are passed in the same way.
2136   LLVMContext &C = *DAG.getContext();
2137   if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
2138                                   CCAssignFnForNode(CalleeCC, true, isVarArg),
2139                                   CCAssignFnForNode(CallerCC, true, isVarArg)))
2140     return false;
2141   // The callee has to preserve all registers the caller needs to preserve.
2142   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2143   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2144   if (CalleeCC != CallerCC) {
2145     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2146     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2147       return false;
2148   }
2149 
2150   // If Caller's vararg or byval argument has been split between registers and
2151   // stack, do not perform tail call, since part of the argument is in caller's
2152   // local frame.
2153   const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
2154   if (AFI_Caller->getArgRegsSaveSize())
2155     return false;
2156 
2157   // If the callee takes no arguments then go on to check the results of the
2158   // call.
2159   if (!Outs.empty()) {
2160     // Check if stack adjustment is needed. For now, do not do this if any
2161     // argument is passed on the stack.
2162     SmallVector<CCValAssign, 16> ArgLocs;
2163     ARMCCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C, Call);
2164     CCInfo.AnalyzeCallOperands(Outs,
2165                                CCAssignFnForNode(CalleeCC, false, isVarArg));
2166     if (CCInfo.getNextStackOffset()) {
2167       // Check if the arguments are already laid out in the right way as
2168       // the caller's fixed stack objects.
2169       MachineFrameInfo *MFI = MF.getFrameInfo();
2170       const MachineRegisterInfo *MRI = &MF.getRegInfo();
2171       const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2172       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2173            i != e;
2174            ++i, ++realArgIdx) {
2175         CCValAssign &VA = ArgLocs[i];
2176         EVT RegVT = VA.getLocVT();
2177         SDValue Arg = OutVals[realArgIdx];
2178         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2179         if (VA.getLocInfo() == CCValAssign::Indirect)
2180           return false;
2181         if (VA.needsCustom()) {
2182           // f64 and vector types are split into multiple registers or
2183           // register/stack-slot combinations.  The types will not match
2184           // the registers; give up on memory f64 refs until we figure
2185           // out what to do about this.
2186           if (!VA.isRegLoc())
2187             return false;
2188           if (!ArgLocs[++i].isRegLoc())
2189             return false;
2190           if (RegVT == MVT::v2f64) {
2191             if (!ArgLocs[++i].isRegLoc())
2192               return false;
2193             if (!ArgLocs[++i].isRegLoc())
2194               return false;
2195           }
2196         } else if (!VA.isRegLoc()) {
2197           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2198                                    MFI, MRI, TII))
2199             return false;
2200         }
2201       }
2202     }
2203 
2204     const MachineRegisterInfo &MRI = MF.getRegInfo();
2205     if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
2206       return false;
2207   }
2208 
2209   return true;
2210 }
2211 
2212 bool
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const2213 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2214                                   MachineFunction &MF, bool isVarArg,
2215                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2216                                   LLVMContext &Context) const {
2217   SmallVector<CCValAssign, 16> RVLocs;
2218   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
2219   return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true,
2220                                                     isVarArg));
2221 }
2222 
LowerInterruptReturn(SmallVectorImpl<SDValue> & RetOps,const SDLoc & DL,SelectionDAG & DAG)2223 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
2224                                     const SDLoc &DL, SelectionDAG &DAG) {
2225   const MachineFunction &MF = DAG.getMachineFunction();
2226   const Function *F = MF.getFunction();
2227 
2228   StringRef IntKind = F->getFnAttribute("interrupt").getValueAsString();
2229 
2230   // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2231   // version of the "preferred return address". These offsets affect the return
2232   // instruction if this is a return from PL1 without hypervisor extensions.
2233   //    IRQ/FIQ: +4     "subs pc, lr, #4"
2234   //    SWI:     0      "subs pc, lr, #0"
2235   //    ABORT:   +4     "subs pc, lr, #4"
2236   //    UNDEF:   +4/+2  "subs pc, lr, #0"
2237   // UNDEF varies depending on where the exception came from ARM or Thumb
2238   // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2239 
2240   int64_t LROffset;
2241   if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
2242       IntKind == "ABORT")
2243     LROffset = 4;
2244   else if (IntKind == "SWI" || IntKind == "UNDEF")
2245     LROffset = 0;
2246   else
2247     report_fatal_error("Unsupported interrupt attribute. If present, value "
2248                        "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2249 
2250   RetOps.insert(RetOps.begin() + 1,
2251                 DAG.getConstant(LROffset, DL, MVT::i32, false));
2252 
2253   return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
2254 }
2255 
2256 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const2257 ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2258                                bool isVarArg,
2259                                const SmallVectorImpl<ISD::OutputArg> &Outs,
2260                                const SmallVectorImpl<SDValue> &OutVals,
2261                                const SDLoc &dl, SelectionDAG &DAG) const {
2262 
2263   // CCValAssign - represent the assignment of the return value to a location.
2264   SmallVector<CCValAssign, 16> RVLocs;
2265 
2266   // CCState - Info about the registers and stack slots.
2267   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2268                     *DAG.getContext(), Call);
2269 
2270   // Analyze outgoing return values.
2271   CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
2272                                                isVarArg));
2273 
2274   SDValue Flag;
2275   SmallVector<SDValue, 4> RetOps;
2276   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2277   bool isLittleEndian = Subtarget->isLittle();
2278 
2279   MachineFunction &MF = DAG.getMachineFunction();
2280   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2281   AFI->setReturnRegsCount(RVLocs.size());
2282 
2283   // Copy the result values into the output registers.
2284   for (unsigned i = 0, realRVLocIdx = 0;
2285        i != RVLocs.size();
2286        ++i, ++realRVLocIdx) {
2287     CCValAssign &VA = RVLocs[i];
2288     assert(VA.isRegLoc() && "Can only return in registers!");
2289 
2290     SDValue Arg = OutVals[realRVLocIdx];
2291 
2292     switch (VA.getLocInfo()) {
2293     default: llvm_unreachable("Unknown loc info!");
2294     case CCValAssign::Full: break;
2295     case CCValAssign::BCvt:
2296       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2297       break;
2298     }
2299 
2300     if (VA.needsCustom()) {
2301       if (VA.getLocVT() == MVT::v2f64) {
2302         // Extract the first half and return it in two registers.
2303         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2304                                    DAG.getConstant(0, dl, MVT::i32));
2305         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
2306                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
2307 
2308         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2309                                  HalfGPRs.getValue(isLittleEndian ? 0 : 1),
2310                                  Flag);
2311         Flag = Chain.getValue(1);
2312         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2313         VA = RVLocs[++i]; // skip ahead to next loc
2314         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2315                                  HalfGPRs.getValue(isLittleEndian ? 1 : 0),
2316                                  Flag);
2317         Flag = Chain.getValue(1);
2318         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2319         VA = RVLocs[++i]; // skip ahead to next loc
2320 
2321         // Extract the 2nd half and fall through to handle it as an f64 value.
2322         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2323                           DAG.getConstant(1, dl, MVT::i32));
2324       }
2325       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
2326       // available.
2327       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2328                                   DAG.getVTList(MVT::i32, MVT::i32), Arg);
2329       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2330                                fmrrd.getValue(isLittleEndian ? 0 : 1),
2331                                Flag);
2332       Flag = Chain.getValue(1);
2333       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2334       VA = RVLocs[++i]; // skip ahead to next loc
2335       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2336                                fmrrd.getValue(isLittleEndian ? 1 : 0),
2337                                Flag);
2338     } else
2339       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
2340 
2341     // Guarantee that all emitted copies are
2342     // stuck together, avoiding something bad.
2343     Flag = Chain.getValue(1);
2344     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2345   }
2346   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2347   const MCPhysReg *I =
2348       TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2349   if (I) {
2350     for (; *I; ++I) {
2351       if (ARM::GPRRegClass.contains(*I))
2352         RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2353       else if (ARM::DPRRegClass.contains(*I))
2354         RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
2355       else
2356         llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2357     }
2358   }
2359 
2360   // Update chain and glue.
2361   RetOps[0] = Chain;
2362   if (Flag.getNode())
2363     RetOps.push_back(Flag);
2364 
2365   // CPUs which aren't M-class use a special sequence to return from
2366   // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2367   // though we use "subs pc, lr, #N").
2368   //
2369   // M-class CPUs actually use a normal return sequence with a special
2370   // (hardware-provided) value in LR, so the normal code path works.
2371   if (DAG.getMachineFunction().getFunction()->hasFnAttribute("interrupt") &&
2372       !Subtarget->isMClass()) {
2373     if (Subtarget->isThumb1Only())
2374       report_fatal_error("interrupt attribute is not supported in Thumb1");
2375     return LowerInterruptReturn(RetOps, dl, DAG);
2376   }
2377 
2378   return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
2379 }
2380 
isUsedByReturnOnly(SDNode * N,SDValue & Chain) const2381 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2382   if (N->getNumValues() != 1)
2383     return false;
2384   if (!N->hasNUsesOfValue(1, 0))
2385     return false;
2386 
2387   SDValue TCChain = Chain;
2388   SDNode *Copy = *N->use_begin();
2389   if (Copy->getOpcode() == ISD::CopyToReg) {
2390     // If the copy has a glue operand, we conservatively assume it isn't safe to
2391     // perform a tail call.
2392     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2393       return false;
2394     TCChain = Copy->getOperand(0);
2395   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
2396     SDNode *VMov = Copy;
2397     // f64 returned in a pair of GPRs.
2398     SmallPtrSet<SDNode*, 2> Copies;
2399     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2400          UI != UE; ++UI) {
2401       if (UI->getOpcode() != ISD::CopyToReg)
2402         return false;
2403       Copies.insert(*UI);
2404     }
2405     if (Copies.size() > 2)
2406       return false;
2407 
2408     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2409          UI != UE; ++UI) {
2410       SDValue UseChain = UI->getOperand(0);
2411       if (Copies.count(UseChain.getNode()))
2412         // Second CopyToReg
2413         Copy = *UI;
2414       else {
2415         // We are at the top of this chain.
2416         // If the copy has a glue operand, we conservatively assume it
2417         // isn't safe to perform a tail call.
2418         if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
2419           return false;
2420         // First CopyToReg
2421         TCChain = UseChain;
2422       }
2423     }
2424   } else if (Copy->getOpcode() == ISD::BITCAST) {
2425     // f32 returned in a single GPR.
2426     if (!Copy->hasOneUse())
2427       return false;
2428     Copy = *Copy->use_begin();
2429     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2430       return false;
2431     // If the copy has a glue operand, we conservatively assume it isn't safe to
2432     // perform a tail call.
2433     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2434       return false;
2435     TCChain = Copy->getOperand(0);
2436   } else {
2437     return false;
2438   }
2439 
2440   bool HasRet = false;
2441   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2442        UI != UE; ++UI) {
2443     if (UI->getOpcode() != ARMISD::RET_FLAG &&
2444         UI->getOpcode() != ARMISD::INTRET_FLAG)
2445       return false;
2446     HasRet = true;
2447   }
2448 
2449   if (!HasRet)
2450     return false;
2451 
2452   Chain = TCChain;
2453   return true;
2454 }
2455 
mayBeEmittedAsTailCall(CallInst * CI) const2456 bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
2457   if (!Subtarget->supportsTailCall())
2458     return false;
2459 
2460   auto Attr =
2461       CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
2462   if (!CI->isTailCall() || Attr.getValueAsString() == "true")
2463     return false;
2464 
2465   return true;
2466 }
2467 
2468 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2469 // and pass the lower and high parts through.
LowerWRITE_REGISTER(SDValue Op,SelectionDAG & DAG)2470 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
2471   SDLoc DL(Op);
2472   SDValue WriteValue = Op->getOperand(2);
2473 
2474   // This function is only supposed to be called for i64 type argument.
2475   assert(WriteValue.getValueType() == MVT::i64
2476           && "LowerWRITE_REGISTER called for non-i64 type argument.");
2477 
2478   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2479                            DAG.getConstant(0, DL, MVT::i32));
2480   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
2481                            DAG.getConstant(1, DL, MVT::i32));
2482   SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
2483   return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
2484 }
2485 
2486 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
2487 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
2488 // one of the above mentioned nodes. It has to be wrapped because otherwise
2489 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
2490 // be used to form addressing mode. These wrapped nodes will be selected
2491 // into MOVi.
LowerConstantPool(SDValue Op,SelectionDAG & DAG)2492 static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
2493   EVT PtrVT = Op.getValueType();
2494   // FIXME there is no actual debug info here
2495   SDLoc dl(Op);
2496   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2497   SDValue Res;
2498   if (CP->isMachineConstantPoolEntry())
2499     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2500                                     CP->getAlignment());
2501   else
2502     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2503                                     CP->getAlignment());
2504   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
2505 }
2506 
getJumpTableEncoding() const2507 unsigned ARMTargetLowering::getJumpTableEncoding() const {
2508   return MachineJumpTableInfo::EK_Inline;
2509 }
2510 
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const2511 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
2512                                              SelectionDAG &DAG) const {
2513   MachineFunction &MF = DAG.getMachineFunction();
2514   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2515   unsigned ARMPCLabelIndex = 0;
2516   SDLoc DL(Op);
2517   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2518   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
2519   SDValue CPAddr;
2520   bool IsPositionIndependent = isPositionIndependent();
2521   if (!IsPositionIndependent) {
2522     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
2523   } else {
2524     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2525     ARMPCLabelIndex = AFI->createPICLabelUId();
2526     ARMConstantPoolValue *CPV =
2527       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
2528                                       ARMCP::CPBlockAddress, PCAdj);
2529     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2530   }
2531   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
2532   SDValue Result =
2533       DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
2534                   MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
2535                   false, false, false, 0);
2536   if (!IsPositionIndependent)
2537     return Result;
2538   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
2539   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
2540 }
2541 
2542 /// \brief Convert a TLS address reference into the correct sequence of loads
2543 /// and calls to compute the variable's address for Darwin, and return an
2544 /// SDValue containing the final node.
2545 
2546 /// Darwin only has one TLS scheme which must be capable of dealing with the
2547 /// fully general situation, in the worst case. This means:
2548 ///     + "extern __thread" declaration.
2549 ///     + Defined in a possibly unknown dynamic library.
2550 ///
2551 /// The general system is that each __thread variable has a [3 x i32] descriptor
2552 /// which contains information used by the runtime to calculate the address. The
2553 /// only part of this the compiler needs to know about is the first word, which
2554 /// contains a function pointer that must be called with the address of the
2555 /// entire descriptor in "r0".
2556 ///
2557 /// Since this descriptor may be in a different unit, in general access must
2558 /// proceed along the usual ARM rules. A common sequence to produce is:
2559 ///
2560 ///     movw rT1, :lower16:_var$non_lazy_ptr
2561 ///     movt rT1, :upper16:_var$non_lazy_ptr
2562 ///     ldr r0, [rT1]
2563 ///     ldr rT2, [r0]
2564 ///     blx rT2
2565 ///     [...address now in r0...]
2566 SDValue
LowerGlobalTLSAddressDarwin(SDValue Op,SelectionDAG & DAG) const2567 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
2568                                                SelectionDAG &DAG) const {
2569   assert(Subtarget->isTargetDarwin() && "TLS only supported on Darwin");
2570   SDLoc DL(Op);
2571 
2572   // First step is to get the address of the actua global symbol. This is where
2573   // the TLS descriptor lives.
2574   SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
2575 
2576   // The first entry in the descriptor is a function pointer that we must call
2577   // to obtain the address of the variable.
2578   SDValue Chain = DAG.getEntryNode();
2579   SDValue FuncTLVGet =
2580       DAG.getLoad(MVT::i32, DL, Chain, DescAddr,
2581                   MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2582                   false, true, true, 4);
2583   Chain = FuncTLVGet.getValue(1);
2584 
2585   MachineFunction &F = DAG.getMachineFunction();
2586   MachineFrameInfo *MFI = F.getFrameInfo();
2587   MFI->setAdjustsStack(true);
2588 
2589   // TLS calls preserve all registers except those that absolutely must be
2590   // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
2591   // silly).
2592   auto TRI =
2593       getTargetMachine().getSubtargetImpl(*F.getFunction())->getRegisterInfo();
2594   auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
2595   const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
2596 
2597   // Finally, we can make the call. This is just a degenerate version of a
2598   // normal AArch64 call node: r0 takes the address of the descriptor, and
2599   // returns the address of the variable in this thread.
2600   Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
2601   Chain =
2602       DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
2603                   Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
2604                   DAG.getRegisterMask(Mask), Chain.getValue(1));
2605   return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
2606 }
2607 
2608 SDValue
LowerGlobalTLSAddressWindows(SDValue Op,SelectionDAG & DAG) const2609 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
2610                                                 SelectionDAG &DAG) const {
2611   assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
2612 
2613   SDValue Chain = DAG.getEntryNode();
2614   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2615   SDLoc DL(Op);
2616 
2617   // Load the current TEB (thread environment block)
2618   SDValue Ops[] = {Chain,
2619                    DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
2620                    DAG.getConstant(15, DL, MVT::i32),
2621                    DAG.getConstant(0, DL, MVT::i32),
2622                    DAG.getConstant(13, DL, MVT::i32),
2623                    DAG.getConstant(0, DL, MVT::i32),
2624                    DAG.getConstant(2, DL, MVT::i32)};
2625   SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
2626                                    DAG.getVTList(MVT::i32, MVT::Other), Ops);
2627 
2628   SDValue TEB = CurrentTEB.getValue(0);
2629   Chain = CurrentTEB.getValue(1);
2630 
2631   // Load the ThreadLocalStoragePointer from the TEB
2632   // A pointer to the TLS array is located at offset 0x2c from the TEB.
2633   SDValue TLSArray =
2634       DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
2635   TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo(),
2636                          false, false, false, 0);
2637 
2638   // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
2639   // offset into the TLSArray.
2640 
2641   // Load the TLS index from the C runtime
2642   SDValue TLSIndex =
2643       DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
2644   TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
2645   TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo(),
2646                          false, false, false, 0);
2647 
2648   SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
2649                               DAG.getConstant(2, DL, MVT::i32));
2650   SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
2651                             DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
2652                             MachinePointerInfo(), false, false, false, 0);
2653 
2654   // Get the offset of the start of the .tls section (section base)
2655   const auto *GA = cast<GlobalAddressSDNode>(Op);
2656   auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
2657   SDValue Offset =
2658       DAG.getLoad(PtrVT, DL, Chain,
2659                   DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
2660                               DAG.getTargetConstantPool(CPV, PtrVT, 4)),
2661                   MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
2662                   false, false, false, 0);
2663 
2664   return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
2665 }
2666 
2667 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
2668 SDValue
LowerToTLSGeneralDynamicModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const2669 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
2670                                                  SelectionDAG &DAG) const {
2671   SDLoc dl(GA);
2672   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2673   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2674   MachineFunction &MF = DAG.getMachineFunction();
2675   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2676   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2677   ARMConstantPoolValue *CPV =
2678     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2679                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
2680   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2681   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
2682   Argument =
2683       DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
2684                   MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
2685                   false, false, false, 0);
2686   SDValue Chain = Argument.getValue(1);
2687 
2688   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2689   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
2690 
2691   // call __tls_get_addr.
2692   ArgListTy Args;
2693   ArgListEntry Entry;
2694   Entry.Node = Argument;
2695   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
2696   Args.push_back(Entry);
2697 
2698   // FIXME: is there useful debug info available here?
2699   TargetLowering::CallLoweringInfo CLI(DAG);
2700   CLI.setDebugLoc(dl).setChain(Chain)
2701     .setCallee(CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
2702                DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
2703 
2704   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
2705   return CallResult.first;
2706 }
2707 
2708 // Lower ISD::GlobalTLSAddress using the "initial exec" or
2709 // "local exec" model.
2710 SDValue
LowerToTLSExecModels(GlobalAddressSDNode * GA,SelectionDAG & DAG,TLSModel::Model model) const2711 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
2712                                         SelectionDAG &DAG,
2713                                         TLSModel::Model model) const {
2714   const GlobalValue *GV = GA->getGlobal();
2715   SDLoc dl(GA);
2716   SDValue Offset;
2717   SDValue Chain = DAG.getEntryNode();
2718   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2719   // Get the Thread Pointer
2720   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2721 
2722   if (model == TLSModel::InitialExec) {
2723     MachineFunction &MF = DAG.getMachineFunction();
2724     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2725     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2726     // Initial exec model.
2727     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
2728     ARMConstantPoolValue *CPV =
2729       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
2730                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
2731                                       true);
2732     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2733     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2734     Offset = DAG.getLoad(
2735         PtrVT, dl, Chain, Offset,
2736         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2737         false, false, 0);
2738     Chain = Offset.getValue(1);
2739 
2740     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2741     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
2742 
2743     Offset = DAG.getLoad(
2744         PtrVT, dl, Chain, Offset,
2745         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2746         false, false, 0);
2747   } else {
2748     // local exec model
2749     assert(model == TLSModel::LocalExec);
2750     ARMConstantPoolValue *CPV =
2751       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
2752     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2753     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
2754     Offset = DAG.getLoad(
2755         PtrVT, dl, Chain, Offset,
2756         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2757         false, false, 0);
2758   }
2759 
2760   // The address of the thread local variable is the add of the thread
2761   // pointer with the offset of the variable.
2762   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
2763 }
2764 
2765 SDValue
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const2766 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
2767   if (Subtarget->isTargetDarwin())
2768     return LowerGlobalTLSAddressDarwin(Op, DAG);
2769 
2770   if (Subtarget->isTargetWindows())
2771     return LowerGlobalTLSAddressWindows(Op, DAG);
2772 
2773   // TODO: implement the "local dynamic" model
2774   assert(Subtarget->isTargetELF() && "Only ELF implemented here");
2775   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2776   if (DAG.getTarget().Options.EmulatedTLS)
2777     return LowerToTLSEmulatedModel(GA, DAG);
2778 
2779   TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
2780 
2781   switch (model) {
2782     case TLSModel::GeneralDynamic:
2783     case TLSModel::LocalDynamic:
2784       return LowerToTLSGeneralDynamicModel(GA, DAG);
2785     case TLSModel::InitialExec:
2786     case TLSModel::LocalExec:
2787       return LowerToTLSExecModels(GA, DAG, model);
2788   }
2789   llvm_unreachable("bogus TLS model");
2790 }
2791 
LowerGlobalAddressELF(SDValue Op,SelectionDAG & DAG) const2792 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
2793                                                  SelectionDAG &DAG) const {
2794   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2795   SDLoc dl(Op);
2796   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2797   const TargetMachine &TM = getTargetMachine();
2798   if (isPositionIndependent()) {
2799     bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
2800 
2801     MachineFunction &MF = DAG.getMachineFunction();
2802     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2803     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2804     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2805     SDLoc dl(Op);
2806     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2807     ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
2808         GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
2809         UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
2810         /*AddCurrentAddress=*/UseGOT_PREL);
2811     SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2812     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2813     SDValue Result = DAG.getLoad(
2814         PtrVT, dl, DAG.getEntryNode(), CPAddr,
2815         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2816         false, false, 0);
2817     SDValue Chain = Result.getValue(1);
2818     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2819     Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2820     if (UseGOT_PREL)
2821       Result = DAG.getLoad(PtrVT, dl, Chain, Result,
2822                            MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2823                            false, false, false, 0);
2824     return Result;
2825   }
2826 
2827   // If we have T2 ops, we can materialize the address directly via movt/movw
2828   // pair. This is always cheaper.
2829   if (Subtarget->useMovt(DAG.getMachineFunction())) {
2830     ++NumMovwMovt;
2831     // FIXME: Once remat is capable of dealing with instructions with register
2832     // operands, expand this into two nodes.
2833     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
2834                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
2835   } else {
2836     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
2837     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2838     return DAG.getLoad(
2839         PtrVT, dl, DAG.getEntryNode(), CPAddr,
2840         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2841         false, false, 0);
2842   }
2843 }
2844 
LowerGlobalAddressDarwin(SDValue Op,SelectionDAG & DAG) const2845 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
2846                                                     SelectionDAG &DAG) const {
2847   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2848   SDLoc dl(Op);
2849   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2850 
2851   if (Subtarget->useMovt(DAG.getMachineFunction()))
2852     ++NumMovwMovt;
2853 
2854   // FIXME: Once remat is capable of dealing with instructions with register
2855   // operands, expand this into multiple nodes
2856   unsigned Wrapper =
2857       isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
2858 
2859   SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
2860   SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
2861 
2862   if (Subtarget->isGVIndirectSymbol(GV))
2863     Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
2864                          MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2865                          false, false, false, 0);
2866   return Result;
2867 }
2868 
LowerGlobalAddressWindows(SDValue Op,SelectionDAG & DAG) const2869 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
2870                                                      SelectionDAG &DAG) const {
2871   assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
2872   assert(Subtarget->useMovt(DAG.getMachineFunction()) &&
2873          "Windows on ARM expects to use movw/movt");
2874 
2875   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
2876   const ARMII::TOF TargetFlags =
2877     (GV->hasDLLImportStorageClass() ? ARMII::MO_DLLIMPORT : ARMII::MO_NO_FLAG);
2878   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2879   SDValue Result;
2880   SDLoc DL(Op);
2881 
2882   ++NumMovwMovt;
2883 
2884   // FIXME: Once remat is capable of dealing with instructions with register
2885   // operands, expand this into two nodes.
2886   Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
2887                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0,
2888                                                   TargetFlags));
2889   if (GV->hasDLLImportStorageClass())
2890     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2891                          MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2892                          false, false, false, 0);
2893   return Result;
2894 }
2895 
2896 SDValue
LowerEH_SJLJ_SETJMP(SDValue Op,SelectionDAG & DAG) const2897 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
2898   SDLoc dl(Op);
2899   SDValue Val = DAG.getConstant(0, dl, MVT::i32);
2900   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
2901                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
2902                      Op.getOperand(1), Val);
2903 }
2904 
2905 SDValue
LowerEH_SJLJ_LONGJMP(SDValue Op,SelectionDAG & DAG) const2906 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
2907   SDLoc dl(Op);
2908   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
2909                      Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
2910 }
2911 
LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,SelectionDAG & DAG) const2912 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
2913                                                       SelectionDAG &DAG) const {
2914   SDLoc dl(Op);
2915   return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
2916                      Op.getOperand(0));
2917 }
2918 
2919 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget) const2920 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
2921                                           const ARMSubtarget *Subtarget) const {
2922   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2923   SDLoc dl(Op);
2924   switch (IntNo) {
2925   default: return SDValue();    // Don't custom lower most intrinsics.
2926   case Intrinsic::arm_rbit: {
2927     assert(Op.getOperand(1).getValueType() == MVT::i32 &&
2928            "RBIT intrinsic must have i32 type!");
2929     return DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, Op.getOperand(1));
2930   }
2931   case Intrinsic::thread_pointer: {
2932     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2933     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
2934   }
2935   case Intrinsic::eh_sjlj_lsda: {
2936     MachineFunction &MF = DAG.getMachineFunction();
2937     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2938     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2939     EVT PtrVT = getPointerTy(DAG.getDataLayout());
2940     SDValue CPAddr;
2941     bool IsPositionIndependent = isPositionIndependent();
2942     unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
2943     ARMConstantPoolValue *CPV =
2944       ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
2945                                       ARMCP::CPLSDA, PCAdj);
2946     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
2947     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2948     SDValue Result = DAG.getLoad(
2949         PtrVT, dl, DAG.getEntryNode(), CPAddr,
2950         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
2951         false, false, 0);
2952 
2953     if (IsPositionIndependent) {
2954       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2955       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
2956     }
2957     return Result;
2958   }
2959   case Intrinsic::arm_neon_vmulls:
2960   case Intrinsic::arm_neon_vmullu: {
2961     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
2962       ? ARMISD::VMULLs : ARMISD::VMULLu;
2963     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
2964                        Op.getOperand(1), Op.getOperand(2));
2965   }
2966   case Intrinsic::arm_neon_vminnm:
2967   case Intrinsic::arm_neon_vmaxnm: {
2968     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
2969       ? ISD::FMINNUM : ISD::FMAXNUM;
2970     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
2971                        Op.getOperand(1), Op.getOperand(2));
2972   }
2973   case Intrinsic::arm_neon_vminu:
2974   case Intrinsic::arm_neon_vmaxu: {
2975     if (Op.getValueType().isFloatingPoint())
2976       return SDValue();
2977     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
2978       ? ISD::UMIN : ISD::UMAX;
2979     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
2980                          Op.getOperand(1), Op.getOperand(2));
2981   }
2982   case Intrinsic::arm_neon_vmins:
2983   case Intrinsic::arm_neon_vmaxs: {
2984     // v{min,max}s is overloaded between signed integers and floats.
2985     if (!Op.getValueType().isFloatingPoint()) {
2986       unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
2987         ? ISD::SMIN : ISD::SMAX;
2988       return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
2989                          Op.getOperand(1), Op.getOperand(2));
2990     }
2991     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
2992       ? ISD::FMINNAN : ISD::FMAXNAN;
2993     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
2994                        Op.getOperand(1), Op.getOperand(2));
2995   }
2996   }
2997 }
2998 
LowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)2999 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
3000                                  const ARMSubtarget *Subtarget) {
3001   // FIXME: handle "fence singlethread" more efficiently.
3002   SDLoc dl(Op);
3003   if (!Subtarget->hasDataBarrier()) {
3004     // Some ARMv6 cpus can support data barriers with an mcr instruction.
3005     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3006     // here.
3007     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
3008            "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3009     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
3010                        DAG.getConstant(0, dl, MVT::i32));
3011   }
3012 
3013   ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
3014   AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
3015   ARM_MB::MemBOpt Domain = ARM_MB::ISH;
3016   if (Subtarget->isMClass()) {
3017     // Only a full system barrier exists in the M-class architectures.
3018     Domain = ARM_MB::SY;
3019   } else if (Subtarget->preferISHSTBarriers() &&
3020              Ord == AtomicOrdering::Release) {
3021     // Swift happens to implement ISHST barriers in a way that's compatible with
3022     // Release semantics but weaker than ISH so we'd be fools not to use
3023     // it. Beware: other processors probably don't!
3024     Domain = ARM_MB::ISHST;
3025   }
3026 
3027   return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
3028                      DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
3029                      DAG.getConstant(Domain, dl, MVT::i32));
3030 }
3031 
LowerPREFETCH(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)3032 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
3033                              const ARMSubtarget *Subtarget) {
3034   // ARM pre v5TE and Thumb1 does not have preload instructions.
3035   if (!(Subtarget->isThumb2() ||
3036         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
3037     // Just preserve the chain.
3038     return Op.getOperand(0);
3039 
3040   SDLoc dl(Op);
3041   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
3042   if (!isRead &&
3043       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
3044     // ARMv7 with MP extension has PLDW.
3045     return Op.getOperand(0);
3046 
3047   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3048   if (Subtarget->isThumb()) {
3049     // Invert the bits.
3050     isRead = ~isRead & 1;
3051     isData = ~isData & 1;
3052   }
3053 
3054   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
3055                      Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
3056                      DAG.getConstant(isData, dl, MVT::i32));
3057 }
3058 
LowerVASTART(SDValue Op,SelectionDAG & DAG)3059 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
3060   MachineFunction &MF = DAG.getMachineFunction();
3061   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
3062 
3063   // vastart just stores the address of the VarArgsFrameIndex slot into the
3064   // memory location argument.
3065   SDLoc dl(Op);
3066   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
3067   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3068   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3069   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3070                       MachinePointerInfo(SV), false, false, 0);
3071 }
3072 
GetF64FormalArgument(CCValAssign & VA,CCValAssign & NextVA,SDValue & Root,SelectionDAG & DAG,const SDLoc & dl) const3073 SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
3074                                                 CCValAssign &NextVA,
3075                                                 SDValue &Root,
3076                                                 SelectionDAG &DAG,
3077                                                 const SDLoc &dl) const {
3078   MachineFunction &MF = DAG.getMachineFunction();
3079   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3080 
3081   const TargetRegisterClass *RC;
3082   if (AFI->isThumb1OnlyFunction())
3083     RC = &ARM::tGPRRegClass;
3084   else
3085     RC = &ARM::GPRRegClass;
3086 
3087   // Transform the arguments stored in physical registers into virtual ones.
3088   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3089   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3090 
3091   SDValue ArgValue2;
3092   if (NextVA.isMemLoc()) {
3093     MachineFrameInfo *MFI = MF.getFrameInfo();
3094     int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
3095 
3096     // Create load node to retrieve arguments from the stack.
3097     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3098     ArgValue2 = DAG.getLoad(
3099         MVT::i32, dl, Root, FIN,
3100         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
3101         false, false, 0);
3102   } else {
3103     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
3104     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3105   }
3106   if (!Subtarget->isLittle())
3107     std::swap (ArgValue, ArgValue2);
3108   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
3109 }
3110 
3111 // The remaining GPRs hold either the beginning of variable-argument
3112 // data, or the beginning of an aggregate passed by value (usually
3113 // byval).  Either way, we allocate stack slots adjacent to the data
3114 // provided by our caller, and store the unallocated registers there.
3115 // If this is a variadic function, the va_list pointer will begin with
3116 // these values; otherwise, this reassembles a (byval) structure that
3117 // was split between registers and memory.
3118 // Return: The frame index registers were stored into.
StoreByValRegs(CCState & CCInfo,SelectionDAG & DAG,const SDLoc & dl,SDValue & Chain,const Value * OrigArg,unsigned InRegsParamRecordIdx,int ArgOffset,unsigned ArgSize) const3119 int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
3120                                       const SDLoc &dl, SDValue &Chain,
3121                                       const Value *OrigArg,
3122                                       unsigned InRegsParamRecordIdx,
3123                                       int ArgOffset, unsigned ArgSize) const {
3124   // Currently, two use-cases possible:
3125   // Case #1. Non-var-args function, and we meet first byval parameter.
3126   //          Setup first unallocated register as first byval register;
3127   //          eat all remained registers
3128   //          (these two actions are performed by HandleByVal method).
3129   //          Then, here, we initialize stack frame with
3130   //          "store-reg" instructions.
3131   // Case #2. Var-args function, that doesn't contain byval parameters.
3132   //          The same: eat all remained unallocated registers,
3133   //          initialize stack frame.
3134 
3135   MachineFunction &MF = DAG.getMachineFunction();
3136   MachineFrameInfo *MFI = MF.getFrameInfo();
3137   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3138   unsigned RBegin, REnd;
3139   if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
3140     CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
3141   } else {
3142     unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3143     RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
3144     REnd = ARM::R4;
3145   }
3146 
3147   if (REnd != RBegin)
3148     ArgOffset = -4 * (ARM::R4 - RBegin);
3149 
3150   auto PtrVT = getPointerTy(DAG.getDataLayout());
3151   int FrameIndex = MFI->CreateFixedObject(ArgSize, ArgOffset, false);
3152   SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
3153 
3154   SmallVector<SDValue, 4> MemOps;
3155   const TargetRegisterClass *RC =
3156       AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
3157 
3158   for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
3159     unsigned VReg = MF.addLiveIn(Reg, RC);
3160     SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3161     SDValue Store =
3162         DAG.getStore(Val.getValue(1), dl, Val, FIN,
3163                      MachinePointerInfo(OrigArg, 4 * i), false, false, 0);
3164     MemOps.push_back(Store);
3165     FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
3166   }
3167 
3168   if (!MemOps.empty())
3169     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3170   return FrameIndex;
3171 }
3172 
3173 // Setup stack frame, the va_list pointer will start from.
VarArgStyleRegisters(CCState & CCInfo,SelectionDAG & DAG,const SDLoc & dl,SDValue & Chain,unsigned ArgOffset,unsigned TotalArgRegsSaveSize,bool ForceMutable) const3174 void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
3175                                              const SDLoc &dl, SDValue &Chain,
3176                                              unsigned ArgOffset,
3177                                              unsigned TotalArgRegsSaveSize,
3178                                              bool ForceMutable) const {
3179   MachineFunction &MF = DAG.getMachineFunction();
3180   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3181 
3182   // Try to store any remaining integer argument regs
3183   // to their spots on the stack so that they may be loaded by dereferencing
3184   // the result of va_next.
3185   // If there is no regs to be stored, just point address after last
3186   // argument passed via stack.
3187   int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
3188                                   CCInfo.getInRegsParamsCount(),
3189                                   CCInfo.getNextStackOffset(), 4);
3190   AFI->setVarArgsFrameIndex(FrameIndex);
3191 }
3192 
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const3193 SDValue ARMTargetLowering::LowerFormalArguments(
3194     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3195     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3196     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3197   MachineFunction &MF = DAG.getMachineFunction();
3198   MachineFrameInfo *MFI = MF.getFrameInfo();
3199 
3200   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3201 
3202   // Assign locations to all of the incoming arguments.
3203   SmallVector<CCValAssign, 16> ArgLocs;
3204   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3205                     *DAG.getContext(), Prologue);
3206   CCInfo.AnalyzeFormalArguments(Ins,
3207                                 CCAssignFnForNode(CallConv, /* Return*/ false,
3208                                                   isVarArg));
3209 
3210   SmallVector<SDValue, 16> ArgValues;
3211   SDValue ArgValue;
3212   Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
3213   unsigned CurArgIdx = 0;
3214 
3215   // Initially ArgRegsSaveSize is zero.
3216   // Then we increase this value each time we meet byval parameter.
3217   // We also increase this value in case of varargs function.
3218   AFI->setArgRegsSaveSize(0);
3219 
3220   // Calculate the amount of stack space that we need to allocate to store
3221   // byval and variadic arguments that are passed in registers.
3222   // We need to know this before we allocate the first byval or variadic
3223   // argument, as they will be allocated a stack slot below the CFA (Canonical
3224   // Frame Address, the stack pointer at entry to the function).
3225   unsigned ArgRegBegin = ARM::R4;
3226   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3227     if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
3228       break;
3229 
3230     CCValAssign &VA = ArgLocs[i];
3231     unsigned Index = VA.getValNo();
3232     ISD::ArgFlagsTy Flags = Ins[Index].Flags;
3233     if (!Flags.isByVal())
3234       continue;
3235 
3236     assert(VA.isMemLoc() && "unexpected byval pointer in reg");
3237     unsigned RBegin, REnd;
3238     CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
3239     ArgRegBegin = std::min(ArgRegBegin, RBegin);
3240 
3241     CCInfo.nextInRegsParam();
3242   }
3243   CCInfo.rewindByValRegsInfo();
3244 
3245   int lastInsIndex = -1;
3246   if (isVarArg && MFI->hasVAStart()) {
3247     unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3248     if (RegIdx != array_lengthof(GPRArgRegs))
3249       ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
3250   }
3251 
3252   unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
3253   AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
3254   auto PtrVT = getPointerTy(DAG.getDataLayout());
3255 
3256   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3257     CCValAssign &VA = ArgLocs[i];
3258     if (Ins[VA.getValNo()].isOrigArg()) {
3259       std::advance(CurOrigArg,
3260                    Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
3261       CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
3262     }
3263     // Arguments stored in registers.
3264     if (VA.isRegLoc()) {
3265       EVT RegVT = VA.getLocVT();
3266 
3267       if (VA.needsCustom()) {
3268         // f64 and vector types are split up into multiple registers or
3269         // combinations of registers and stack slots.
3270         if (VA.getLocVT() == MVT::v2f64) {
3271           SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
3272                                                    Chain, DAG, dl);
3273           VA = ArgLocs[++i]; // skip ahead to next loc
3274           SDValue ArgValue2;
3275           if (VA.isMemLoc()) {
3276             int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
3277             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3278             ArgValue2 = DAG.getLoad(
3279                 MVT::f64, dl, Chain, FIN,
3280                 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
3281                 false, false, false, 0);
3282           } else {
3283             ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
3284                                              Chain, DAG, dl);
3285           }
3286           ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
3287           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3288                                  ArgValue, ArgValue1,
3289                                  DAG.getIntPtrConstant(0, dl));
3290           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
3291                                  ArgValue, ArgValue2,
3292                                  DAG.getIntPtrConstant(1, dl));
3293         } else
3294           ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
3295 
3296       } else {
3297         const TargetRegisterClass *RC;
3298 
3299         if (RegVT == MVT::f32)
3300           RC = &ARM::SPRRegClass;
3301         else if (RegVT == MVT::f64)
3302           RC = &ARM::DPRRegClass;
3303         else if (RegVT == MVT::v2f64)
3304           RC = &ARM::QPRRegClass;
3305         else if (RegVT == MVT::i32)
3306           RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
3307                                            : &ARM::GPRRegClass;
3308         else
3309           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
3310 
3311         // Transform the arguments in physical registers into virtual ones.
3312         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3313         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
3314       }
3315 
3316       // If this is an 8 or 16-bit value, it is really passed promoted
3317       // to 32 bits.  Insert an assert[sz]ext to capture this, then
3318       // truncate to the right size.
3319       switch (VA.getLocInfo()) {
3320       default: llvm_unreachable("Unknown loc info!");
3321       case CCValAssign::Full: break;
3322       case CCValAssign::BCvt:
3323         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
3324         break;
3325       case CCValAssign::SExt:
3326         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
3327                                DAG.getValueType(VA.getValVT()));
3328         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3329         break;
3330       case CCValAssign::ZExt:
3331         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
3332                                DAG.getValueType(VA.getValVT()));
3333         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
3334         break;
3335       }
3336 
3337       InVals.push_back(ArgValue);
3338 
3339     } else { // VA.isRegLoc()
3340 
3341       // sanity check
3342       assert(VA.isMemLoc());
3343       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
3344 
3345       int index = VA.getValNo();
3346 
3347       // Some Ins[] entries become multiple ArgLoc[] entries.
3348       // Process them only once.
3349       if (index != lastInsIndex)
3350         {
3351           ISD::ArgFlagsTy Flags = Ins[index].Flags;
3352           // FIXME: For now, all byval parameter objects are marked mutable.
3353           // This can be changed with more analysis.
3354           // In case of tail call optimization mark all arguments mutable.
3355           // Since they could be overwritten by lowering of arguments in case of
3356           // a tail call.
3357           if (Flags.isByVal()) {
3358             assert(Ins[index].isOrigArg() &&
3359                    "Byval arguments cannot be implicit");
3360             unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
3361 
3362             int FrameIndex = StoreByValRegs(
3363                 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
3364                 VA.getLocMemOffset(), Flags.getByValSize());
3365             InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
3366             CCInfo.nextInRegsParam();
3367           } else {
3368             unsigned FIOffset = VA.getLocMemOffset();
3369             int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
3370                                             FIOffset, true);
3371 
3372             // Create load nodes to retrieve arguments from the stack.
3373             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3374             InVals.push_back(DAG.getLoad(
3375                 VA.getValVT(), dl, Chain, FIN,
3376                 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
3377                 false, false, false, 0));
3378           }
3379           lastInsIndex = index;
3380         }
3381     }
3382   }
3383 
3384   // varargs
3385   if (isVarArg && MFI->hasVAStart())
3386     VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
3387                          CCInfo.getNextStackOffset(),
3388                          TotalArgRegsSaveSize);
3389 
3390   AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
3391 
3392   return Chain;
3393 }
3394 
3395 /// isFloatingPointZero - Return true if this is +0.0.
isFloatingPointZero(SDValue Op)3396 static bool isFloatingPointZero(SDValue Op) {
3397   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
3398     return CFP->getValueAPF().isPosZero();
3399   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
3400     // Maybe this has already been legalized into the constant pool?
3401     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
3402       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
3403       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
3404         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
3405           return CFP->getValueAPF().isPosZero();
3406     }
3407   } else if (Op->getOpcode() == ISD::BITCAST &&
3408              Op->getValueType(0) == MVT::f64) {
3409     // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
3410     // created by LowerConstantFP().
3411     SDValue BitcastOp = Op->getOperand(0);
3412     if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
3413         isNullConstant(BitcastOp->getOperand(0)))
3414       return true;
3415   }
3416   return false;
3417 }
3418 
3419 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
3420 /// the given operands.
getARMCmp(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue & ARMcc,SelectionDAG & DAG,const SDLoc & dl) const3421 SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
3422                                      SDValue &ARMcc, SelectionDAG &DAG,
3423                                      const SDLoc &dl) const {
3424   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
3425     unsigned C = RHSC->getZExtValue();
3426     if (!isLegalICmpImmediate(C)) {
3427       // Constant does not fit, try adjusting it by one?
3428       switch (CC) {
3429       default: break;
3430       case ISD::SETLT:
3431       case ISD::SETGE:
3432         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
3433           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
3434           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
3435         }
3436         break;
3437       case ISD::SETULT:
3438       case ISD::SETUGE:
3439         if (C != 0 && isLegalICmpImmediate(C-1)) {
3440           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
3441           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
3442         }
3443         break;
3444       case ISD::SETLE:
3445       case ISD::SETGT:
3446         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
3447           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
3448           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
3449         }
3450         break;
3451       case ISD::SETULE:
3452       case ISD::SETUGT:
3453         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
3454           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3455           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
3456         }
3457         break;
3458       }
3459     }
3460   }
3461 
3462   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3463   ARMISD::NodeType CompareType;
3464   switch (CondCode) {
3465   default:
3466     CompareType = ARMISD::CMP;
3467     break;
3468   case ARMCC::EQ:
3469   case ARMCC::NE:
3470     // Uses only Z Flag
3471     CompareType = ARMISD::CMPZ;
3472     break;
3473   }
3474   ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
3475   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
3476 }
3477 
3478 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
getVFPCmp(SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl) const3479 SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
3480                                      SelectionDAG &DAG, const SDLoc &dl) const {
3481   assert(!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64);
3482   SDValue Cmp;
3483   if (!isFloatingPointZero(RHS))
3484     Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
3485   else
3486     Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
3487   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
3488 }
3489 
3490 /// duplicateCmp - Glue values can have only one use, so this function
3491 /// duplicates a comparison node.
3492 SDValue
duplicateCmp(SDValue Cmp,SelectionDAG & DAG) const3493 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
3494   unsigned Opc = Cmp.getOpcode();
3495   SDLoc DL(Cmp);
3496   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
3497     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3498 
3499   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
3500   Cmp = Cmp.getOperand(0);
3501   Opc = Cmp.getOpcode();
3502   if (Opc == ARMISD::CMPFP)
3503     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
3504   else {
3505     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
3506     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
3507   }
3508   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
3509 }
3510 
3511 std::pair<SDValue, SDValue>
getARMXALUOOp(SDValue Op,SelectionDAG & DAG,SDValue & ARMcc) const3512 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
3513                                  SDValue &ARMcc) const {
3514   assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");
3515 
3516   SDValue Value, OverflowCmp;
3517   SDValue LHS = Op.getOperand(0);
3518   SDValue RHS = Op.getOperand(1);
3519   SDLoc dl(Op);
3520 
3521   // FIXME: We are currently always generating CMPs because we don't support
3522   // generating CMN through the backend. This is not as good as the natural
3523   // CMP case because it causes a register dependency and cannot be folded
3524   // later.
3525 
3526   switch (Op.getOpcode()) {
3527   default:
3528     llvm_unreachable("Unknown overflow instruction!");
3529   case ISD::SADDO:
3530     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
3531     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
3532     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
3533     break;
3534   case ISD::UADDO:
3535     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
3536     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
3537     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
3538     break;
3539   case ISD::SSUBO:
3540     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
3541     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
3542     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
3543     break;
3544   case ISD::USUBO:
3545     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
3546     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
3547     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
3548     break;
3549   } // switch (...)
3550 
3551   return std::make_pair(Value, OverflowCmp);
3552 }
3553 
3554 
3555 SDValue
LowerXALUO(SDValue Op,SelectionDAG & DAG) const3556 ARMTargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
3557   // Let legalize expand this if it isn't a legal type yet.
3558   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
3559     return SDValue();
3560 
3561   SDValue Value, OverflowCmp;
3562   SDValue ARMcc;
3563   std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
3564   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3565   SDLoc dl(Op);
3566   // We use 0 and 1 as false and true values.
3567   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
3568   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
3569   EVT VT = Op.getValueType();
3570 
3571   SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
3572                                  ARMcc, CCR, OverflowCmp);
3573 
3574   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
3575   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
3576 }
3577 
3578 
LowerSELECT(SDValue Op,SelectionDAG & DAG) const3579 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
3580   SDValue Cond = Op.getOperand(0);
3581   SDValue SelectTrue = Op.getOperand(1);
3582   SDValue SelectFalse = Op.getOperand(2);
3583   SDLoc dl(Op);
3584   unsigned Opc = Cond.getOpcode();
3585 
3586   if (Cond.getResNo() == 1 &&
3587       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
3588        Opc == ISD::USUBO)) {
3589     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
3590       return SDValue();
3591 
3592     SDValue Value, OverflowCmp;
3593     SDValue ARMcc;
3594     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
3595     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3596     EVT VT = Op.getValueType();
3597 
3598     return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
3599                    OverflowCmp, DAG);
3600   }
3601 
3602   // Convert:
3603   //
3604   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
3605   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
3606   //
3607   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
3608     const ConstantSDNode *CMOVTrue =
3609       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
3610     const ConstantSDNode *CMOVFalse =
3611       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3612 
3613     if (CMOVTrue && CMOVFalse) {
3614       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
3615       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
3616 
3617       SDValue True;
3618       SDValue False;
3619       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
3620         True = SelectTrue;
3621         False = SelectFalse;
3622       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
3623         True = SelectFalse;
3624         False = SelectTrue;
3625       }
3626 
3627       if (True.getNode() && False.getNode()) {
3628         EVT VT = Op.getValueType();
3629         SDValue ARMcc = Cond.getOperand(2);
3630         SDValue CCR = Cond.getOperand(3);
3631         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
3632         assert(True.getValueType() == VT);
3633         return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
3634       }
3635     }
3636   }
3637 
3638   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
3639   // undefined bits before doing a full-word comparison with zero.
3640   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
3641                      DAG.getConstant(1, dl, Cond.getValueType()));
3642 
3643   return DAG.getSelectCC(dl, Cond,
3644                          DAG.getConstant(0, dl, Cond.getValueType()),
3645                          SelectTrue, SelectFalse, ISD::SETNE);
3646 }
3647 
checkVSELConstraints(ISD::CondCode CC,ARMCC::CondCodes & CondCode,bool & swpCmpOps,bool & swpVselOps)3648 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
3649                                  bool &swpCmpOps, bool &swpVselOps) {
3650   // Start by selecting the GE condition code for opcodes that return true for
3651   // 'equality'
3652   if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
3653       CC == ISD::SETULE)
3654     CondCode = ARMCC::GE;
3655 
3656   // and GT for opcodes that return false for 'equality'.
3657   else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
3658            CC == ISD::SETULT)
3659     CondCode = ARMCC::GT;
3660 
3661   // Since we are constrained to GE/GT, if the opcode contains 'less', we need
3662   // to swap the compare operands.
3663   if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
3664       CC == ISD::SETULT)
3665     swpCmpOps = true;
3666 
3667   // Both GT and GE are ordered comparisons, and return false for 'unordered'.
3668   // If we have an unordered opcode, we need to swap the operands to the VSEL
3669   // instruction (effectively negating the condition).
3670   //
3671   // This also has the effect of swapping which one of 'less' or 'greater'
3672   // returns true, so we also swap the compare operands. It also switches
3673   // whether we return true for 'equality', so we compensate by picking the
3674   // opposite condition code to our original choice.
3675   if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
3676       CC == ISD::SETUGT) {
3677     swpCmpOps = !swpCmpOps;
3678     swpVselOps = !swpVselOps;
3679     CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
3680   }
3681 
3682   // 'ordered' is 'anything but unordered', so use the VS condition code and
3683   // swap the VSEL operands.
3684   if (CC == ISD::SETO) {
3685     CondCode = ARMCC::VS;
3686     swpVselOps = true;
3687   }
3688 
3689   // 'unordered or not equal' is 'anything but equal', so use the EQ condition
3690   // code and swap the VSEL operands.
3691   if (CC == ISD::SETUNE) {
3692     CondCode = ARMCC::EQ;
3693     swpVselOps = true;
3694   }
3695 }
3696 
getCMOV(const SDLoc & dl,EVT VT,SDValue FalseVal,SDValue TrueVal,SDValue ARMcc,SDValue CCR,SDValue Cmp,SelectionDAG & DAG) const3697 SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
3698                                    SDValue TrueVal, SDValue ARMcc, SDValue CCR,
3699                                    SDValue Cmp, SelectionDAG &DAG) const {
3700   if (Subtarget->isFPOnlySP() && VT == MVT::f64) {
3701     FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
3702                            DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
3703     TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
3704                           DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
3705 
3706     SDValue TrueLow = TrueVal.getValue(0);
3707     SDValue TrueHigh = TrueVal.getValue(1);
3708     SDValue FalseLow = FalseVal.getValue(0);
3709     SDValue FalseHigh = FalseVal.getValue(1);
3710 
3711     SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
3712                               ARMcc, CCR, Cmp);
3713     SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
3714                                ARMcc, CCR, duplicateCmp(Cmp, DAG));
3715 
3716     return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
3717   } else {
3718     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
3719                        Cmp);
3720   }
3721 }
3722 
isGTorGE(ISD::CondCode CC)3723 static bool isGTorGE(ISD::CondCode CC) {
3724   return CC == ISD::SETGT || CC == ISD::SETGE;
3725 }
3726 
isLTorLE(ISD::CondCode CC)3727 static bool isLTorLE(ISD::CondCode CC) {
3728   return CC == ISD::SETLT || CC == ISD::SETLE;
3729 }
3730 
3731 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
3732 // All of these conditions (and their <= and >= counterparts) will do:
3733 //          x < k ? k : x
3734 //          x > k ? x : k
3735 //          k < x ? x : k
3736 //          k > x ? k : x
isLowerSaturate(const SDValue LHS,const SDValue RHS,const SDValue TrueVal,const SDValue FalseVal,const ISD::CondCode CC,const SDValue K)3737 static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
3738                             const SDValue TrueVal, const SDValue FalseVal,
3739                             const ISD::CondCode CC, const SDValue K) {
3740   return (isGTorGE(CC) &&
3741           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
3742          (isLTorLE(CC) &&
3743           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
3744 }
3745 
3746 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
isUpperSaturate(const SDValue LHS,const SDValue RHS,const SDValue TrueVal,const SDValue FalseVal,const ISD::CondCode CC,const SDValue K)3747 static bool isUpperSaturate(const SDValue LHS, const SDValue RHS,
3748                             const SDValue TrueVal, const SDValue FalseVal,
3749                             const ISD::CondCode CC, const SDValue K) {
3750   return (isGTorGE(CC) &&
3751           ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal))) ||
3752          (isLTorLE(CC) &&
3753           ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal)));
3754 }
3755 
3756 // Check if two chained conditionals could be converted into SSAT.
3757 //
3758 // SSAT can replace a set of two conditional selectors that bound a number to an
3759 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
3760 //
3761 //     x < -k ? -k : (x > k ? k : x)
3762 //     x < -k ? -k : (x < k ? x : k)
3763 //     x > -k ? (x > k ? k : x) : -k
3764 //     x < k ? (x < -k ? -k : x) : k
3765 //     etc.
3766 //
3767 // It returns true if the conversion can be done, false otherwise.
3768 // Additionally, the variable is returned in parameter V and the constant in K.
isSaturatingConditional(const SDValue & Op,SDValue & V,uint64_t & K)3769 static bool isSaturatingConditional(const SDValue &Op, SDValue &V,
3770                                     uint64_t &K) {
3771 
3772   SDValue LHS1 = Op.getOperand(0);
3773   SDValue RHS1 = Op.getOperand(1);
3774   SDValue TrueVal1 = Op.getOperand(2);
3775   SDValue FalseVal1 = Op.getOperand(3);
3776   ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3777 
3778   const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
3779   if (Op2.getOpcode() != ISD::SELECT_CC)
3780     return false;
3781 
3782   SDValue LHS2 = Op2.getOperand(0);
3783   SDValue RHS2 = Op2.getOperand(1);
3784   SDValue TrueVal2 = Op2.getOperand(2);
3785   SDValue FalseVal2 = Op2.getOperand(3);
3786   ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
3787 
3788   // Find out which are the constants and which are the variables
3789   // in each conditional
3790   SDValue *K1 = isa<ConstantSDNode>(LHS1) ? &LHS1 : isa<ConstantSDNode>(RHS1)
3791                                                         ? &RHS1
3792                                                         : NULL;
3793   SDValue *K2 = isa<ConstantSDNode>(LHS2) ? &LHS2 : isa<ConstantSDNode>(RHS2)
3794                                                         ? &RHS2
3795                                                         : NULL;
3796   SDValue K2Tmp = isa<ConstantSDNode>(TrueVal2) ? TrueVal2 : FalseVal2;
3797   SDValue V1Tmp = (K1 && *K1 == LHS1) ? RHS1 : LHS1;
3798   SDValue V2Tmp = (K2 && *K2 == LHS2) ? RHS2 : LHS2;
3799   SDValue V2 = (K2Tmp == TrueVal2) ? FalseVal2 : TrueVal2;
3800 
3801   // We must detect cases where the original operations worked with 16- or
3802   // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
3803   // must work with sign-extended values but the select operations return
3804   // the original non-extended value.
3805   SDValue V2TmpReg = V2Tmp;
3806   if (V2Tmp->getOpcode() == ISD::SIGN_EXTEND_INREG)
3807     V2TmpReg = V2Tmp->getOperand(0);
3808 
3809   // Check that the registers and the constants have the correct values
3810   // in both conditionals
3811   if (!K1 || !K2 || *K1 == Op2 || *K2 != K2Tmp || V1Tmp != V2Tmp ||
3812       V2TmpReg != V2)
3813     return false;
3814 
3815   // Figure out which conditional is saturating the lower/upper bound.
3816   const SDValue *LowerCheckOp =
3817       isLowerSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
3818           ? &Op
3819           : isLowerSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2) ? &Op2
3820                                                                        : NULL;
3821   const SDValue *UpperCheckOp =
3822       isUpperSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
3823           ? &Op
3824           : isUpperSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2) ? &Op2
3825                                                                        : NULL;
3826 
3827   if (!UpperCheckOp || !LowerCheckOp || LowerCheckOp == UpperCheckOp)
3828     return false;
3829 
3830   // Check that the constant in the lower-bound check is
3831   // the opposite of the constant in the upper-bound check
3832   // in 1's complement.
3833   int64_t Val1 = cast<ConstantSDNode>(*K1)->getSExtValue();
3834   int64_t Val2 = cast<ConstantSDNode>(*K2)->getSExtValue();
3835   int64_t PosVal = std::max(Val1, Val2);
3836 
3837   if (((Val1 > Val2 && UpperCheckOp == &Op) ||
3838        (Val1 < Val2 && UpperCheckOp == &Op2)) &&
3839       Val1 == ~Val2 && isPowerOf2_64(PosVal + 1)) {
3840 
3841     V = V2;
3842     K = (uint64_t)PosVal; // At this point, PosVal is guaranteed to be positive
3843     return true;
3844   }
3845 
3846   return false;
3847 }
3848 
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const3849 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3850 
3851   EVT VT = Op.getValueType();
3852   SDLoc dl(Op);
3853 
3854   // Try to convert two saturating conditional selects into a single SSAT
3855   SDValue SatValue;
3856   uint64_t SatConstant;
3857   if (isSaturatingConditional(Op, SatValue, SatConstant))
3858     return DAG.getNode(ARMISD::SSAT, dl, VT, SatValue,
3859                        DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
3860 
3861   SDValue LHS = Op.getOperand(0);
3862   SDValue RHS = Op.getOperand(1);
3863   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3864   SDValue TrueVal = Op.getOperand(2);
3865   SDValue FalseVal = Op.getOperand(3);
3866 
3867   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
3868     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
3869                                                     dl);
3870 
3871     // If softenSetCCOperands only returned one value, we should compare it to
3872     // zero.
3873     if (!RHS.getNode()) {
3874       RHS = DAG.getConstant(0, dl, LHS.getValueType());
3875       CC = ISD::SETNE;
3876     }
3877   }
3878 
3879   if (LHS.getValueType() == MVT::i32) {
3880     // Try to generate VSEL on ARMv8.
3881     // The VSEL instruction can't use all the usual ARM condition
3882     // codes: it only has two bits to select the condition code, so it's
3883     // constrained to use only GE, GT, VS and EQ.
3884     //
3885     // To implement all the various ISD::SETXXX opcodes, we sometimes need to
3886     // swap the operands of the previous compare instruction (effectively
3887     // inverting the compare condition, swapping 'less' and 'greater') and
3888     // sometimes need to swap the operands to the VSEL (which inverts the
3889     // condition in the sense of firing whenever the previous condition didn't)
3890     if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
3891                                     TrueVal.getValueType() == MVT::f64)) {
3892       ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
3893       if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
3894           CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
3895         CC = ISD::getSetCCInverse(CC, true);
3896         std::swap(TrueVal, FalseVal);
3897       }
3898     }
3899 
3900     SDValue ARMcc;
3901     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3902     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
3903     return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
3904   }
3905 
3906   ARMCC::CondCodes CondCode, CondCode2;
3907   FPCCToARMCC(CC, CondCode, CondCode2);
3908 
3909   // Try to generate VMAXNM/VMINNM on ARMv8.
3910   if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
3911                                   TrueVal.getValueType() == MVT::f64)) {
3912     bool swpCmpOps = false;
3913     bool swpVselOps = false;
3914     checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
3915 
3916     if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
3917         CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
3918       if (swpCmpOps)
3919         std::swap(LHS, RHS);
3920       if (swpVselOps)
3921         std::swap(TrueVal, FalseVal);
3922     }
3923   }
3924 
3925   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
3926   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
3927   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
3928   SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
3929   if (CondCode2 != ARMCC::AL) {
3930     SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
3931     // FIXME: Needs another CMP because flag can have but one use.
3932     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
3933     Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
3934   }
3935   return Result;
3936 }
3937 
3938 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
3939 /// to morph to an integer compare sequence.
canChangeToInt(SDValue Op,bool & SeenZero,const ARMSubtarget * Subtarget)3940 static bool canChangeToInt(SDValue Op, bool &SeenZero,
3941                            const ARMSubtarget *Subtarget) {
3942   SDNode *N = Op.getNode();
3943   if (!N->hasOneUse())
3944     // Otherwise it requires moving the value from fp to integer registers.
3945     return false;
3946   if (!N->getNumValues())
3947     return false;
3948   EVT VT = Op.getValueType();
3949   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
3950     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
3951     // vmrs are very slow, e.g. cortex-a8.
3952     return false;
3953 
3954   if (isFloatingPointZero(Op)) {
3955     SeenZero = true;
3956     return true;
3957   }
3958   return ISD::isNormalLoad(N);
3959 }
3960 
bitcastf32Toi32(SDValue Op,SelectionDAG & DAG)3961 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
3962   if (isFloatingPointZero(Op))
3963     return DAG.getConstant(0, SDLoc(Op), MVT::i32);
3964 
3965   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
3966     return DAG.getLoad(MVT::i32, SDLoc(Op),
3967                        Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
3968                        Ld->isVolatile(), Ld->isNonTemporal(),
3969                        Ld->isInvariant(), Ld->getAlignment());
3970 
3971   llvm_unreachable("Unknown VFP cmp argument!");
3972 }
3973 
expandf64Toi32(SDValue Op,SelectionDAG & DAG,SDValue & RetVal1,SDValue & RetVal2)3974 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
3975                            SDValue &RetVal1, SDValue &RetVal2) {
3976   SDLoc dl(Op);
3977 
3978   if (isFloatingPointZero(Op)) {
3979     RetVal1 = DAG.getConstant(0, dl, MVT::i32);
3980     RetVal2 = DAG.getConstant(0, dl, MVT::i32);
3981     return;
3982   }
3983 
3984   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
3985     SDValue Ptr = Ld->getBasePtr();
3986     RetVal1 = DAG.getLoad(MVT::i32, dl,
3987                           Ld->getChain(), Ptr,
3988                           Ld->getPointerInfo(),
3989                           Ld->isVolatile(), Ld->isNonTemporal(),
3990                           Ld->isInvariant(), Ld->getAlignment());
3991 
3992     EVT PtrType = Ptr.getValueType();
3993     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
3994     SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
3995                                  PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
3996     RetVal2 = DAG.getLoad(MVT::i32, dl,
3997                           Ld->getChain(), NewPtr,
3998                           Ld->getPointerInfo().getWithOffset(4),
3999                           Ld->isVolatile(), Ld->isNonTemporal(),
4000                           Ld->isInvariant(), NewAlign);
4001     return;
4002   }
4003 
4004   llvm_unreachable("Unknown VFP cmp argument!");
4005 }
4006 
4007 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
4008 /// f32 and even f64 comparisons to integer ones.
4009 SDValue
OptimizeVFPBrcond(SDValue Op,SelectionDAG & DAG) const4010 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
4011   SDValue Chain = Op.getOperand(0);
4012   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4013   SDValue LHS = Op.getOperand(2);
4014   SDValue RHS = Op.getOperand(3);
4015   SDValue Dest = Op.getOperand(4);
4016   SDLoc dl(Op);
4017 
4018   bool LHSSeenZero = false;
4019   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
4020   bool RHSSeenZero = false;
4021   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
4022   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
4023     // If unsafe fp math optimization is enabled and there are no other uses of
4024     // the CMP operands, and the condition code is EQ or NE, we can optimize it
4025     // to an integer comparison.
4026     if (CC == ISD::SETOEQ)
4027       CC = ISD::SETEQ;
4028     else if (CC == ISD::SETUNE)
4029       CC = ISD::SETNE;
4030 
4031     SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
4032     SDValue ARMcc;
4033     if (LHS.getValueType() == MVT::f32) {
4034       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
4035                         bitcastf32Toi32(LHS, DAG), Mask);
4036       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
4037                         bitcastf32Toi32(RHS, DAG), Mask);
4038       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4039       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4040       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
4041                          Chain, Dest, ARMcc, CCR, Cmp);
4042     }
4043 
4044     SDValue LHS1, LHS2;
4045     SDValue RHS1, RHS2;
4046     expandf64Toi32(LHS, DAG, LHS1, LHS2);
4047     expandf64Toi32(RHS, DAG, RHS1, RHS2);
4048     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
4049     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
4050     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4051     ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4052     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
4053     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
4054     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
4055   }
4056 
4057   return SDValue();
4058 }
4059 
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const4060 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
4061   SDValue Chain = Op.getOperand(0);
4062   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
4063   SDValue LHS = Op.getOperand(2);
4064   SDValue RHS = Op.getOperand(3);
4065   SDValue Dest = Op.getOperand(4);
4066   SDLoc dl(Op);
4067 
4068   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
4069     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
4070                                                     dl);
4071 
4072     // If softenSetCCOperands only returned one value, we should compare it to
4073     // zero.
4074     if (!RHS.getNode()) {
4075       RHS = DAG.getConstant(0, dl, LHS.getValueType());
4076       CC = ISD::SETNE;
4077     }
4078   }
4079 
4080   if (LHS.getValueType() == MVT::i32) {
4081     SDValue ARMcc;
4082     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
4083     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4084     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
4085                        Chain, Dest, ARMcc, CCR, Cmp);
4086   }
4087 
4088   assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
4089 
4090   if (getTargetMachine().Options.UnsafeFPMath &&
4091       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
4092        CC == ISD::SETNE || CC == ISD::SETUNE)) {
4093     if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
4094       return Result;
4095   }
4096 
4097   ARMCC::CondCodes CondCode, CondCode2;
4098   FPCCToARMCC(CC, CondCode, CondCode2);
4099 
4100   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4101   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
4102   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4103   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
4104   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
4105   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
4106   if (CondCode2 != ARMCC::AL) {
4107     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
4108     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
4109     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
4110   }
4111   return Res;
4112 }
4113 
LowerBR_JT(SDValue Op,SelectionDAG & DAG) const4114 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
4115   SDValue Chain = Op.getOperand(0);
4116   SDValue Table = Op.getOperand(1);
4117   SDValue Index = Op.getOperand(2);
4118   SDLoc dl(Op);
4119 
4120   EVT PTy = getPointerTy(DAG.getDataLayout());
4121   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
4122   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
4123   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
4124   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
4125   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
4126   if (Subtarget->isThumb2()) {
4127     // Thumb2 uses a two-level jump. That is, it jumps into the jump table
4128     // which does another jump to the destination. This also makes it easier
4129     // to translate it to TBB / TBH later.
4130     // FIXME: This might not work if the function is extremely large.
4131     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
4132                        Addr, Op.getOperand(2), JTI);
4133   }
4134   if (isPositionIndependent()) {
4135     Addr =
4136         DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
4137                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()),
4138                     false, false, false, 0);
4139     Chain = Addr.getValue(1);
4140     Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
4141     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
4142   } else {
4143     Addr =
4144         DAG.getLoad(PTy, dl, Chain, Addr,
4145                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()),
4146                     false, false, false, 0);
4147     Chain = Addr.getValue(1);
4148     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
4149   }
4150 }
4151 
LowerVectorFP_TO_INT(SDValue Op,SelectionDAG & DAG)4152 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
4153   EVT VT = Op.getValueType();
4154   SDLoc dl(Op);
4155 
4156   if (Op.getValueType().getVectorElementType() == MVT::i32) {
4157     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
4158       return Op;
4159     return DAG.UnrollVectorOp(Op.getNode());
4160   }
4161 
4162   assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
4163          "Invalid type for custom lowering!");
4164   if (VT != MVT::v4i16)
4165     return DAG.UnrollVectorOp(Op.getNode());
4166 
4167   Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
4168   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
4169 }
4170 
LowerFP_TO_INT(SDValue Op,SelectionDAG & DAG) const4171 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
4172   EVT VT = Op.getValueType();
4173   if (VT.isVector())
4174     return LowerVectorFP_TO_INT(Op, DAG);
4175   if (Subtarget->isFPOnlySP() && Op.getOperand(0).getValueType() == MVT::f64) {
4176     RTLIB::Libcall LC;
4177     if (Op.getOpcode() == ISD::FP_TO_SINT)
4178       LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
4179                               Op.getValueType());
4180     else
4181       LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
4182                               Op.getValueType());
4183     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
4184                        /*isSigned*/ false, SDLoc(Op)).first;
4185   }
4186 
4187   return Op;
4188 }
4189 
LowerVectorINT_TO_FP(SDValue Op,SelectionDAG & DAG)4190 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
4191   EVT VT = Op.getValueType();
4192   SDLoc dl(Op);
4193 
4194   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
4195     if (VT.getVectorElementType() == MVT::f32)
4196       return Op;
4197     return DAG.UnrollVectorOp(Op.getNode());
4198   }
4199 
4200   assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
4201          "Invalid type for custom lowering!");
4202   if (VT != MVT::v4f32)
4203     return DAG.UnrollVectorOp(Op.getNode());
4204 
4205   unsigned CastOpc;
4206   unsigned Opc;
4207   switch (Op.getOpcode()) {
4208   default: llvm_unreachable("Invalid opcode!");
4209   case ISD::SINT_TO_FP:
4210     CastOpc = ISD::SIGN_EXTEND;
4211     Opc = ISD::SINT_TO_FP;
4212     break;
4213   case ISD::UINT_TO_FP:
4214     CastOpc = ISD::ZERO_EXTEND;
4215     Opc = ISD::UINT_TO_FP;
4216     break;
4217   }
4218 
4219   Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
4220   return DAG.getNode(Opc, dl, VT, Op);
4221 }
4222 
LowerINT_TO_FP(SDValue Op,SelectionDAG & DAG) const4223 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
4224   EVT VT = Op.getValueType();
4225   if (VT.isVector())
4226     return LowerVectorINT_TO_FP(Op, DAG);
4227   if (Subtarget->isFPOnlySP() && Op.getValueType() == MVT::f64) {
4228     RTLIB::Libcall LC;
4229     if (Op.getOpcode() == ISD::SINT_TO_FP)
4230       LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
4231                               Op.getValueType());
4232     else
4233       LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
4234                               Op.getValueType());
4235     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
4236                        /*isSigned*/ false, SDLoc(Op)).first;
4237   }
4238 
4239   return Op;
4240 }
4241 
LowerFCOPYSIGN(SDValue Op,SelectionDAG & DAG) const4242 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
4243   // Implement fcopysign with a fabs and a conditional fneg.
4244   SDValue Tmp0 = Op.getOperand(0);
4245   SDValue Tmp1 = Op.getOperand(1);
4246   SDLoc dl(Op);
4247   EVT VT = Op.getValueType();
4248   EVT SrcVT = Tmp1.getValueType();
4249   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
4250     Tmp0.getOpcode() == ARMISD::VMOVDRR;
4251   bool UseNEON = !InGPR && Subtarget->hasNEON();
4252 
4253   if (UseNEON) {
4254     // Use VBSL to copy the sign bit.
4255     unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
4256     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
4257                                DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
4258     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
4259     if (VT == MVT::f64)
4260       Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
4261                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
4262                          DAG.getConstant(32, dl, MVT::i32));
4263     else /*if (VT == MVT::f32)*/
4264       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
4265     if (SrcVT == MVT::f32) {
4266       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
4267       if (VT == MVT::f64)
4268         Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
4269                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
4270                            DAG.getConstant(32, dl, MVT::i32));
4271     } else if (VT == MVT::f32)
4272       Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
4273                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
4274                          DAG.getConstant(32, dl, MVT::i32));
4275     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
4276     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
4277 
4278     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
4279                                             dl, MVT::i32);
4280     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
4281     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
4282                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
4283 
4284     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
4285                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
4286                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
4287     if (VT == MVT::f32) {
4288       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
4289       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
4290                         DAG.getConstant(0, dl, MVT::i32));
4291     } else {
4292       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
4293     }
4294 
4295     return Res;
4296   }
4297 
4298   // Bitcast operand 1 to i32.
4299   if (SrcVT == MVT::f64)
4300     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
4301                        Tmp1).getValue(1);
4302   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
4303 
4304   // Or in the signbit with integer operations.
4305   SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
4306   SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
4307   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
4308   if (VT == MVT::f32) {
4309     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
4310                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
4311     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4312                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
4313   }
4314 
4315   // f64: Or the high part with signbit and then combine two parts.
4316   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
4317                      Tmp0);
4318   SDValue Lo = Tmp0.getValue(0);
4319   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
4320   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
4321   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
4322 }
4323 
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const4324 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
4325   MachineFunction &MF = DAG.getMachineFunction();
4326   MachineFrameInfo *MFI = MF.getFrameInfo();
4327   MFI->setReturnAddressIsTaken(true);
4328 
4329   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
4330     return SDValue();
4331 
4332   EVT VT = Op.getValueType();
4333   SDLoc dl(Op);
4334   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4335   if (Depth) {
4336     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
4337     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
4338     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
4339                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
4340                        MachinePointerInfo(), false, false, false, 0);
4341   }
4342 
4343   // Return LR, which contains the return address. Mark it an implicit live-in.
4344   unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
4345   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
4346 }
4347 
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const4348 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
4349   const ARMBaseRegisterInfo &ARI =
4350     *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
4351   MachineFunction &MF = DAG.getMachineFunction();
4352   MachineFrameInfo *MFI = MF.getFrameInfo();
4353   MFI->setFrameAddressIsTaken(true);
4354 
4355   EVT VT = Op.getValueType();
4356   SDLoc dl(Op);  // FIXME probably not meaningful
4357   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4358   unsigned FrameReg = ARI.getFrameRegister(MF);
4359   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
4360   while (Depth--)
4361     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
4362                             MachinePointerInfo(),
4363                             false, false, false, 0);
4364   return FrameAddr;
4365 }
4366 
4367 // FIXME? Maybe this could be a TableGen attribute on some registers and
4368 // this table could be generated automatically from RegInfo.
getRegisterByName(const char * RegName,EVT VT,SelectionDAG & DAG) const4369 unsigned ARMTargetLowering::getRegisterByName(const char* RegName, EVT VT,
4370                                               SelectionDAG &DAG) const {
4371   unsigned Reg = StringSwitch<unsigned>(RegName)
4372                        .Case("sp", ARM::SP)
4373                        .Default(0);
4374   if (Reg)
4375     return Reg;
4376   report_fatal_error(Twine("Invalid register name \""
4377                               + StringRef(RegName)  + "\"."));
4378 }
4379 
4380 // Result is 64 bit value so split into two 32 bit values and return as a
4381 // pair of values.
ExpandREAD_REGISTER(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)4382 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
4383                                 SelectionDAG &DAG) {
4384   SDLoc DL(N);
4385 
4386   // This function is only supposed to be called for i64 type destination.
4387   assert(N->getValueType(0) == MVT::i64
4388           && "ExpandREAD_REGISTER called for non-i64 type result.");
4389 
4390   SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
4391                              DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
4392                              N->getOperand(0),
4393                              N->getOperand(1));
4394 
4395   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
4396                     Read.getValue(1)));
4397   Results.push_back(Read.getOperand(0));
4398 }
4399 
4400 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
4401 /// When \p DstVT, the destination type of \p BC, is on the vector
4402 /// register bank and the source of bitcast, \p Op, operates on the same bank,
4403 /// it might be possible to combine them, such that everything stays on the
4404 /// vector register bank.
4405 /// \p return The node that would replace \p BT, if the combine
4406 /// is possible.
CombineVMOVDRRCandidateWithVecOp(const SDNode * BC,SelectionDAG & DAG)4407 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
4408                                                 SelectionDAG &DAG) {
4409   SDValue Op = BC->getOperand(0);
4410   EVT DstVT = BC->getValueType(0);
4411 
4412   // The only vector instruction that can produce a scalar (remember,
4413   // since the bitcast was about to be turned into VMOVDRR, the source
4414   // type is i64) from a vector is EXTRACT_VECTOR_ELT.
4415   // Moreover, we can do this combine only if there is one use.
4416   // Finally, if the destination type is not a vector, there is not
4417   // much point on forcing everything on the vector bank.
4418   if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
4419       !Op.hasOneUse())
4420     return SDValue();
4421 
4422   // If the index is not constant, we will introduce an additional
4423   // multiply that will stick.
4424   // Give up in that case.
4425   ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
4426   if (!Index)
4427     return SDValue();
4428   unsigned DstNumElt = DstVT.getVectorNumElements();
4429 
4430   // Compute the new index.
4431   const APInt &APIntIndex = Index->getAPIntValue();
4432   APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
4433   NewIndex *= APIntIndex;
4434   // Check if the new constant index fits into i32.
4435   if (NewIndex.getBitWidth() > 32)
4436     return SDValue();
4437 
4438   // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
4439   // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
4440   SDLoc dl(Op);
4441   SDValue ExtractSrc = Op.getOperand(0);
4442   EVT VecVT = EVT::getVectorVT(
4443       *DAG.getContext(), DstVT.getScalarType(),
4444       ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
4445   SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
4446   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
4447                      DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
4448 }
4449 
4450 /// ExpandBITCAST - If the target supports VFP, this function is called to
4451 /// expand a bit convert where either the source or destination type is i64 to
4452 /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
4453 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
4454 /// vectors), since the legalizer won't know what to do with that.
ExpandBITCAST(SDNode * N,SelectionDAG & DAG)4455 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
4456   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4457   SDLoc dl(N);
4458   SDValue Op = N->getOperand(0);
4459 
4460   // This function is only supposed to be called for i64 types, either as the
4461   // source or destination of the bit convert.
4462   EVT SrcVT = Op.getValueType();
4463   EVT DstVT = N->getValueType(0);
4464   assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
4465          "ExpandBITCAST called for non-i64 type");
4466 
4467   // Turn i64->f64 into VMOVDRR.
4468   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
4469     // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
4470     // if we can combine the bitcast with its source.
4471     if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
4472       return Val;
4473 
4474     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
4475                              DAG.getConstant(0, dl, MVT::i32));
4476     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
4477                              DAG.getConstant(1, dl, MVT::i32));
4478     return DAG.getNode(ISD::BITCAST, dl, DstVT,
4479                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
4480   }
4481 
4482   // Turn f64->i64 into VMOVRRD.
4483   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
4484     SDValue Cvt;
4485     if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
4486         SrcVT.getVectorNumElements() > 1)
4487       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
4488                         DAG.getVTList(MVT::i32, MVT::i32),
4489                         DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
4490     else
4491       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
4492                         DAG.getVTList(MVT::i32, MVT::i32), Op);
4493     // Merge the pieces into a single i64 value.
4494     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
4495   }
4496 
4497   return SDValue();
4498 }
4499 
4500 /// getZeroVector - Returns a vector of specified type with all zero elements.
4501 /// Zero vectors are used to represent vector negation and in those cases
4502 /// will be implemented with the NEON VNEG instruction.  However, VNEG does
4503 /// not support i64 elements, so sometimes the zero vectors will need to be
4504 /// explicitly constructed.  Regardless, use a canonical VMOV to create the
4505 /// zero vector.
getZeroVector(EVT VT,SelectionDAG & DAG,const SDLoc & dl)4506 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
4507   assert(VT.isVector() && "Expected a vector type");
4508   // The canonical modified immediate encoding of a zero vector is....0!
4509   SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
4510   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
4511   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
4512   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
4513 }
4514 
4515 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
4516 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
LowerShiftRightParts(SDValue Op,SelectionDAG & DAG) const4517 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
4518                                                 SelectionDAG &DAG) const {
4519   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4520   EVT VT = Op.getValueType();
4521   unsigned VTBits = VT.getSizeInBits();
4522   SDLoc dl(Op);
4523   SDValue ShOpLo = Op.getOperand(0);
4524   SDValue ShOpHi = Op.getOperand(1);
4525   SDValue ShAmt  = Op.getOperand(2);
4526   SDValue ARMcc;
4527   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
4528 
4529   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
4530 
4531   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
4532                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
4533   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
4534   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
4535                                    DAG.getConstant(VTBits, dl, MVT::i32));
4536   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
4537   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4538   SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
4539 
4540   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4541   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
4542                           ISD::SETGE, ARMcc, DAG, dl);
4543   SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
4544   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
4545                            CCR, Cmp);
4546 
4547   SDValue Ops[2] = { Lo, Hi };
4548   return DAG.getMergeValues(Ops, dl);
4549 }
4550 
4551 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
4552 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
LowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const4553 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
4554                                                SelectionDAG &DAG) const {
4555   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
4556   EVT VT = Op.getValueType();
4557   unsigned VTBits = VT.getSizeInBits();
4558   SDLoc dl(Op);
4559   SDValue ShOpLo = Op.getOperand(0);
4560   SDValue ShOpHi = Op.getOperand(1);
4561   SDValue ShAmt  = Op.getOperand(2);
4562   SDValue ARMcc;
4563 
4564   assert(Op.getOpcode() == ISD::SHL_PARTS);
4565   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
4566                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
4567   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
4568   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
4569                                    DAG.getConstant(VTBits, dl, MVT::i32));
4570   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
4571   SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
4572 
4573   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
4574   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4575   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
4576                           ISD::SETGE, ARMcc, DAG, dl);
4577   SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
4578   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
4579                            CCR, Cmp);
4580 
4581   SDValue Ops[2] = { Lo, Hi };
4582   return DAG.getMergeValues(Ops, dl);
4583 }
4584 
LowerFLT_ROUNDS_(SDValue Op,SelectionDAG & DAG) const4585 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
4586                                             SelectionDAG &DAG) const {
4587   // The rounding mode is in bits 23:22 of the FPSCR.
4588   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
4589   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
4590   // so that the shift + and get folded into a bitfield extract.
4591   SDLoc dl(Op);
4592   SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
4593                               DAG.getConstant(Intrinsic::arm_get_fpscr, dl,
4594                                               MVT::i32));
4595   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
4596                                   DAG.getConstant(1U << 22, dl, MVT::i32));
4597   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
4598                               DAG.getConstant(22, dl, MVT::i32));
4599   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
4600                      DAG.getConstant(3, dl, MVT::i32));
4601 }
4602 
LowerCTTZ(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)4603 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
4604                          const ARMSubtarget *ST) {
4605   SDLoc dl(N);
4606   EVT VT = N->getValueType(0);
4607   if (VT.isVector()) {
4608     assert(ST->hasNEON());
4609 
4610     // Compute the least significant set bit: LSB = X & -X
4611     SDValue X = N->getOperand(0);
4612     SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
4613     SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
4614 
4615     EVT ElemTy = VT.getVectorElementType();
4616 
4617     if (ElemTy == MVT::i8) {
4618       // Compute with: cttz(x) = ctpop(lsb - 1)
4619       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
4620                                 DAG.getTargetConstant(1, dl, ElemTy));
4621       SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
4622       return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
4623     }
4624 
4625     if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
4626         (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
4627       // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
4628       unsigned NumBits = ElemTy.getSizeInBits();
4629       SDValue WidthMinus1 =
4630           DAG.getNode(ARMISD::VMOVIMM, dl, VT,
4631                       DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
4632       SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
4633       return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
4634     }
4635 
4636     // Compute with: cttz(x) = ctpop(lsb - 1)
4637 
4638     // Since we can only compute the number of bits in a byte with vcnt.8, we
4639     // have to gather the result with pairwise addition (vpaddl) for i16, i32,
4640     // and i64.
4641 
4642     // Compute LSB - 1.
4643     SDValue Bits;
4644     if (ElemTy == MVT::i64) {
4645       // Load constant 0xffff'ffff'ffff'ffff to register.
4646       SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
4647                                DAG.getTargetConstant(0x1eff, dl, MVT::i32));
4648       Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
4649     } else {
4650       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
4651                                 DAG.getTargetConstant(1, dl, ElemTy));
4652       Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
4653     }
4654 
4655     // Count #bits with vcnt.8.
4656     EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
4657     SDValue BitsVT8 = DAG.getNode(ISD::BITCAST, dl, VT8Bit, Bits);
4658     SDValue Cnt8 = DAG.getNode(ISD::CTPOP, dl, VT8Bit, BitsVT8);
4659 
4660     // Gather the #bits with vpaddl (pairwise add.)
4661     EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
4662     SDValue Cnt16 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT16Bit,
4663         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
4664         Cnt8);
4665     if (ElemTy == MVT::i16)
4666       return Cnt16;
4667 
4668     EVT VT32Bit = VT.is64BitVector() ? MVT::v2i32 : MVT::v4i32;
4669     SDValue Cnt32 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT32Bit,
4670         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
4671         Cnt16);
4672     if (ElemTy == MVT::i32)
4673       return Cnt32;
4674 
4675     assert(ElemTy == MVT::i64);
4676     SDValue Cnt64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
4677         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
4678         Cnt32);
4679     return Cnt64;
4680   }
4681 
4682   if (!ST->hasV6T2Ops())
4683     return SDValue();
4684 
4685   SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
4686   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
4687 }
4688 
4689 /// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
4690 /// for each 16-bit element from operand, repeated.  The basic idea is to
4691 /// leverage vcnt to get the 8-bit counts, gather and add the results.
4692 ///
4693 /// Trace for v4i16:
4694 /// input    = [v0    v1    v2    v3   ] (vi 16-bit element)
4695 /// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
4696 /// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
4697 /// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
4698 ///            [b0 b1 b2 b3 b4 b5 b6 b7]
4699 ///           +[b1 b0 b3 b2 b5 b4 b7 b6]
4700 /// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
4701 /// vuzp:    = [k0 k1 k2 k3 k0 k1 k2 k3]  each ki is 8-bits)
getCTPOP16BitCounts(SDNode * N,SelectionDAG & DAG)4702 static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
4703   EVT VT = N->getValueType(0);
4704   SDLoc DL(N);
4705 
4706   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
4707   SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
4708   SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
4709   SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
4710   SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
4711   return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
4712 }
4713 
4714 /// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
4715 /// bit-count for each 16-bit element from the operand.  We need slightly
4716 /// different sequencing for v4i16 and v8i16 to stay within NEON's available
4717 /// 64/128-bit registers.
4718 ///
4719 /// Trace for v4i16:
4720 /// input           = [v0    v1    v2    v3    ] (vi 16-bit element)
4721 /// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
4722 /// v8i16:Extended  = [k0    k1    k2    k3    k0    k1    k2    k3    ]
4723 /// v4i16:Extracted = [k0    k1    k2    k3    ]
lowerCTPOP16BitElements(SDNode * N,SelectionDAG & DAG)4724 static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
4725   EVT VT = N->getValueType(0);
4726   SDLoc DL(N);
4727 
4728   SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
4729   if (VT.is64BitVector()) {
4730     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
4731     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
4732                        DAG.getIntPtrConstant(0, DL));
4733   } else {
4734     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
4735                                     BitCounts, DAG.getIntPtrConstant(0, DL));
4736     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
4737   }
4738 }
4739 
4740 /// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
4741 /// bit-count for each 32-bit element from the operand.  The idea here is
4742 /// to split the vector into 16-bit elements, leverage the 16-bit count
4743 /// routine, and then combine the results.
4744 ///
4745 /// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
4746 /// input    = [v0    v1    ] (vi: 32-bit elements)
4747 /// Bitcast  = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
4748 /// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
4749 /// vrev: N0 = [k1 k0 k3 k2 ]
4750 ///            [k0 k1 k2 k3 ]
4751 ///       N1 =+[k1 k0 k3 k2 ]
4752 ///            [k0 k2 k1 k3 ]
4753 ///       N2 =+[k1 k3 k0 k2 ]
4754 ///            [k0    k2    k1    k3    ]
4755 /// Extended =+[k1    k3    k0    k2    ]
4756 ///            [k0    k2    ]
4757 /// Extracted=+[k1    k3    ]
4758 ///
lowerCTPOP32BitElements(SDNode * N,SelectionDAG & DAG)4759 static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
4760   EVT VT = N->getValueType(0);
4761   SDLoc DL(N);
4762 
4763   EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
4764 
4765   SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
4766   SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
4767   SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
4768   SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
4769   SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
4770 
4771   if (VT.is64BitVector()) {
4772     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
4773     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
4774                        DAG.getIntPtrConstant(0, DL));
4775   } else {
4776     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
4777                                     DAG.getIntPtrConstant(0, DL));
4778     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
4779   }
4780 }
4781 
LowerCTPOP(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)4782 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
4783                           const ARMSubtarget *ST) {
4784   EVT VT = N->getValueType(0);
4785 
4786   assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
4787   assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
4788           VT == MVT::v4i16 || VT == MVT::v8i16) &&
4789          "Unexpected type for custom ctpop lowering");
4790 
4791   if (VT.getVectorElementType() == MVT::i32)
4792     return lowerCTPOP32BitElements(N, DAG);
4793   else
4794     return lowerCTPOP16BitElements(N, DAG);
4795 }
4796 
LowerShift(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)4797 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
4798                           const ARMSubtarget *ST) {
4799   EVT VT = N->getValueType(0);
4800   SDLoc dl(N);
4801 
4802   if (!VT.isVector())
4803     return SDValue();
4804 
4805   // Lower vector shifts on NEON to use VSHL.
4806   assert(ST->hasNEON() && "unexpected vector shift");
4807 
4808   // Left shifts translate directly to the vshiftu intrinsic.
4809   if (N->getOpcode() == ISD::SHL)
4810     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
4811                        DAG.getConstant(Intrinsic::arm_neon_vshiftu, dl,
4812                                        MVT::i32),
4813                        N->getOperand(0), N->getOperand(1));
4814 
4815   assert((N->getOpcode() == ISD::SRA ||
4816           N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
4817 
4818   // NEON uses the same intrinsics for both left and right shifts.  For
4819   // right shifts, the shift amounts are negative, so negate the vector of
4820   // shift amounts.
4821   EVT ShiftVT = N->getOperand(1).getValueType();
4822   SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
4823                                      getZeroVector(ShiftVT, DAG, dl),
4824                                      N->getOperand(1));
4825   Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
4826                              Intrinsic::arm_neon_vshifts :
4827                              Intrinsic::arm_neon_vshiftu);
4828   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
4829                      DAG.getConstant(vshiftInt, dl, MVT::i32),
4830                      N->getOperand(0), NegatedCount);
4831 }
4832 
Expand64BitShift(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)4833 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
4834                                 const ARMSubtarget *ST) {
4835   EVT VT = N->getValueType(0);
4836   SDLoc dl(N);
4837 
4838   // We can get here for a node like i32 = ISD::SHL i32, i64
4839   if (VT != MVT::i64)
4840     return SDValue();
4841 
4842   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
4843          "Unknown shift to lower!");
4844 
4845   // We only lower SRA, SRL of 1 here, all others use generic lowering.
4846   if (!isOneConstant(N->getOperand(1)))
4847     return SDValue();
4848 
4849   // If we are in thumb mode, we don't have RRX.
4850   if (ST->isThumb1Only()) return SDValue();
4851 
4852   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
4853   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
4854                            DAG.getConstant(0, dl, MVT::i32));
4855   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
4856                            DAG.getConstant(1, dl, MVT::i32));
4857 
4858   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
4859   // captures the result into a carry flag.
4860   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
4861   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
4862 
4863   // The low part is an ARMISD::RRX operand, which shifts the carry in.
4864   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
4865 
4866   // Merge the pieces into a single i64 value.
4867  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
4868 }
4869 
LowerVSETCC(SDValue Op,SelectionDAG & DAG)4870 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
4871   SDValue TmpOp0, TmpOp1;
4872   bool Invert = false;
4873   bool Swap = false;
4874   unsigned Opc = 0;
4875 
4876   SDValue Op0 = Op.getOperand(0);
4877   SDValue Op1 = Op.getOperand(1);
4878   SDValue CC = Op.getOperand(2);
4879   EVT CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
4880   EVT VT = Op.getValueType();
4881   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4882   SDLoc dl(Op);
4883 
4884   if (CmpVT.getVectorElementType() == MVT::i64)
4885     // 64-bit comparisons are not legal. We've marked SETCC as non-Custom,
4886     // but it's possible that our operands are 64-bit but our result is 32-bit.
4887     // Bail in this case.
4888     return SDValue();
4889 
4890   if (Op1.getValueType().isFloatingPoint()) {
4891     switch (SetCCOpcode) {
4892     default: llvm_unreachable("Illegal FP comparison");
4893     case ISD::SETUNE:
4894     case ISD::SETNE:  Invert = true; // Fallthrough
4895     case ISD::SETOEQ:
4896     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
4897     case ISD::SETOLT:
4898     case ISD::SETLT: Swap = true; // Fallthrough
4899     case ISD::SETOGT:
4900     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
4901     case ISD::SETOLE:
4902     case ISD::SETLE:  Swap = true; // Fallthrough
4903     case ISD::SETOGE:
4904     case ISD::SETGE: Opc = ARMISD::VCGE; break;
4905     case ISD::SETUGE: Swap = true; // Fallthrough
4906     case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
4907     case ISD::SETUGT: Swap = true; // Fallthrough
4908     case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
4909     case ISD::SETUEQ: Invert = true; // Fallthrough
4910     case ISD::SETONE:
4911       // Expand this to (OLT | OGT).
4912       TmpOp0 = Op0;
4913       TmpOp1 = Op1;
4914       Opc = ISD::OR;
4915       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
4916       Op1 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp0, TmpOp1);
4917       break;
4918     case ISD::SETUO: Invert = true; // Fallthrough
4919     case ISD::SETO:
4920       // Expand this to (OLT | OGE).
4921       TmpOp0 = Op0;
4922       TmpOp1 = Op1;
4923       Opc = ISD::OR;
4924       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
4925       Op1 = DAG.getNode(ARMISD::VCGE, dl, CmpVT, TmpOp0, TmpOp1);
4926       break;
4927     }
4928   } else {
4929     // Integer comparisons.
4930     switch (SetCCOpcode) {
4931     default: llvm_unreachable("Illegal integer comparison");
4932     case ISD::SETNE:  Invert = true;
4933     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
4934     case ISD::SETLT:  Swap = true;
4935     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
4936     case ISD::SETLE:  Swap = true;
4937     case ISD::SETGE:  Opc = ARMISD::VCGE; break;
4938     case ISD::SETULT: Swap = true;
4939     case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
4940     case ISD::SETULE: Swap = true;
4941     case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
4942     }
4943 
4944     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
4945     if (Opc == ARMISD::VCEQ) {
4946 
4947       SDValue AndOp;
4948       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
4949         AndOp = Op0;
4950       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
4951         AndOp = Op1;
4952 
4953       // Ignore bitconvert.
4954       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
4955         AndOp = AndOp.getOperand(0);
4956 
4957       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
4958         Opc = ARMISD::VTST;
4959         Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
4960         Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
4961         Invert = !Invert;
4962       }
4963     }
4964   }
4965 
4966   if (Swap)
4967     std::swap(Op0, Op1);
4968 
4969   // If one of the operands is a constant vector zero, attempt to fold the
4970   // comparison to a specialized compare-against-zero form.
4971   SDValue SingleOp;
4972   if (ISD::isBuildVectorAllZeros(Op1.getNode()))
4973     SingleOp = Op0;
4974   else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
4975     if (Opc == ARMISD::VCGE)
4976       Opc = ARMISD::VCLEZ;
4977     else if (Opc == ARMISD::VCGT)
4978       Opc = ARMISD::VCLTZ;
4979     SingleOp = Op1;
4980   }
4981 
4982   SDValue Result;
4983   if (SingleOp.getNode()) {
4984     switch (Opc) {
4985     case ARMISD::VCEQ:
4986       Result = DAG.getNode(ARMISD::VCEQZ, dl, CmpVT, SingleOp); break;
4987     case ARMISD::VCGE:
4988       Result = DAG.getNode(ARMISD::VCGEZ, dl, CmpVT, SingleOp); break;
4989     case ARMISD::VCLEZ:
4990       Result = DAG.getNode(ARMISD::VCLEZ, dl, CmpVT, SingleOp); break;
4991     case ARMISD::VCGT:
4992       Result = DAG.getNode(ARMISD::VCGTZ, dl, CmpVT, SingleOp); break;
4993     case ARMISD::VCLTZ:
4994       Result = DAG.getNode(ARMISD::VCLTZ, dl, CmpVT, SingleOp); break;
4995     default:
4996       Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
4997     }
4998   } else {
4999      Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
5000   }
5001 
5002   Result = DAG.getSExtOrTrunc(Result, dl, VT);
5003 
5004   if (Invert)
5005     Result = DAG.getNOT(dl, Result, VT);
5006 
5007   return Result;
5008 }
5009 
LowerSETCCE(SDValue Op,SelectionDAG & DAG)5010 static SDValue LowerSETCCE(SDValue Op, SelectionDAG &DAG) {
5011   SDValue LHS = Op.getOperand(0);
5012   SDValue RHS = Op.getOperand(1);
5013   SDValue Carry = Op.getOperand(2);
5014   SDValue Cond = Op.getOperand(3);
5015   SDLoc DL(Op);
5016 
5017   assert(LHS.getSimpleValueType().isInteger() && "SETCCE is integer only.");
5018 
5019   assert(Carry.getOpcode() != ISD::CARRY_FALSE);
5020   SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
5021   SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
5022 
5023   SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
5024   SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
5025   SDValue ARMcc = DAG.getConstant(
5026       IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
5027   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5028   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
5029                                    Cmp.getValue(1), SDValue());
5030   return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
5031                      CCR, Chain.getValue(1));
5032 }
5033 
5034 /// isNEONModifiedImm - Check if the specified splat value corresponds to a
5035 /// valid vector constant for a NEON instruction with a "modified immediate"
5036 /// operand (e.g., VMOV).  If so, return the encoded value.
isNEONModifiedImm(uint64_t SplatBits,uint64_t SplatUndef,unsigned SplatBitSize,SelectionDAG & DAG,const SDLoc & dl,EVT & VT,bool is128Bits,NEONModImmType type)5037 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
5038                                  unsigned SplatBitSize, SelectionDAG &DAG,
5039                                  const SDLoc &dl, EVT &VT, bool is128Bits,
5040                                  NEONModImmType type) {
5041   unsigned OpCmode, Imm;
5042 
5043   // SplatBitSize is set to the smallest size that splats the vector, so a
5044   // zero vector will always have SplatBitSize == 8.  However, NEON modified
5045   // immediate instructions others than VMOV do not support the 8-bit encoding
5046   // of a zero vector, and the default encoding of zero is supposed to be the
5047   // 32-bit version.
5048   if (SplatBits == 0)
5049     SplatBitSize = 32;
5050 
5051   switch (SplatBitSize) {
5052   case 8:
5053     if (type != VMOVModImm)
5054       return SDValue();
5055     // Any 1-byte value is OK.  Op=0, Cmode=1110.
5056     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
5057     OpCmode = 0xe;
5058     Imm = SplatBits;
5059     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
5060     break;
5061 
5062   case 16:
5063     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
5064     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
5065     if ((SplatBits & ~0xff) == 0) {
5066       // Value = 0x00nn: Op=x, Cmode=100x.
5067       OpCmode = 0x8;
5068       Imm = SplatBits;
5069       break;
5070     }
5071     if ((SplatBits & ~0xff00) == 0) {
5072       // Value = 0xnn00: Op=x, Cmode=101x.
5073       OpCmode = 0xa;
5074       Imm = SplatBits >> 8;
5075       break;
5076     }
5077     return SDValue();
5078 
5079   case 32:
5080     // NEON's 32-bit VMOV supports splat values where:
5081     // * only one byte is nonzero, or
5082     // * the least significant byte is 0xff and the second byte is nonzero, or
5083     // * the least significant 2 bytes are 0xff and the third is nonzero.
5084     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
5085     if ((SplatBits & ~0xff) == 0) {
5086       // Value = 0x000000nn: Op=x, Cmode=000x.
5087       OpCmode = 0;
5088       Imm = SplatBits;
5089       break;
5090     }
5091     if ((SplatBits & ~0xff00) == 0) {
5092       // Value = 0x0000nn00: Op=x, Cmode=001x.
5093       OpCmode = 0x2;
5094       Imm = SplatBits >> 8;
5095       break;
5096     }
5097     if ((SplatBits & ~0xff0000) == 0) {
5098       // Value = 0x00nn0000: Op=x, Cmode=010x.
5099       OpCmode = 0x4;
5100       Imm = SplatBits >> 16;
5101       break;
5102     }
5103     if ((SplatBits & ~0xff000000) == 0) {
5104       // Value = 0xnn000000: Op=x, Cmode=011x.
5105       OpCmode = 0x6;
5106       Imm = SplatBits >> 24;
5107       break;
5108     }
5109 
5110     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
5111     if (type == OtherModImm) return SDValue();
5112 
5113     if ((SplatBits & ~0xffff) == 0 &&
5114         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
5115       // Value = 0x0000nnff: Op=x, Cmode=1100.
5116       OpCmode = 0xc;
5117       Imm = SplatBits >> 8;
5118       break;
5119     }
5120 
5121     if ((SplatBits & ~0xffffff) == 0 &&
5122         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
5123       // Value = 0x00nnffff: Op=x, Cmode=1101.
5124       OpCmode = 0xd;
5125       Imm = SplatBits >> 16;
5126       break;
5127     }
5128 
5129     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
5130     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
5131     // VMOV.I32.  A (very) minor optimization would be to replicate the value
5132     // and fall through here to test for a valid 64-bit splat.  But, then the
5133     // caller would also need to check and handle the change in size.
5134     return SDValue();
5135 
5136   case 64: {
5137     if (type != VMOVModImm)
5138       return SDValue();
5139     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
5140     uint64_t BitMask = 0xff;
5141     uint64_t Val = 0;
5142     unsigned ImmMask = 1;
5143     Imm = 0;
5144     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
5145       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
5146         Val |= BitMask;
5147         Imm |= ImmMask;
5148       } else if ((SplatBits & BitMask) != 0) {
5149         return SDValue();
5150       }
5151       BitMask <<= 8;
5152       ImmMask <<= 1;
5153     }
5154 
5155     if (DAG.getDataLayout().isBigEndian())
5156       // swap higher and lower 32 bit word
5157       Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
5158 
5159     // Op=1, Cmode=1110.
5160     OpCmode = 0x1e;
5161     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
5162     break;
5163   }
5164 
5165   default:
5166     llvm_unreachable("unexpected size for isNEONModifiedImm");
5167   }
5168 
5169   unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
5170   return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
5171 }
5172 
LowerConstantFP(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST) const5173 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
5174                                            const ARMSubtarget *ST) const {
5175   if (!ST->hasVFP3())
5176     return SDValue();
5177 
5178   bool IsDouble = Op.getValueType() == MVT::f64;
5179   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
5180 
5181   // Use the default (constant pool) lowering for double constants when we have
5182   // an SP-only FPU
5183   if (IsDouble && Subtarget->isFPOnlySP())
5184     return SDValue();
5185 
5186   // Try splatting with a VMOV.f32...
5187   const APFloat &FPVal = CFP->getValueAPF();
5188   int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
5189 
5190   if (ImmVal != -1) {
5191     if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
5192       // We have code in place to select a valid ConstantFP already, no need to
5193       // do any mangling.
5194       return Op;
5195     }
5196 
5197     // It's a float and we are trying to use NEON operations where
5198     // possible. Lower it to a splat followed by an extract.
5199     SDLoc DL(Op);
5200     SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
5201     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
5202                                       NewVal);
5203     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
5204                        DAG.getConstant(0, DL, MVT::i32));
5205   }
5206 
5207   // The rest of our options are NEON only, make sure that's allowed before
5208   // proceeding..
5209   if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
5210     return SDValue();
5211 
5212   EVT VMovVT;
5213   uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
5214 
5215   // It wouldn't really be worth bothering for doubles except for one very
5216   // important value, which does happen to match: 0.0. So make sure we don't do
5217   // anything stupid.
5218   if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
5219     return SDValue();
5220 
5221   // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
5222   SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
5223                                      VMovVT, false, VMOVModImm);
5224   if (NewVal != SDValue()) {
5225     SDLoc DL(Op);
5226     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
5227                                       NewVal);
5228     if (IsDouble)
5229       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
5230 
5231     // It's a float: cast and extract a vector element.
5232     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
5233                                        VecConstant);
5234     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
5235                        DAG.getConstant(0, DL, MVT::i32));
5236   }
5237 
5238   // Finally, try a VMVN.i32
5239   NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
5240                              false, VMVNModImm);
5241   if (NewVal != SDValue()) {
5242     SDLoc DL(Op);
5243     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
5244 
5245     if (IsDouble)
5246       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
5247 
5248     // It's a float: cast and extract a vector element.
5249     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
5250                                        VecConstant);
5251     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
5252                        DAG.getConstant(0, DL, MVT::i32));
5253   }
5254 
5255   return SDValue();
5256 }
5257 
5258 // check if an VEXT instruction can handle the shuffle mask when the
5259 // vector sources of the shuffle are the same.
isSingletonVEXTMask(ArrayRef<int> M,EVT VT,unsigned & Imm)5260 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
5261   unsigned NumElts = VT.getVectorNumElements();
5262 
5263   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
5264   if (M[0] < 0)
5265     return false;
5266 
5267   Imm = M[0];
5268 
5269   // If this is a VEXT shuffle, the immediate value is the index of the first
5270   // element.  The other shuffle indices must be the successive elements after
5271   // the first one.
5272   unsigned ExpectedElt = Imm;
5273   for (unsigned i = 1; i < NumElts; ++i) {
5274     // Increment the expected index.  If it wraps around, just follow it
5275     // back to index zero and keep going.
5276     ++ExpectedElt;
5277     if (ExpectedElt == NumElts)
5278       ExpectedElt = 0;
5279 
5280     if (M[i] < 0) continue; // ignore UNDEF indices
5281     if (ExpectedElt != static_cast<unsigned>(M[i]))
5282       return false;
5283   }
5284 
5285   return true;
5286 }
5287 
5288 
isVEXTMask(ArrayRef<int> M,EVT VT,bool & ReverseVEXT,unsigned & Imm)5289 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
5290                        bool &ReverseVEXT, unsigned &Imm) {
5291   unsigned NumElts = VT.getVectorNumElements();
5292   ReverseVEXT = false;
5293 
5294   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
5295   if (M[0] < 0)
5296     return false;
5297 
5298   Imm = M[0];
5299 
5300   // If this is a VEXT shuffle, the immediate value is the index of the first
5301   // element.  The other shuffle indices must be the successive elements after
5302   // the first one.
5303   unsigned ExpectedElt = Imm;
5304   for (unsigned i = 1; i < NumElts; ++i) {
5305     // Increment the expected index.  If it wraps around, it may still be
5306     // a VEXT but the source vectors must be swapped.
5307     ExpectedElt += 1;
5308     if (ExpectedElt == NumElts * 2) {
5309       ExpectedElt = 0;
5310       ReverseVEXT = true;
5311     }
5312 
5313     if (M[i] < 0) continue; // ignore UNDEF indices
5314     if (ExpectedElt != static_cast<unsigned>(M[i]))
5315       return false;
5316   }
5317 
5318   // Adjust the index value if the source operands will be swapped.
5319   if (ReverseVEXT)
5320     Imm -= NumElts;
5321 
5322   return true;
5323 }
5324 
5325 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
5326 /// instruction with the specified blocksize.  (The order of the elements
5327 /// within each block of the vector is reversed.)
isVREVMask(ArrayRef<int> M,EVT VT,unsigned BlockSize)5328 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
5329   assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
5330          "Only possible block sizes for VREV are: 16, 32, 64");
5331 
5332   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5333   if (EltSz == 64)
5334     return false;
5335 
5336   unsigned NumElts = VT.getVectorNumElements();
5337   unsigned BlockElts = M[0] + 1;
5338   // If the first shuffle index is UNDEF, be optimistic.
5339   if (M[0] < 0)
5340     BlockElts = BlockSize / EltSz;
5341 
5342   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
5343     return false;
5344 
5345   for (unsigned i = 0; i < NumElts; ++i) {
5346     if (M[i] < 0) continue; // ignore UNDEF indices
5347     if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
5348       return false;
5349   }
5350 
5351   return true;
5352 }
5353 
isVTBLMask(ArrayRef<int> M,EVT VT)5354 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
5355   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
5356   // range, then 0 is placed into the resulting vector. So pretty much any mask
5357   // of 8 elements can work here.
5358   return VT == MVT::v8i8 && M.size() == 8;
5359 }
5360 
5361 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
5362 // checking that pairs of elements in the shuffle mask represent the same index
5363 // in each vector, incrementing the expected index by 2 at each step.
5364 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
5365 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
5366 //  v2={e,f,g,h}
5367 // WhichResult gives the offset for each element in the mask based on which
5368 // of the two results it belongs to.
5369 //
5370 // The transpose can be represented either as:
5371 // result1 = shufflevector v1, v2, result1_shuffle_mask
5372 // result2 = shufflevector v1, v2, result2_shuffle_mask
5373 // where v1/v2 and the shuffle masks have the same number of elements
5374 // (here WhichResult (see below) indicates which result is being checked)
5375 //
5376 // or as:
5377 // results = shufflevector v1, v2, shuffle_mask
5378 // where both results are returned in one vector and the shuffle mask has twice
5379 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
5380 // want to check the low half and high half of the shuffle mask as if it were
5381 // the other case
isVTRNMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)5382 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5383   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5384   if (EltSz == 64)
5385     return false;
5386 
5387   unsigned NumElts = VT.getVectorNumElements();
5388   if (M.size() != NumElts && M.size() != NumElts*2)
5389     return false;
5390 
5391   // If the mask is twice as long as the input vector then we need to check the
5392   // upper and lower parts of the mask with a matching value for WhichResult
5393   // FIXME: A mask with only even values will be rejected in case the first
5394   // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
5395   // M[0] is used to determine WhichResult
5396   for (unsigned i = 0; i < M.size(); i += NumElts) {
5397     if (M.size() == NumElts * 2)
5398       WhichResult = i / NumElts;
5399     else
5400       WhichResult = M[i] == 0 ? 0 : 1;
5401     for (unsigned j = 0; j < NumElts; j += 2) {
5402       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
5403           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
5404         return false;
5405     }
5406   }
5407 
5408   if (M.size() == NumElts*2)
5409     WhichResult = 0;
5410 
5411   return true;
5412 }
5413 
5414 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
5415 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5416 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
isVTRN_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)5417 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
5418   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5419   if (EltSz == 64)
5420     return false;
5421 
5422   unsigned NumElts = VT.getVectorNumElements();
5423   if (M.size() != NumElts && M.size() != NumElts*2)
5424     return false;
5425 
5426   for (unsigned i = 0; i < M.size(); i += NumElts) {
5427     if (M.size() == NumElts * 2)
5428       WhichResult = i / NumElts;
5429     else
5430       WhichResult = M[i] == 0 ? 0 : 1;
5431     for (unsigned j = 0; j < NumElts; j += 2) {
5432       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
5433           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
5434         return false;
5435     }
5436   }
5437 
5438   if (M.size() == NumElts*2)
5439     WhichResult = 0;
5440 
5441   return true;
5442 }
5443 
5444 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
5445 // that the mask elements are either all even and in steps of size 2 or all odd
5446 // and in steps of size 2.
5447 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
5448 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
5449 //  v2={e,f,g,h}
5450 // Requires similar checks to that of isVTRNMask with
5451 // respect the how results are returned.
isVUZPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)5452 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5453   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5454   if (EltSz == 64)
5455     return false;
5456 
5457   unsigned NumElts = VT.getVectorNumElements();
5458   if (M.size() != NumElts && M.size() != NumElts*2)
5459     return false;
5460 
5461   for (unsigned i = 0; i < M.size(); i += NumElts) {
5462     WhichResult = M[i] == 0 ? 0 : 1;
5463     for (unsigned j = 0; j < NumElts; ++j) {
5464       if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
5465         return false;
5466     }
5467   }
5468 
5469   if (M.size() == NumElts*2)
5470     WhichResult = 0;
5471 
5472   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
5473   if (VT.is64BitVector() && EltSz == 32)
5474     return false;
5475 
5476   return true;
5477 }
5478 
5479 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
5480 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5481 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
isVUZP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)5482 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
5483   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5484   if (EltSz == 64)
5485     return false;
5486 
5487   unsigned NumElts = VT.getVectorNumElements();
5488   if (M.size() != NumElts && M.size() != NumElts*2)
5489     return false;
5490 
5491   unsigned Half = NumElts / 2;
5492   for (unsigned i = 0; i < M.size(); i += NumElts) {
5493     WhichResult = M[i] == 0 ? 0 : 1;
5494     for (unsigned j = 0; j < NumElts; j += Half) {
5495       unsigned Idx = WhichResult;
5496       for (unsigned k = 0; k < Half; ++k) {
5497         int MIdx = M[i + j + k];
5498         if (MIdx >= 0 && (unsigned) MIdx != Idx)
5499           return false;
5500         Idx += 2;
5501       }
5502     }
5503   }
5504 
5505   if (M.size() == NumElts*2)
5506     WhichResult = 0;
5507 
5508   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
5509   if (VT.is64BitVector() && EltSz == 32)
5510     return false;
5511 
5512   return true;
5513 }
5514 
5515 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
5516 // that pairs of elements of the shufflemask represent the same index in each
5517 // vector incrementing sequentially through the vectors.
5518 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
5519 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
5520 //  v2={e,f,g,h}
5521 // Requires similar checks to that of isVTRNMask with respect the how results
5522 // are returned.
isVZIPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)5523 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
5524   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5525   if (EltSz == 64)
5526     return false;
5527 
5528   unsigned NumElts = VT.getVectorNumElements();
5529   if (M.size() != NumElts && M.size() != NumElts*2)
5530     return false;
5531 
5532   for (unsigned i = 0; i < M.size(); i += NumElts) {
5533     WhichResult = M[i] == 0 ? 0 : 1;
5534     unsigned Idx = WhichResult * NumElts / 2;
5535     for (unsigned j = 0; j < NumElts; j += 2) {
5536       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
5537           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
5538         return false;
5539       Idx += 1;
5540     }
5541   }
5542 
5543   if (M.size() == NumElts*2)
5544     WhichResult = 0;
5545 
5546   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
5547   if (VT.is64BitVector() && EltSz == 32)
5548     return false;
5549 
5550   return true;
5551 }
5552 
5553 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
5554 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
5555 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
isVZIP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)5556 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
5557   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
5558   if (EltSz == 64)
5559     return false;
5560 
5561   unsigned NumElts = VT.getVectorNumElements();
5562   if (M.size() != NumElts && M.size() != NumElts*2)
5563     return false;
5564 
5565   for (unsigned i = 0; i < M.size(); i += NumElts) {
5566     WhichResult = M[i] == 0 ? 0 : 1;
5567     unsigned Idx = WhichResult * NumElts / 2;
5568     for (unsigned j = 0; j < NumElts; j += 2) {
5569       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
5570           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
5571         return false;
5572       Idx += 1;
5573     }
5574   }
5575 
5576   if (M.size() == NumElts*2)
5577     WhichResult = 0;
5578 
5579   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
5580   if (VT.is64BitVector() && EltSz == 32)
5581     return false;
5582 
5583   return true;
5584 }
5585 
5586 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
5587 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask,EVT VT,unsigned & WhichResult,bool & isV_UNDEF)5588 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
5589                                            unsigned &WhichResult,
5590                                            bool &isV_UNDEF) {
5591   isV_UNDEF = false;
5592   if (isVTRNMask(ShuffleMask, VT, WhichResult))
5593     return ARMISD::VTRN;
5594   if (isVUZPMask(ShuffleMask, VT, WhichResult))
5595     return ARMISD::VUZP;
5596   if (isVZIPMask(ShuffleMask, VT, WhichResult))
5597     return ARMISD::VZIP;
5598 
5599   isV_UNDEF = true;
5600   if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
5601     return ARMISD::VTRN;
5602   if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
5603     return ARMISD::VUZP;
5604   if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
5605     return ARMISD::VZIP;
5606 
5607   return 0;
5608 }
5609 
5610 /// \return true if this is a reverse operation on an vector.
isReverseMask(ArrayRef<int> M,EVT VT)5611 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
5612   unsigned NumElts = VT.getVectorNumElements();
5613   // Make sure the mask has the right size.
5614   if (NumElts != M.size())
5615       return false;
5616 
5617   // Look for <15, ..., 3, -1, 1, 0>.
5618   for (unsigned i = 0; i != NumElts; ++i)
5619     if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
5620       return false;
5621 
5622   return true;
5623 }
5624 
5625 // If N is an integer constant that can be moved into a register in one
5626 // instruction, return an SDValue of such a constant (will become a MOV
5627 // instruction).  Otherwise return null.
IsSingleInstrConstant(SDValue N,SelectionDAG & DAG,const ARMSubtarget * ST,const SDLoc & dl)5628 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
5629                                      const ARMSubtarget *ST, const SDLoc &dl) {
5630   uint64_t Val;
5631   if (!isa<ConstantSDNode>(N))
5632     return SDValue();
5633   Val = cast<ConstantSDNode>(N)->getZExtValue();
5634 
5635   if (ST->isThumb1Only()) {
5636     if (Val <= 255 || ~Val <= 255)
5637       return DAG.getConstant(Val, dl, MVT::i32);
5638   } else {
5639     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
5640       return DAG.getConstant(Val, dl, MVT::i32);
5641   }
5642   return SDValue();
5643 }
5644 
5645 // If this is a case we can't handle, return null and let the default
5646 // expansion code take care of it.
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST) const5647 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
5648                                              const ARMSubtarget *ST) const {
5649   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
5650   SDLoc dl(Op);
5651   EVT VT = Op.getValueType();
5652 
5653   APInt SplatBits, SplatUndef;
5654   unsigned SplatBitSize;
5655   bool HasAnyUndefs;
5656   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
5657     if (SplatBitSize <= 64) {
5658       // Check if an immediate VMOV works.
5659       EVT VmovVT;
5660       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
5661                                       SplatUndef.getZExtValue(), SplatBitSize,
5662                                       DAG, dl, VmovVT, VT.is128BitVector(),
5663                                       VMOVModImm);
5664       if (Val.getNode()) {
5665         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
5666         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
5667       }
5668 
5669       // Try an immediate VMVN.
5670       uint64_t NegatedImm = (~SplatBits).getZExtValue();
5671       Val = isNEONModifiedImm(NegatedImm,
5672                                       SplatUndef.getZExtValue(), SplatBitSize,
5673                                       DAG, dl, VmovVT, VT.is128BitVector(),
5674                                       VMVNModImm);
5675       if (Val.getNode()) {
5676         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
5677         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
5678       }
5679 
5680       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
5681       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
5682         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
5683         if (ImmVal != -1) {
5684           SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
5685           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
5686         }
5687       }
5688     }
5689   }
5690 
5691   // Scan through the operands to see if only one value is used.
5692   //
5693   // As an optimisation, even if more than one value is used it may be more
5694   // profitable to splat with one value then change some lanes.
5695   //
5696   // Heuristically we decide to do this if the vector has a "dominant" value,
5697   // defined as splatted to more than half of the lanes.
5698   unsigned NumElts = VT.getVectorNumElements();
5699   bool isOnlyLowElement = true;
5700   bool usesOnlyOneValue = true;
5701   bool hasDominantValue = false;
5702   bool isConstant = true;
5703 
5704   // Map of the number of times a particular SDValue appears in the
5705   // element list.
5706   DenseMap<SDValue, unsigned> ValueCounts;
5707   SDValue Value;
5708   for (unsigned i = 0; i < NumElts; ++i) {
5709     SDValue V = Op.getOperand(i);
5710     if (V.isUndef())
5711       continue;
5712     if (i > 0)
5713       isOnlyLowElement = false;
5714     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
5715       isConstant = false;
5716 
5717     ValueCounts.insert(std::make_pair(V, 0));
5718     unsigned &Count = ValueCounts[V];
5719 
5720     // Is this value dominant? (takes up more than half of the lanes)
5721     if (++Count > (NumElts / 2)) {
5722       hasDominantValue = true;
5723       Value = V;
5724     }
5725   }
5726   if (ValueCounts.size() != 1)
5727     usesOnlyOneValue = false;
5728   if (!Value.getNode() && ValueCounts.size() > 0)
5729     Value = ValueCounts.begin()->first;
5730 
5731   if (ValueCounts.size() == 0)
5732     return DAG.getUNDEF(VT);
5733 
5734   // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
5735   // Keep going if we are hitting this case.
5736   if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
5737     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
5738 
5739   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
5740 
5741   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
5742   // i32 and try again.
5743   if (hasDominantValue && EltSize <= 32) {
5744     if (!isConstant) {
5745       SDValue N;
5746 
5747       // If we are VDUPing a value that comes directly from a vector, that will
5748       // cause an unnecessary move to and from a GPR, where instead we could
5749       // just use VDUPLANE. We can only do this if the lane being extracted
5750       // is at a constant index, as the VDUP from lane instructions only have
5751       // constant-index forms.
5752       ConstantSDNode *constIndex;
5753       if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5754           (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
5755         // We need to create a new undef vector to use for the VDUPLANE if the
5756         // size of the vector from which we get the value is different than the
5757         // size of the vector that we need to create. We will insert the element
5758         // such that the register coalescer will remove unnecessary copies.
5759         if (VT != Value->getOperand(0).getValueType()) {
5760           unsigned index = constIndex->getAPIntValue().getLimitedValue() %
5761                              VT.getVectorNumElements();
5762           N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
5763                  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
5764                         Value, DAG.getConstant(index, dl, MVT::i32)),
5765                            DAG.getConstant(index, dl, MVT::i32));
5766         } else
5767           N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
5768                         Value->getOperand(0), Value->getOperand(1));
5769       } else
5770         N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
5771 
5772       if (!usesOnlyOneValue) {
5773         // The dominant value was splatted as 'N', but we now have to insert
5774         // all differing elements.
5775         for (unsigned I = 0; I < NumElts; ++I) {
5776           if (Op.getOperand(I) == Value)
5777             continue;
5778           SmallVector<SDValue, 3> Ops;
5779           Ops.push_back(N);
5780           Ops.push_back(Op.getOperand(I));
5781           Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
5782           N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
5783         }
5784       }
5785       return N;
5786     }
5787     if (VT.getVectorElementType().isFloatingPoint()) {
5788       SmallVector<SDValue, 8> Ops;
5789       for (unsigned i = 0; i < NumElts; ++i)
5790         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
5791                                   Op.getOperand(i)));
5792       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
5793       SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
5794       Val = LowerBUILD_VECTOR(Val, DAG, ST);
5795       if (Val.getNode())
5796         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5797     }
5798     if (usesOnlyOneValue) {
5799       SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
5800       if (isConstant && Val.getNode())
5801         return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
5802     }
5803   }
5804 
5805   // If all elements are constants and the case above didn't get hit, fall back
5806   // to the default expansion, which will generate a load from the constant
5807   // pool.
5808   if (isConstant)
5809     return SDValue();
5810 
5811   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
5812   if (NumElts >= 4) {
5813     SDValue shuffle = ReconstructShuffle(Op, DAG);
5814     if (shuffle != SDValue())
5815       return shuffle;
5816   }
5817 
5818   // Vectors with 32- or 64-bit elements can be built by directly assigning
5819   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
5820   // will be legalized.
5821   if (EltSize >= 32) {
5822     // Do the expansion with floating-point types, since that is what the VFP
5823     // registers are defined to use, and since i64 is not legal.
5824     EVT EltVT = EVT::getFloatingPointVT(EltSize);
5825     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
5826     SmallVector<SDValue, 8> Ops;
5827     for (unsigned i = 0; i < NumElts; ++i)
5828       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
5829     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
5830     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
5831   }
5832 
5833   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
5834   // know the default expansion would otherwise fall back on something even
5835   // worse. For a vector with one or two non-undef values, that's
5836   // scalar_to_vector for the elements followed by a shuffle (provided the
5837   // shuffle is valid for the target) and materialization element by element
5838   // on the stack followed by a load for everything else.
5839   if (!isConstant && !usesOnlyOneValue) {
5840     SDValue Vec = DAG.getUNDEF(VT);
5841     for (unsigned i = 0 ; i < NumElts; ++i) {
5842       SDValue V = Op.getOperand(i);
5843       if (V.isUndef())
5844         continue;
5845       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
5846       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
5847     }
5848     return Vec;
5849   }
5850 
5851   return SDValue();
5852 }
5853 
5854 // Gather data to see if the operation can be modelled as a
5855 // shuffle in combination with VEXTs.
ReconstructShuffle(SDValue Op,SelectionDAG & DAG) const5856 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
5857                                               SelectionDAG &DAG) const {
5858   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
5859   SDLoc dl(Op);
5860   EVT VT = Op.getValueType();
5861   unsigned NumElts = VT.getVectorNumElements();
5862 
5863   struct ShuffleSourceInfo {
5864     SDValue Vec;
5865     unsigned MinElt;
5866     unsigned MaxElt;
5867 
5868     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
5869     // be compatible with the shuffle we intend to construct. As a result
5870     // ShuffleVec will be some sliding window into the original Vec.
5871     SDValue ShuffleVec;
5872 
5873     // Code should guarantee that element i in Vec starts at element "WindowBase
5874     // + i * WindowScale in ShuffleVec".
5875     int WindowBase;
5876     int WindowScale;
5877 
5878     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
5879     ShuffleSourceInfo(SDValue Vec)
5880         : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
5881           WindowScale(1) {}
5882   };
5883 
5884   // First gather all vectors used as an immediate source for this BUILD_VECTOR
5885   // node.
5886   SmallVector<ShuffleSourceInfo, 2> Sources;
5887   for (unsigned i = 0; i < NumElts; ++i) {
5888     SDValue V = Op.getOperand(i);
5889     if (V.isUndef())
5890       continue;
5891     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
5892       // A shuffle can only come from building a vector from various
5893       // elements of other vectors.
5894       return SDValue();
5895     } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
5896       // Furthermore, shuffles require a constant mask, whereas extractelts
5897       // accept variable indices.
5898       return SDValue();
5899     }
5900 
5901     // Add this element source to the list if it's not already there.
5902     SDValue SourceVec = V.getOperand(0);
5903     auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
5904     if (Source == Sources.end())
5905       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
5906 
5907     // Update the minimum and maximum lane number seen.
5908     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
5909     Source->MinElt = std::min(Source->MinElt, EltNo);
5910     Source->MaxElt = std::max(Source->MaxElt, EltNo);
5911   }
5912 
5913   // Currently only do something sane when at most two source vectors
5914   // are involved.
5915   if (Sources.size() > 2)
5916     return SDValue();
5917 
5918   // Find out the smallest element size among result and two sources, and use
5919   // it as element size to build the shuffle_vector.
5920   EVT SmallestEltTy = VT.getVectorElementType();
5921   for (auto &Source : Sources) {
5922     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
5923     if (SrcEltTy.bitsLT(SmallestEltTy))
5924       SmallestEltTy = SrcEltTy;
5925   }
5926   unsigned ResMultiplier =
5927       VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
5928   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
5929   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
5930 
5931   // If the source vector is too wide or too narrow, we may nevertheless be able
5932   // to construct a compatible shuffle either by concatenating it with UNDEF or
5933   // extracting a suitable range of elements.
5934   for (auto &Src : Sources) {
5935     EVT SrcVT = Src.ShuffleVec.getValueType();
5936 
5937     if (SrcVT.getSizeInBits() == VT.getSizeInBits())
5938       continue;
5939 
5940     // This stage of the search produces a source with the same element type as
5941     // the original, but with a total width matching the BUILD_VECTOR output.
5942     EVT EltVT = SrcVT.getVectorElementType();
5943     unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
5944     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
5945 
5946     if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
5947       if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits())
5948         return SDValue();
5949       // We can pad out the smaller vector for free, so if it's part of a
5950       // shuffle...
5951       Src.ShuffleVec =
5952           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
5953                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
5954       continue;
5955     }
5956 
5957     if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits())
5958       return SDValue();
5959 
5960     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
5961       // Span too large for a VEXT to cope
5962       return SDValue();
5963     }
5964 
5965     if (Src.MinElt >= NumSrcElts) {
5966       // The extraction can just take the second half
5967       Src.ShuffleVec =
5968           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5969                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
5970       Src.WindowBase = -NumSrcElts;
5971     } else if (Src.MaxElt < NumSrcElts) {
5972       // The extraction can just take the first half
5973       Src.ShuffleVec =
5974           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5975                       DAG.getConstant(0, dl, MVT::i32));
5976     } else {
5977       // An actual VEXT is needed
5978       SDValue VEXTSrc1 =
5979           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5980                       DAG.getConstant(0, dl, MVT::i32));
5981       SDValue VEXTSrc2 =
5982           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
5983                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
5984 
5985       Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
5986                                    VEXTSrc2,
5987                                    DAG.getConstant(Src.MinElt, dl, MVT::i32));
5988       Src.WindowBase = -Src.MinElt;
5989     }
5990   }
5991 
5992   // Another possible incompatibility occurs from the vector element types. We
5993   // can fix this by bitcasting the source vectors to the same type we intend
5994   // for the shuffle.
5995   for (auto &Src : Sources) {
5996     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
5997     if (SrcEltTy == SmallestEltTy)
5998       continue;
5999     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
6000     Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
6001     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
6002     Src.WindowBase *= Src.WindowScale;
6003   }
6004 
6005   // Final sanity check before we try to actually produce a shuffle.
6006   DEBUG(
6007     for (auto Src : Sources)
6008       assert(Src.ShuffleVec.getValueType() == ShuffleVT);
6009   );
6010 
6011   // The stars all align, our next step is to produce the mask for the shuffle.
6012   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
6013   int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
6014   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
6015     SDValue Entry = Op.getOperand(i);
6016     if (Entry.isUndef())
6017       continue;
6018 
6019     auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
6020     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
6021 
6022     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
6023     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
6024     // segment.
6025     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
6026     int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
6027                                VT.getVectorElementType().getSizeInBits());
6028     int LanesDefined = BitsDefined / BitsPerShuffleLane;
6029 
6030     // This source is expected to fill ResMultiplier lanes of the final shuffle,
6031     // starting at the appropriate offset.
6032     int *LaneMask = &Mask[i * ResMultiplier];
6033 
6034     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
6035     ExtractBase += NumElts * (Src - Sources.begin());
6036     for (int j = 0; j < LanesDefined; ++j)
6037       LaneMask[j] = ExtractBase + j;
6038   }
6039 
6040   // Final check before we try to produce nonsense...
6041   if (!isShuffleMaskLegal(Mask, ShuffleVT))
6042     return SDValue();
6043 
6044   // We can't handle more than two sources. This should have already
6045   // been checked before this point.
6046   assert(Sources.size() <= 2 && "Too many sources!");
6047 
6048   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
6049   for (unsigned i = 0; i < Sources.size(); ++i)
6050     ShuffleOps[i] = Sources[i].ShuffleVec;
6051 
6052   SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
6053                                          ShuffleOps[1], Mask);
6054   return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
6055 }
6056 
6057 /// isShuffleMaskLegal - Targets can use this to indicate that they only
6058 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
6059 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
6060 /// are assumed to be legal.
6061 bool
isShuffleMaskLegal(const SmallVectorImpl<int> & M,EVT VT) const6062 ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
6063                                       EVT VT) const {
6064   if (VT.getVectorNumElements() == 4 &&
6065       (VT.is128BitVector() || VT.is64BitVector())) {
6066     unsigned PFIndexes[4];
6067     for (unsigned i = 0; i != 4; ++i) {
6068       if (M[i] < 0)
6069         PFIndexes[i] = 8;
6070       else
6071         PFIndexes[i] = M[i];
6072     }
6073 
6074     // Compute the index in the perfect shuffle table.
6075     unsigned PFTableIndex =
6076       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
6077     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6078     unsigned Cost = (PFEntry >> 30);
6079 
6080     if (Cost <= 4)
6081       return true;
6082   }
6083 
6084   bool ReverseVEXT, isV_UNDEF;
6085   unsigned Imm, WhichResult;
6086 
6087   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6088   return (EltSize >= 32 ||
6089           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
6090           isVREVMask(M, VT, 64) ||
6091           isVREVMask(M, VT, 32) ||
6092           isVREVMask(M, VT, 16) ||
6093           isVEXTMask(M, VT, ReverseVEXT, Imm) ||
6094           isVTBLMask(M, VT) ||
6095           isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF) ||
6096           ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
6097 }
6098 
6099 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
6100 /// the specified operations to build the shuffle.
GeneratePerfectShuffle(unsigned PFEntry,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl)6101 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
6102                                       SDValue RHS, SelectionDAG &DAG,
6103                                       const SDLoc &dl) {
6104   unsigned OpNum = (PFEntry >> 26) & 0x0F;
6105   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
6106   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
6107 
6108   enum {
6109     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
6110     OP_VREV,
6111     OP_VDUP0,
6112     OP_VDUP1,
6113     OP_VDUP2,
6114     OP_VDUP3,
6115     OP_VEXT1,
6116     OP_VEXT2,
6117     OP_VEXT3,
6118     OP_VUZPL, // VUZP, left result
6119     OP_VUZPR, // VUZP, right result
6120     OP_VZIPL, // VZIP, left result
6121     OP_VZIPR, // VZIP, right result
6122     OP_VTRNL, // VTRN, left result
6123     OP_VTRNR  // VTRN, right result
6124   };
6125 
6126   if (OpNum == OP_COPY) {
6127     if (LHSID == (1*9+2)*9+3) return LHS;
6128     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
6129     return RHS;
6130   }
6131 
6132   SDValue OpLHS, OpRHS;
6133   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
6134   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
6135   EVT VT = OpLHS.getValueType();
6136 
6137   switch (OpNum) {
6138   default: llvm_unreachable("Unknown shuffle opcode!");
6139   case OP_VREV:
6140     // VREV divides the vector in half and swaps within the half.
6141     if (VT.getVectorElementType() == MVT::i32 ||
6142         VT.getVectorElementType() == MVT::f32)
6143       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
6144     // vrev <4 x i16> -> VREV32
6145     if (VT.getVectorElementType() == MVT::i16)
6146       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
6147     // vrev <4 x i8> -> VREV16
6148     assert(VT.getVectorElementType() == MVT::i8);
6149     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
6150   case OP_VDUP0:
6151   case OP_VDUP1:
6152   case OP_VDUP2:
6153   case OP_VDUP3:
6154     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
6155                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
6156   case OP_VEXT1:
6157   case OP_VEXT2:
6158   case OP_VEXT3:
6159     return DAG.getNode(ARMISD::VEXT, dl, VT,
6160                        OpLHS, OpRHS,
6161                        DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
6162   case OP_VUZPL:
6163   case OP_VUZPR:
6164     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
6165                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
6166   case OP_VZIPL:
6167   case OP_VZIPR:
6168     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
6169                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
6170   case OP_VTRNL:
6171   case OP_VTRNR:
6172     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
6173                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
6174   }
6175 }
6176 
LowerVECTOR_SHUFFLEv8i8(SDValue Op,ArrayRef<int> ShuffleMask,SelectionDAG & DAG)6177 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
6178                                        ArrayRef<int> ShuffleMask,
6179                                        SelectionDAG &DAG) {
6180   // Check to see if we can use the VTBL instruction.
6181   SDValue V1 = Op.getOperand(0);
6182   SDValue V2 = Op.getOperand(1);
6183   SDLoc DL(Op);
6184 
6185   SmallVector<SDValue, 8> VTBLMask;
6186   for (ArrayRef<int>::iterator
6187          I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
6188     VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
6189 
6190   if (V2.getNode()->isUndef())
6191     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
6192                        DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
6193 
6194   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
6195                      DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
6196 }
6197 
LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,SelectionDAG & DAG)6198 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
6199                                                       SelectionDAG &DAG) {
6200   SDLoc DL(Op);
6201   SDValue OpLHS = Op.getOperand(0);
6202   EVT VT = OpLHS.getValueType();
6203 
6204   assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
6205          "Expect an v8i16/v16i8 type");
6206   OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
6207   // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
6208   // extract the first 8 bytes into the top double word and the last 8 bytes
6209   // into the bottom double word. The v8i16 case is similar.
6210   unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
6211   return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
6212                      DAG.getConstant(ExtractNum, DL, MVT::i32));
6213 }
6214 
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG)6215 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
6216   SDValue V1 = Op.getOperand(0);
6217   SDValue V2 = Op.getOperand(1);
6218   SDLoc dl(Op);
6219   EVT VT = Op.getValueType();
6220   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
6221 
6222   // Convert shuffles that are directly supported on NEON to target-specific
6223   // DAG nodes, instead of keeping them as shuffles and matching them again
6224   // during code selection.  This is more efficient and avoids the possibility
6225   // of inconsistencies between legalization and selection.
6226   // FIXME: floating-point vectors should be canonicalized to integer vectors
6227   // of the same time so that they get CSEd properly.
6228   ArrayRef<int> ShuffleMask = SVN->getMask();
6229 
6230   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6231   if (EltSize <= 32) {
6232     if (SVN->isSplat()) {
6233       int Lane = SVN->getSplatIndex();
6234       // If this is undef splat, generate it via "just" vdup, if possible.
6235       if (Lane == -1) Lane = 0;
6236 
6237       // Test if V1 is a SCALAR_TO_VECTOR.
6238       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
6239         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
6240       }
6241       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
6242       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
6243       // reaches it).
6244       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
6245           !isa<ConstantSDNode>(V1.getOperand(0))) {
6246         bool IsScalarToVector = true;
6247         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
6248           if (!V1.getOperand(i).isUndef()) {
6249             IsScalarToVector = false;
6250             break;
6251           }
6252         if (IsScalarToVector)
6253           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
6254       }
6255       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
6256                          DAG.getConstant(Lane, dl, MVT::i32));
6257     }
6258 
6259     bool ReverseVEXT;
6260     unsigned Imm;
6261     if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
6262       if (ReverseVEXT)
6263         std::swap(V1, V2);
6264       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
6265                          DAG.getConstant(Imm, dl, MVT::i32));
6266     }
6267 
6268     if (isVREVMask(ShuffleMask, VT, 64))
6269       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
6270     if (isVREVMask(ShuffleMask, VT, 32))
6271       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
6272     if (isVREVMask(ShuffleMask, VT, 16))
6273       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
6274 
6275     if (V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
6276       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
6277                          DAG.getConstant(Imm, dl, MVT::i32));
6278     }
6279 
6280     // Check for Neon shuffles that modify both input vectors in place.
6281     // If both results are used, i.e., if there are two shuffles with the same
6282     // source operands and with masks corresponding to both results of one of
6283     // these operations, DAG memoization will ensure that a single node is
6284     // used for both shuffles.
6285     unsigned WhichResult;
6286     bool isV_UNDEF;
6287     if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
6288             ShuffleMask, VT, WhichResult, isV_UNDEF)) {
6289       if (isV_UNDEF)
6290         V2 = V1;
6291       return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
6292           .getValue(WhichResult);
6293     }
6294 
6295     // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
6296     // shuffles that produce a result larger than their operands with:
6297     //   shuffle(concat(v1, undef), concat(v2, undef))
6298     // ->
6299     //   shuffle(concat(v1, v2), undef)
6300     // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
6301     //
6302     // This is useful in the general case, but there are special cases where
6303     // native shuffles produce larger results: the two-result ops.
6304     //
6305     // Look through the concat when lowering them:
6306     //   shuffle(concat(v1, v2), undef)
6307     // ->
6308     //   concat(VZIP(v1, v2):0, :1)
6309     //
6310     if (V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
6311       SDValue SubV1 = V1->getOperand(0);
6312       SDValue SubV2 = V1->getOperand(1);
6313       EVT SubVT = SubV1.getValueType();
6314 
6315       // We expect these to have been canonicalized to -1.
6316       assert(std::all_of(ShuffleMask.begin(), ShuffleMask.end(), [&](int i) {
6317         return i < (int)VT.getVectorNumElements();
6318       }) && "Unexpected shuffle index into UNDEF operand!");
6319 
6320       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
6321               ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
6322         if (isV_UNDEF)
6323           SubV2 = SubV1;
6324         assert((WhichResult == 0) &&
6325                "In-place shuffle of concat can only have one result!");
6326         SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
6327                                   SubV1, SubV2);
6328         return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
6329                            Res.getValue(1));
6330       }
6331     }
6332   }
6333 
6334   // If the shuffle is not directly supported and it has 4 elements, use
6335   // the PerfectShuffle-generated table to synthesize it from other shuffles.
6336   unsigned NumElts = VT.getVectorNumElements();
6337   if (NumElts == 4) {
6338     unsigned PFIndexes[4];
6339     for (unsigned i = 0; i != 4; ++i) {
6340       if (ShuffleMask[i] < 0)
6341         PFIndexes[i] = 8;
6342       else
6343         PFIndexes[i] = ShuffleMask[i];
6344     }
6345 
6346     // Compute the index in the perfect shuffle table.
6347     unsigned PFTableIndex =
6348       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
6349     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
6350     unsigned Cost = (PFEntry >> 30);
6351 
6352     if (Cost <= 4)
6353       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
6354   }
6355 
6356   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
6357   if (EltSize >= 32) {
6358     // Do the expansion with floating-point types, since that is what the VFP
6359     // registers are defined to use, and since i64 is not legal.
6360     EVT EltVT = EVT::getFloatingPointVT(EltSize);
6361     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
6362     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
6363     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
6364     SmallVector<SDValue, 8> Ops;
6365     for (unsigned i = 0; i < NumElts; ++i) {
6366       if (ShuffleMask[i] < 0)
6367         Ops.push_back(DAG.getUNDEF(EltVT));
6368       else
6369         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
6370                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
6371                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
6372                                                   dl, MVT::i32)));
6373     }
6374     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
6375     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
6376   }
6377 
6378   if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
6379     return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
6380 
6381   if (VT == MVT::v8i8)
6382     if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
6383       return NewOp;
6384 
6385   return SDValue();
6386 }
6387 
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG)6388 static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
6389   // INSERT_VECTOR_ELT is legal only for immediate indexes.
6390   SDValue Lane = Op.getOperand(2);
6391   if (!isa<ConstantSDNode>(Lane))
6392     return SDValue();
6393 
6394   return Op;
6395 }
6396 
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG)6397 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
6398   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
6399   SDValue Lane = Op.getOperand(1);
6400   if (!isa<ConstantSDNode>(Lane))
6401     return SDValue();
6402 
6403   SDValue Vec = Op.getOperand(0);
6404   if (Op.getValueType() == MVT::i32 &&
6405       Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
6406     SDLoc dl(Op);
6407     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
6408   }
6409 
6410   return Op;
6411 }
6412 
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG)6413 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
6414   // The only time a CONCAT_VECTORS operation can have legal types is when
6415   // two 64-bit vectors are concatenated to a 128-bit vector.
6416   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
6417          "unexpected CONCAT_VECTORS");
6418   SDLoc dl(Op);
6419   SDValue Val = DAG.getUNDEF(MVT::v2f64);
6420   SDValue Op0 = Op.getOperand(0);
6421   SDValue Op1 = Op.getOperand(1);
6422   if (!Op0.isUndef())
6423     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
6424                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
6425                       DAG.getIntPtrConstant(0, dl));
6426   if (!Op1.isUndef())
6427     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
6428                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
6429                       DAG.getIntPtrConstant(1, dl));
6430   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
6431 }
6432 
6433 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
6434 /// element has been zero/sign-extended, depending on the isSigned parameter,
6435 /// from an integer type half its size.
isExtendedBUILD_VECTOR(SDNode * N,SelectionDAG & DAG,bool isSigned)6436 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
6437                                    bool isSigned) {
6438   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
6439   EVT VT = N->getValueType(0);
6440   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
6441     SDNode *BVN = N->getOperand(0).getNode();
6442     if (BVN->getValueType(0) != MVT::v4i32 ||
6443         BVN->getOpcode() != ISD::BUILD_VECTOR)
6444       return false;
6445     unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
6446     unsigned HiElt = 1 - LoElt;
6447     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
6448     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
6449     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
6450     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
6451     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
6452       return false;
6453     if (isSigned) {
6454       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
6455           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
6456         return true;
6457     } else {
6458       if (Hi0->isNullValue() && Hi1->isNullValue())
6459         return true;
6460     }
6461     return false;
6462   }
6463 
6464   if (N->getOpcode() != ISD::BUILD_VECTOR)
6465     return false;
6466 
6467   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
6468     SDNode *Elt = N->getOperand(i).getNode();
6469     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
6470       unsigned EltSize = VT.getVectorElementType().getSizeInBits();
6471       unsigned HalfSize = EltSize / 2;
6472       if (isSigned) {
6473         if (!isIntN(HalfSize, C->getSExtValue()))
6474           return false;
6475       } else {
6476         if (!isUIntN(HalfSize, C->getZExtValue()))
6477           return false;
6478       }
6479       continue;
6480     }
6481     return false;
6482   }
6483 
6484   return true;
6485 }
6486 
6487 /// isSignExtended - Check if a node is a vector value that is sign-extended
6488 /// or a constant BUILD_VECTOR with sign-extended elements.
isSignExtended(SDNode * N,SelectionDAG & DAG)6489 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
6490   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
6491     return true;
6492   if (isExtendedBUILD_VECTOR(N, DAG, true))
6493     return true;
6494   return false;
6495 }
6496 
6497 /// isZeroExtended - Check if a node is a vector value that is zero-extended
6498 /// or a constant BUILD_VECTOR with zero-extended elements.
isZeroExtended(SDNode * N,SelectionDAG & DAG)6499 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
6500   if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
6501     return true;
6502   if (isExtendedBUILD_VECTOR(N, DAG, false))
6503     return true;
6504   return false;
6505 }
6506 
getExtensionTo64Bits(const EVT & OrigVT)6507 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
6508   if (OrigVT.getSizeInBits() >= 64)
6509     return OrigVT;
6510 
6511   assert(OrigVT.isSimple() && "Expecting a simple value type");
6512 
6513   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
6514   switch (OrigSimpleTy) {
6515   default: llvm_unreachable("Unexpected Vector Type");
6516   case MVT::v2i8:
6517   case MVT::v2i16:
6518      return MVT::v2i32;
6519   case MVT::v4i8:
6520     return  MVT::v4i16;
6521   }
6522 }
6523 
6524 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
6525 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
6526 /// We insert the required extension here to get the vector to fill a D register.
AddRequiredExtensionForVMULL(SDValue N,SelectionDAG & DAG,const EVT & OrigTy,const EVT & ExtTy,unsigned ExtOpcode)6527 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
6528                                             const EVT &OrigTy,
6529                                             const EVT &ExtTy,
6530                                             unsigned ExtOpcode) {
6531   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
6532   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
6533   // 64-bits we need to insert a new extension so that it will be 64-bits.
6534   assert(ExtTy.is128BitVector() && "Unexpected extension size");
6535   if (OrigTy.getSizeInBits() >= 64)
6536     return N;
6537 
6538   // Must extend size to at least 64 bits to be used as an operand for VMULL.
6539   EVT NewVT = getExtensionTo64Bits(OrigTy);
6540 
6541   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
6542 }
6543 
6544 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
6545 /// does not do any sign/zero extension. If the original vector is less
6546 /// than 64 bits, an appropriate extension will be added after the load to
6547 /// reach a total size of 64 bits. We have to add the extension separately
6548 /// because ARM does not have a sign/zero extending load for vectors.
SkipLoadExtensionForVMULL(LoadSDNode * LD,SelectionDAG & DAG)6549 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
6550   EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
6551 
6552   // The load already has the right type.
6553   if (ExtendedTy == LD->getMemoryVT())
6554     return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
6555                 LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
6556                 LD->isNonTemporal(), LD->isInvariant(),
6557                 LD->getAlignment());
6558 
6559   // We need to create a zextload/sextload. We cannot just create a load
6560   // followed by a zext/zext node because LowerMUL is also run during normal
6561   // operation legalization where we can't create illegal types.
6562   return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
6563                         LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
6564                         LD->getMemoryVT(), LD->isVolatile(), LD->isInvariant(),
6565                         LD->isNonTemporal(), LD->getAlignment());
6566 }
6567 
6568 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
6569 /// extending load, or BUILD_VECTOR with extended elements, return the
6570 /// unextended value. The unextended vector should be 64 bits so that it can
6571 /// be used as an operand to a VMULL instruction. If the original vector size
6572 /// before extension is less than 64 bits we add a an extension to resize
6573 /// the vector to 64 bits.
SkipExtensionForVMULL(SDNode * N,SelectionDAG & DAG)6574 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
6575   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
6576     return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
6577                                         N->getOperand(0)->getValueType(0),
6578                                         N->getValueType(0),
6579                                         N->getOpcode());
6580 
6581   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
6582     return SkipLoadExtensionForVMULL(LD, DAG);
6583 
6584   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
6585   // have been legalized as a BITCAST from v4i32.
6586   if (N->getOpcode() == ISD::BITCAST) {
6587     SDNode *BVN = N->getOperand(0).getNode();
6588     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
6589            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
6590     unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
6591     return DAG.getBuildVector(
6592         MVT::v2i32, SDLoc(N),
6593         {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
6594   }
6595   // Construct a new BUILD_VECTOR with elements truncated to half the size.
6596   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
6597   EVT VT = N->getValueType(0);
6598   unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
6599   unsigned NumElts = VT.getVectorNumElements();
6600   MVT TruncVT = MVT::getIntegerVT(EltSize);
6601   SmallVector<SDValue, 8> Ops;
6602   SDLoc dl(N);
6603   for (unsigned i = 0; i != NumElts; ++i) {
6604     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
6605     const APInt &CInt = C->getAPIntValue();
6606     // Element types smaller than 32 bits are not legal, so use i32 elements.
6607     // The values are implicitly truncated so sext vs. zext doesn't matter.
6608     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
6609   }
6610   return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
6611 }
6612 
isAddSubSExt(SDNode * N,SelectionDAG & DAG)6613 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
6614   unsigned Opcode = N->getOpcode();
6615   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
6616     SDNode *N0 = N->getOperand(0).getNode();
6617     SDNode *N1 = N->getOperand(1).getNode();
6618     return N0->hasOneUse() && N1->hasOneUse() &&
6619       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
6620   }
6621   return false;
6622 }
6623 
isAddSubZExt(SDNode * N,SelectionDAG & DAG)6624 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
6625   unsigned Opcode = N->getOpcode();
6626   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
6627     SDNode *N0 = N->getOperand(0).getNode();
6628     SDNode *N1 = N->getOperand(1).getNode();
6629     return N0->hasOneUse() && N1->hasOneUse() &&
6630       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
6631   }
6632   return false;
6633 }
6634 
LowerMUL(SDValue Op,SelectionDAG & DAG)6635 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
6636   // Multiplications are only custom-lowered for 128-bit vectors so that
6637   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
6638   EVT VT = Op.getValueType();
6639   assert(VT.is128BitVector() && VT.isInteger() &&
6640          "unexpected type for custom-lowering ISD::MUL");
6641   SDNode *N0 = Op.getOperand(0).getNode();
6642   SDNode *N1 = Op.getOperand(1).getNode();
6643   unsigned NewOpc = 0;
6644   bool isMLA = false;
6645   bool isN0SExt = isSignExtended(N0, DAG);
6646   bool isN1SExt = isSignExtended(N1, DAG);
6647   if (isN0SExt && isN1SExt)
6648     NewOpc = ARMISD::VMULLs;
6649   else {
6650     bool isN0ZExt = isZeroExtended(N0, DAG);
6651     bool isN1ZExt = isZeroExtended(N1, DAG);
6652     if (isN0ZExt && isN1ZExt)
6653       NewOpc = ARMISD::VMULLu;
6654     else if (isN1SExt || isN1ZExt) {
6655       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
6656       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
6657       if (isN1SExt && isAddSubSExt(N0, DAG)) {
6658         NewOpc = ARMISD::VMULLs;
6659         isMLA = true;
6660       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
6661         NewOpc = ARMISD::VMULLu;
6662         isMLA = true;
6663       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
6664         std::swap(N0, N1);
6665         NewOpc = ARMISD::VMULLu;
6666         isMLA = true;
6667       }
6668     }
6669 
6670     if (!NewOpc) {
6671       if (VT == MVT::v2i64)
6672         // Fall through to expand this.  It is not legal.
6673         return SDValue();
6674       else
6675         // Other vector multiplications are legal.
6676         return Op;
6677     }
6678   }
6679 
6680   // Legalize to a VMULL instruction.
6681   SDLoc DL(Op);
6682   SDValue Op0;
6683   SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
6684   if (!isMLA) {
6685     Op0 = SkipExtensionForVMULL(N0, DAG);
6686     assert(Op0.getValueType().is64BitVector() &&
6687            Op1.getValueType().is64BitVector() &&
6688            "unexpected types for extended operands to VMULL");
6689     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
6690   }
6691 
6692   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
6693   // isel lowering to take advantage of no-stall back to back vmul + vmla.
6694   //   vmull q0, d4, d6
6695   //   vmlal q0, d5, d6
6696   // is faster than
6697   //   vaddl q0, d4, d5
6698   //   vmovl q1, d6
6699   //   vmul  q0, q0, q1
6700   SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
6701   SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
6702   EVT Op1VT = Op1.getValueType();
6703   return DAG.getNode(N0->getOpcode(), DL, VT,
6704                      DAG.getNode(NewOpc, DL, VT,
6705                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
6706                      DAG.getNode(NewOpc, DL, VT,
6707                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
6708 }
6709 
LowerSDIV_v4i8(SDValue X,SDValue Y,const SDLoc & dl,SelectionDAG & DAG)6710 static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
6711                               SelectionDAG &DAG) {
6712   // TODO: Should this propagate fast-math-flags?
6713 
6714   // Convert to float
6715   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
6716   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
6717   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
6718   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
6719   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
6720   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
6721   // Get reciprocal estimate.
6722   // float4 recip = vrecpeq_f32(yf);
6723   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6724                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
6725                    Y);
6726   // Because char has a smaller range than uchar, we can actually get away
6727   // without any newton steps.  This requires that we use a weird bias
6728   // of 0xb000, however (again, this has been exhaustively tested).
6729   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
6730   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
6731   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
6732   Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
6733   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
6734   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
6735   // Convert back to short.
6736   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
6737   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
6738   return X;
6739 }
6740 
LowerSDIV_v4i16(SDValue N0,SDValue N1,const SDLoc & dl,SelectionDAG & DAG)6741 static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
6742                                SelectionDAG &DAG) {
6743   // TODO: Should this propagate fast-math-flags?
6744 
6745   SDValue N2;
6746   // Convert to float.
6747   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
6748   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
6749   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
6750   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
6751   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
6752   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
6753 
6754   // Use reciprocal estimate and one refinement step.
6755   // float4 recip = vrecpeq_f32(yf);
6756   // recip *= vrecpsq_f32(yf, recip);
6757   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6758                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
6759                    N1);
6760   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6761                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
6762                    N1, N2);
6763   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
6764   // Because short has a smaller range than ushort, we can actually get away
6765   // with only a single newton step.  This requires that we use a weird bias
6766   // of 89, however (again, this has been exhaustively tested).
6767   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
6768   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
6769   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
6770   N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
6771   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
6772   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
6773   // Convert back to integer and return.
6774   // return vmovn_s32(vcvt_s32_f32(result));
6775   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
6776   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
6777   return N0;
6778 }
6779 
LowerSDIV(SDValue Op,SelectionDAG & DAG)6780 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
6781   EVT VT = Op.getValueType();
6782   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
6783          "unexpected type for custom-lowering ISD::SDIV");
6784 
6785   SDLoc dl(Op);
6786   SDValue N0 = Op.getOperand(0);
6787   SDValue N1 = Op.getOperand(1);
6788   SDValue N2, N3;
6789 
6790   if (VT == MVT::v8i8) {
6791     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
6792     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
6793 
6794     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
6795                      DAG.getIntPtrConstant(4, dl));
6796     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
6797                      DAG.getIntPtrConstant(4, dl));
6798     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
6799                      DAG.getIntPtrConstant(0, dl));
6800     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
6801                      DAG.getIntPtrConstant(0, dl));
6802 
6803     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
6804     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
6805 
6806     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
6807     N0 = LowerCONCAT_VECTORS(N0, DAG);
6808 
6809     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
6810     return N0;
6811   }
6812   return LowerSDIV_v4i16(N0, N1, dl, DAG);
6813 }
6814 
LowerUDIV(SDValue Op,SelectionDAG & DAG)6815 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
6816   // TODO: Should this propagate fast-math-flags?
6817   EVT VT = Op.getValueType();
6818   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
6819          "unexpected type for custom-lowering ISD::UDIV");
6820 
6821   SDLoc dl(Op);
6822   SDValue N0 = Op.getOperand(0);
6823   SDValue N1 = Op.getOperand(1);
6824   SDValue N2, N3;
6825 
6826   if (VT == MVT::v8i8) {
6827     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
6828     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
6829 
6830     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
6831                      DAG.getIntPtrConstant(4, dl));
6832     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
6833                      DAG.getIntPtrConstant(4, dl));
6834     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
6835                      DAG.getIntPtrConstant(0, dl));
6836     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
6837                      DAG.getIntPtrConstant(0, dl));
6838 
6839     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
6840     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
6841 
6842     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
6843     N0 = LowerCONCAT_VECTORS(N0, DAG);
6844 
6845     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
6846                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
6847                                      MVT::i32),
6848                      N0);
6849     return N0;
6850   }
6851 
6852   // v4i16 sdiv ... Convert to float.
6853   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
6854   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
6855   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
6856   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
6857   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
6858   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
6859 
6860   // Use reciprocal estimate and two refinement steps.
6861   // float4 recip = vrecpeq_f32(yf);
6862   // recip *= vrecpsq_f32(yf, recip);
6863   // recip *= vrecpsq_f32(yf, recip);
6864   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6865                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
6866                    BN1);
6867   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6868                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
6869                    BN1, N2);
6870   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
6871   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
6872                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
6873                    BN1, N2);
6874   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
6875   // Simply multiplying by the reciprocal estimate can leave us a few ulps
6876   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
6877   // and that it will never cause us to return an answer too large).
6878   // float4 result = as_float4(as_int4(xf*recip) + 2);
6879   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
6880   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
6881   N1 = DAG.getConstant(2, dl, MVT::v4i32);
6882   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
6883   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
6884   // Convert back to integer and return.
6885   // return vmovn_u32(vcvt_s32_f32(result));
6886   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
6887   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
6888   return N0;
6889 }
6890 
LowerADDC_ADDE_SUBC_SUBE(SDValue Op,SelectionDAG & DAG)6891 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
6892   EVT VT = Op.getNode()->getValueType(0);
6893   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
6894 
6895   unsigned Opc;
6896   bool ExtraOp = false;
6897   switch (Op.getOpcode()) {
6898   default: llvm_unreachable("Invalid code");
6899   case ISD::ADDC: Opc = ARMISD::ADDC; break;
6900   case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
6901   case ISD::SUBC: Opc = ARMISD::SUBC; break;
6902   case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
6903   }
6904 
6905   if (!ExtraOp)
6906     return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
6907                        Op.getOperand(1));
6908   return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
6909                      Op.getOperand(1), Op.getOperand(2));
6910 }
6911 
LowerFSINCOS(SDValue Op,SelectionDAG & DAG) const6912 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
6913   assert(Subtarget->isTargetDarwin());
6914 
6915   // For iOS, we want to call an alternative entry point: __sincos_stret,
6916   // return values are passed via sret.
6917   SDLoc dl(Op);
6918   SDValue Arg = Op.getOperand(0);
6919   EVT ArgVT = Arg.getValueType();
6920   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
6921   auto PtrVT = getPointerTy(DAG.getDataLayout());
6922 
6923   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
6924   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6925 
6926   // Pair of floats / doubles used to pass the result.
6927   Type *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
6928   auto &DL = DAG.getDataLayout();
6929 
6930   ArgListTy Args;
6931   bool ShouldUseSRet = Subtarget->isAPCS_ABI();
6932   SDValue SRet;
6933   if (ShouldUseSRet) {
6934     // Create stack object for sret.
6935     const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
6936     const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy);
6937     int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
6938     SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
6939 
6940     ArgListEntry Entry;
6941     Entry.Node = SRet;
6942     Entry.Ty = RetTy->getPointerTo();
6943     Entry.isSExt = false;
6944     Entry.isZExt = false;
6945     Entry.isSRet = true;
6946     Args.push_back(Entry);
6947     RetTy = Type::getVoidTy(*DAG.getContext());
6948   }
6949 
6950   ArgListEntry Entry;
6951   Entry.Node = Arg;
6952   Entry.Ty = ArgTy;
6953   Entry.isSExt = false;
6954   Entry.isZExt = false;
6955   Args.push_back(Entry);
6956 
6957   const char *LibcallName =
6958       (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
6959   RTLIB::Libcall LC =
6960       (ArgVT == MVT::f64) ? RTLIB::SINCOS_F64 : RTLIB::SINCOS_F32;
6961   CallingConv::ID CC = getLibcallCallingConv(LC);
6962   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
6963 
6964   TargetLowering::CallLoweringInfo CLI(DAG);
6965   CLI.setDebugLoc(dl)
6966       .setChain(DAG.getEntryNode())
6967       .setCallee(CC, RetTy, Callee, std::move(Args))
6968       .setDiscardResult(ShouldUseSRet);
6969   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
6970 
6971   if (!ShouldUseSRet)
6972     return CallResult.first;
6973 
6974   SDValue LoadSin = DAG.getLoad(ArgVT, dl, CallResult.second, SRet,
6975                                 MachinePointerInfo(), false, false, false, 0);
6976 
6977   // Address of cos field.
6978   SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
6979                             DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
6980   SDValue LoadCos = DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add,
6981                                 MachinePointerInfo(), false, false, false, 0);
6982 
6983   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
6984   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
6985                      LoadSin.getValue(0), LoadCos.getValue(0));
6986 }
6987 
LowerWindowsDIVLibCall(SDValue Op,SelectionDAG & DAG,bool Signed,SDValue & Chain) const6988 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
6989                                                   bool Signed,
6990                                                   SDValue &Chain) const {
6991   EVT VT = Op.getValueType();
6992   assert((VT == MVT::i32 || VT == MVT::i64) &&
6993          "unexpected type for custom lowering DIV");
6994   SDLoc dl(Op);
6995 
6996   const auto &DL = DAG.getDataLayout();
6997   const auto &TLI = DAG.getTargetLoweringInfo();
6998 
6999   const char *Name = nullptr;
7000   if (Signed)
7001     Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
7002   else
7003     Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
7004 
7005   SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
7006 
7007   ARMTargetLowering::ArgListTy Args;
7008 
7009   for (auto AI : {1, 0}) {
7010     ArgListEntry Arg;
7011     Arg.Node = Op.getOperand(AI);
7012     Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
7013     Args.push_back(Arg);
7014   }
7015 
7016   CallLoweringInfo CLI(DAG);
7017   CLI.setDebugLoc(dl)
7018     .setChain(Chain)
7019     .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
7020                ES, std::move(Args));
7021 
7022   return LowerCallTo(CLI).first;
7023 }
7024 
LowerDIV_Windows(SDValue Op,SelectionDAG & DAG,bool Signed) const7025 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
7026                                             bool Signed) const {
7027   assert(Op.getValueType() == MVT::i32 &&
7028          "unexpected type for custom lowering DIV");
7029   SDLoc dl(Op);
7030 
7031   SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
7032                                DAG.getEntryNode(), Op.getOperand(1));
7033 
7034   return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
7035 }
7036 
ExpandDIV_Windows(SDValue Op,SelectionDAG & DAG,bool Signed,SmallVectorImpl<SDValue> & Results) const7037 void ARMTargetLowering::ExpandDIV_Windows(
7038     SDValue Op, SelectionDAG &DAG, bool Signed,
7039     SmallVectorImpl<SDValue> &Results) const {
7040   const auto &DL = DAG.getDataLayout();
7041   const auto &TLI = DAG.getTargetLoweringInfo();
7042 
7043   assert(Op.getValueType() == MVT::i64 &&
7044          "unexpected type for custom lowering DIV");
7045   SDLoc dl(Op);
7046 
7047   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op.getOperand(1),
7048                            DAG.getConstant(0, dl, MVT::i32));
7049   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op.getOperand(1),
7050                            DAG.getConstant(1, dl, MVT::i32));
7051   SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i32, Lo, Hi);
7052 
7053   SDValue DBZCHK =
7054       DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other, DAG.getEntryNode(), Or);
7055 
7056   SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
7057 
7058   SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
7059   SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
7060                               DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
7061   Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
7062 
7063   Results.push_back(Lower);
7064   Results.push_back(Upper);
7065 }
7066 
LowerAtomicLoadStore(SDValue Op,SelectionDAG & DAG)7067 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
7068   if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
7069     // Acquire/Release load/store is not legal for targets without a dmb or
7070     // equivalent available.
7071     return SDValue();
7072 
7073   // Monotonic load/store is legal for all targets.
7074   return Op;
7075 }
7076 
ReplaceREADCYCLECOUNTER(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG,const ARMSubtarget * Subtarget)7077 static void ReplaceREADCYCLECOUNTER(SDNode *N,
7078                                     SmallVectorImpl<SDValue> &Results,
7079                                     SelectionDAG &DAG,
7080                                     const ARMSubtarget *Subtarget) {
7081   SDLoc DL(N);
7082   // Under Power Management extensions, the cycle-count is:
7083   //    mrc p15, #0, <Rt>, c9, c13, #0
7084   SDValue Ops[] = { N->getOperand(0), // Chain
7085                     DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
7086                     DAG.getConstant(15, DL, MVT::i32),
7087                     DAG.getConstant(0, DL, MVT::i32),
7088                     DAG.getConstant(9, DL, MVT::i32),
7089                     DAG.getConstant(13, DL, MVT::i32),
7090                     DAG.getConstant(0, DL, MVT::i32)
7091   };
7092 
7093   SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
7094                                  DAG.getVTList(MVT::i32, MVT::Other), Ops);
7095   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
7096                                 DAG.getConstant(0, DL, MVT::i32)));
7097   Results.push_back(Cycles32.getValue(1));
7098 }
7099 
createGPRPairNode(SelectionDAG & DAG,SDValue V)7100 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
7101   SDLoc dl(V.getNode());
7102   SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
7103   SDValue VHi = DAG.getAnyExtOrTrunc(
7104       DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
7105       dl, MVT::i32);
7106   SDValue RegClass =
7107       DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
7108   SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
7109   SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
7110   const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
7111   return SDValue(
7112       DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
7113 }
7114 
ReplaceCMP_SWAP_64Results(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)7115 static void ReplaceCMP_SWAP_64Results(SDNode *N,
7116                                        SmallVectorImpl<SDValue> & Results,
7117                                        SelectionDAG &DAG) {
7118   assert(N->getValueType(0) == MVT::i64 &&
7119          "AtomicCmpSwap on types less than 64 should be legal");
7120   SDValue Ops[] = {N->getOperand(1),
7121                    createGPRPairNode(DAG, N->getOperand(2)),
7122                    createGPRPairNode(DAG, N->getOperand(3)),
7123                    N->getOperand(0)};
7124   SDNode *CmpSwap = DAG.getMachineNode(
7125       ARM::CMP_SWAP_64, SDLoc(N),
7126       DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
7127 
7128   MachineFunction &MF = DAG.getMachineFunction();
7129   MachineSDNode::mmo_iterator MemOp = MF.allocateMemRefsArray(1);
7130   MemOp[0] = cast<MemSDNode>(N)->getMemOperand();
7131   cast<MachineSDNode>(CmpSwap)->setMemRefs(MemOp, MemOp + 1);
7132 
7133   Results.push_back(DAG.getTargetExtractSubreg(ARM::gsub_0, SDLoc(N), MVT::i32,
7134                                                SDValue(CmpSwap, 0)));
7135   Results.push_back(DAG.getTargetExtractSubreg(ARM::gsub_1, SDLoc(N), MVT::i32,
7136                                                SDValue(CmpSwap, 0)));
7137   Results.push_back(SDValue(CmpSwap, 2));
7138 }
7139 
LowerOperation(SDValue Op,SelectionDAG & DAG) const7140 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7141   switch (Op.getOpcode()) {
7142   default: llvm_unreachable("Don't know how to custom lower this!");
7143   case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
7144   case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
7145   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
7146   case ISD::GlobalAddress:
7147     switch (Subtarget->getTargetTriple().getObjectFormat()) {
7148     default: llvm_unreachable("unknown object format");
7149     case Triple::COFF:
7150       return LowerGlobalAddressWindows(Op, DAG);
7151     case Triple::ELF:
7152       return LowerGlobalAddressELF(Op, DAG);
7153     case Triple::MachO:
7154       return LowerGlobalAddressDarwin(Op, DAG);
7155     }
7156   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
7157   case ISD::SELECT:        return LowerSELECT(Op, DAG);
7158   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
7159   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
7160   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
7161   case ISD::VASTART:       return LowerVASTART(Op, DAG);
7162   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
7163   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
7164   case ISD::SINT_TO_FP:
7165   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
7166   case ISD::FP_TO_SINT:
7167   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
7168   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
7169   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
7170   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
7171   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
7172   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
7173   case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
7174   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
7175                                                                Subtarget);
7176   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
7177   case ISD::SHL:
7178   case ISD::SRL:
7179   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
7180   case ISD::SREM:          return LowerREM(Op.getNode(), DAG);
7181   case ISD::UREM:          return LowerREM(Op.getNode(), DAG);
7182   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
7183   case ISD::SRL_PARTS:
7184   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
7185   case ISD::CTTZ:
7186   case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
7187   case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
7188   case ISD::SETCC:         return LowerVSETCC(Op, DAG);
7189   case ISD::SETCCE:        return LowerSETCCE(Op, DAG);
7190   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
7191   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
7192   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
7193   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
7194   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
7195   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
7196   case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
7197   case ISD::MUL:           return LowerMUL(Op, DAG);
7198   case ISD::SDIV:
7199     if (Subtarget->isTargetWindows())
7200       return LowerDIV_Windows(Op, DAG, /* Signed */ true);
7201     return LowerSDIV(Op, DAG);
7202   case ISD::UDIV:
7203     if (Subtarget->isTargetWindows())
7204       return LowerDIV_Windows(Op, DAG, /* Signed */ false);
7205     return LowerUDIV(Op, DAG);
7206   case ISD::ADDC:
7207   case ISD::ADDE:
7208   case ISD::SUBC:
7209   case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
7210   case ISD::SADDO:
7211   case ISD::UADDO:
7212   case ISD::SSUBO:
7213   case ISD::USUBO:
7214     return LowerXALUO(Op, DAG);
7215   case ISD::ATOMIC_LOAD:
7216   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
7217   case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
7218   case ISD::SDIVREM:
7219   case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
7220   case ISD::DYNAMIC_STACKALLOC:
7221     if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
7222       return LowerDYNAMIC_STACKALLOC(Op, DAG);
7223     llvm_unreachable("Don't know how to custom lower this!");
7224   case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
7225   case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
7226   case ARMISD::WIN__DBZCHK: return SDValue();
7227   }
7228 }
7229 
7230 /// ReplaceNodeResults - Replace the results of node with an illegal result
7231 /// type with new values built out of custom code.
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const7232 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
7233                                            SmallVectorImpl<SDValue> &Results,
7234                                            SelectionDAG &DAG) const {
7235   SDValue Res;
7236   switch (N->getOpcode()) {
7237   default:
7238     llvm_unreachable("Don't know how to custom expand this!");
7239   case ISD::READ_REGISTER:
7240     ExpandREAD_REGISTER(N, Results, DAG);
7241     break;
7242   case ISD::BITCAST:
7243     Res = ExpandBITCAST(N, DAG);
7244     break;
7245   case ISD::SRL:
7246   case ISD::SRA:
7247     Res = Expand64BitShift(N, DAG, Subtarget);
7248     break;
7249   case ISD::SREM:
7250   case ISD::UREM:
7251     Res = LowerREM(N, DAG);
7252     break;
7253   case ISD::SDIVREM:
7254   case ISD::UDIVREM:
7255     Res = LowerDivRem(SDValue(N, 0), DAG);
7256     assert(Res.getNumOperands() == 2 && "DivRem needs two values");
7257     Results.push_back(Res.getValue(0));
7258     Results.push_back(Res.getValue(1));
7259     return;
7260   case ISD::READCYCLECOUNTER:
7261     ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
7262     return;
7263   case ISD::UDIV:
7264   case ISD::SDIV:
7265     assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
7266     return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
7267                              Results);
7268   case ISD::ATOMIC_CMP_SWAP:
7269     ReplaceCMP_SWAP_64Results(N, Results, DAG);
7270     return;
7271   }
7272   if (Res.getNode())
7273     Results.push_back(Res);
7274 }
7275 
7276 //===----------------------------------------------------------------------===//
7277 //                           ARM Scheduler Hooks
7278 //===----------------------------------------------------------------------===//
7279 
7280 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
7281 /// registers the function context.
SetupEntryBlockForSjLj(MachineInstr & MI,MachineBasicBlock * MBB,MachineBasicBlock * DispatchBB,int FI) const7282 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
7283                                                MachineBasicBlock *MBB,
7284                                                MachineBasicBlock *DispatchBB,
7285                                                int FI) const {
7286   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
7287   DebugLoc dl = MI.getDebugLoc();
7288   MachineFunction *MF = MBB->getParent();
7289   MachineRegisterInfo *MRI = &MF->getRegInfo();
7290   MachineConstantPool *MCP = MF->getConstantPool();
7291   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
7292   const Function *F = MF->getFunction();
7293 
7294   bool isThumb = Subtarget->isThumb();
7295   bool isThumb2 = Subtarget->isThumb2();
7296 
7297   unsigned PCLabelId = AFI->createPICLabelUId();
7298   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
7299   ARMConstantPoolValue *CPV =
7300     ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
7301   unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
7302 
7303   const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
7304                                            : &ARM::GPRRegClass;
7305 
7306   // Grab constant pool and fixed stack memory operands.
7307   MachineMemOperand *CPMMO =
7308       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
7309                                MachineMemOperand::MOLoad, 4, 4);
7310 
7311   MachineMemOperand *FIMMOSt =
7312       MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
7313                                MachineMemOperand::MOStore, 4, 4);
7314 
7315   // Load the address of the dispatch MBB into the jump buffer.
7316   if (isThumb2) {
7317     // Incoming value: jbuf
7318     //   ldr.n  r5, LCPI1_1
7319     //   orr    r5, r5, #1
7320     //   add    r5, pc
7321     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
7322     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7323     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
7324                    .addConstantPoolIndex(CPI)
7325                    .addMemOperand(CPMMO));
7326     // Set the low bit because of thumb mode.
7327     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
7328     AddDefaultCC(
7329       AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
7330                      .addReg(NewVReg1, RegState::Kill)
7331                      .addImm(0x01)));
7332     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7333     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
7334       .addReg(NewVReg2, RegState::Kill)
7335       .addImm(PCLabelId);
7336     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
7337                    .addReg(NewVReg3, RegState::Kill)
7338                    .addFrameIndex(FI)
7339                    .addImm(36)  // &jbuf[1] :: pc
7340                    .addMemOperand(FIMMOSt));
7341   } else if (isThumb) {
7342     // Incoming value: jbuf
7343     //   ldr.n  r1, LCPI1_4
7344     //   add    r1, pc
7345     //   mov    r2, #1
7346     //   orrs   r1, r2
7347     //   add    r2, $jbuf, #+4 ; &jbuf[1]
7348     //   str    r1, [r2]
7349     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7350     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
7351                    .addConstantPoolIndex(CPI)
7352                    .addMemOperand(CPMMO));
7353     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
7354     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
7355       .addReg(NewVReg1, RegState::Kill)
7356       .addImm(PCLabelId);
7357     // Set the low bit because of thumb mode.
7358     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7359     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
7360                    .addReg(ARM::CPSR, RegState::Define)
7361                    .addImm(1));
7362     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
7363     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
7364                    .addReg(ARM::CPSR, RegState::Define)
7365                    .addReg(NewVReg2, RegState::Kill)
7366                    .addReg(NewVReg3, RegState::Kill));
7367     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
7368     BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
7369             .addFrameIndex(FI)
7370             .addImm(36); // &jbuf[1] :: pc
7371     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
7372                    .addReg(NewVReg4, RegState::Kill)
7373                    .addReg(NewVReg5, RegState::Kill)
7374                    .addImm(0)
7375                    .addMemOperand(FIMMOSt));
7376   } else {
7377     // Incoming value: jbuf
7378     //   ldr  r1, LCPI1_1
7379     //   add  r1, pc, r1
7380     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
7381     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7382     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
7383                    .addConstantPoolIndex(CPI)
7384                    .addImm(0)
7385                    .addMemOperand(CPMMO));
7386     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
7387     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
7388                    .addReg(NewVReg1, RegState::Kill)
7389                    .addImm(PCLabelId));
7390     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
7391                    .addReg(NewVReg2, RegState::Kill)
7392                    .addFrameIndex(FI)
7393                    .addImm(36)  // &jbuf[1] :: pc
7394                    .addMemOperand(FIMMOSt));
7395   }
7396 }
7397 
EmitSjLjDispatchBlock(MachineInstr & MI,MachineBasicBlock * MBB) const7398 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
7399                                               MachineBasicBlock *MBB) const {
7400   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
7401   DebugLoc dl = MI.getDebugLoc();
7402   MachineFunction *MF = MBB->getParent();
7403   MachineRegisterInfo *MRI = &MF->getRegInfo();
7404   MachineFrameInfo *MFI = MF->getFrameInfo();
7405   int FI = MFI->getFunctionContextIndex();
7406 
7407   const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
7408                                                         : &ARM::GPRnopcRegClass;
7409 
7410   // Get a mapping of the call site numbers to all of the landing pads they're
7411   // associated with.
7412   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
7413   unsigned MaxCSNum = 0;
7414   MachineModuleInfo &MMI = MF->getMMI();
7415   for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
7416        ++BB) {
7417     if (!BB->isEHPad()) continue;
7418 
7419     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
7420     // pad.
7421     for (MachineBasicBlock::iterator
7422            II = BB->begin(), IE = BB->end(); II != IE; ++II) {
7423       if (!II->isEHLabel()) continue;
7424 
7425       MCSymbol *Sym = II->getOperand(0).getMCSymbol();
7426       if (!MMI.hasCallSiteLandingPad(Sym)) continue;
7427 
7428       SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
7429       for (SmallVectorImpl<unsigned>::iterator
7430              CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
7431            CSI != CSE; ++CSI) {
7432         CallSiteNumToLPad[*CSI].push_back(&*BB);
7433         MaxCSNum = std::max(MaxCSNum, *CSI);
7434       }
7435       break;
7436     }
7437   }
7438 
7439   // Get an ordered list of the machine basic blocks for the jump table.
7440   std::vector<MachineBasicBlock*> LPadList;
7441   SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
7442   LPadList.reserve(CallSiteNumToLPad.size());
7443   for (unsigned I = 1; I <= MaxCSNum; ++I) {
7444     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
7445     for (SmallVectorImpl<MachineBasicBlock*>::iterator
7446            II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
7447       LPadList.push_back(*II);
7448       InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
7449     }
7450   }
7451 
7452   assert(!LPadList.empty() &&
7453          "No landing pad destinations for the dispatch jump table!");
7454 
7455   // Create the jump table and associated information.
7456   MachineJumpTableInfo *JTI =
7457     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
7458   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
7459 
7460   // Create the MBBs for the dispatch code.
7461 
7462   // Shove the dispatch's address into the return slot in the function context.
7463   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
7464   DispatchBB->setIsEHPad();
7465 
7466   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
7467   unsigned trap_opcode;
7468   if (Subtarget->isThumb())
7469     trap_opcode = ARM::tTRAP;
7470   else
7471     trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
7472 
7473   BuildMI(TrapBB, dl, TII->get(trap_opcode));
7474   DispatchBB->addSuccessor(TrapBB);
7475 
7476   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
7477   DispatchBB->addSuccessor(DispContBB);
7478 
7479   // Insert and MBBs.
7480   MF->insert(MF->end(), DispatchBB);
7481   MF->insert(MF->end(), DispContBB);
7482   MF->insert(MF->end(), TrapBB);
7483 
7484   // Insert code into the entry block that creates and registers the function
7485   // context.
7486   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
7487 
7488   MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
7489       MachinePointerInfo::getFixedStack(*MF, FI),
7490       MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4);
7491 
7492   MachineInstrBuilder MIB;
7493   MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
7494 
7495   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
7496   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
7497 
7498   // Add a register mask with no preserved registers.  This results in all
7499   // registers being marked as clobbered.
7500   MIB.addRegMask(RI.getNoPreservedMask());
7501 
7502   bool IsPositionIndependent = isPositionIndependent();
7503   unsigned NumLPads = LPadList.size();
7504   if (Subtarget->isThumb2()) {
7505     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7506     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
7507                    .addFrameIndex(FI)
7508                    .addImm(4)
7509                    .addMemOperand(FIMMOLd));
7510 
7511     if (NumLPads < 256) {
7512       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
7513                      .addReg(NewVReg1)
7514                      .addImm(LPadList.size()));
7515     } else {
7516       unsigned VReg1 = MRI->createVirtualRegister(TRC);
7517       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
7518                      .addImm(NumLPads & 0xFFFF));
7519 
7520       unsigned VReg2 = VReg1;
7521       if ((NumLPads & 0xFFFF0000) != 0) {
7522         VReg2 = MRI->createVirtualRegister(TRC);
7523         AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
7524                        .addReg(VReg1)
7525                        .addImm(NumLPads >> 16));
7526       }
7527 
7528       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
7529                      .addReg(NewVReg1)
7530                      .addReg(VReg2));
7531     }
7532 
7533     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
7534       .addMBB(TrapBB)
7535       .addImm(ARMCC::HI)
7536       .addReg(ARM::CPSR);
7537 
7538     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7539     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
7540                    .addJumpTableIndex(MJTI));
7541 
7542     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
7543     AddDefaultCC(
7544       AddDefaultPred(
7545         BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
7546         .addReg(NewVReg3, RegState::Kill)
7547         .addReg(NewVReg1)
7548         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
7549 
7550     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
7551       .addReg(NewVReg4, RegState::Kill)
7552       .addReg(NewVReg1)
7553       .addJumpTableIndex(MJTI);
7554   } else if (Subtarget->isThumb()) {
7555     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7556     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
7557                    .addFrameIndex(FI)
7558                    .addImm(1)
7559                    .addMemOperand(FIMMOLd));
7560 
7561     if (NumLPads < 256) {
7562       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
7563                      .addReg(NewVReg1)
7564                      .addImm(NumLPads));
7565     } else {
7566       MachineConstantPool *ConstantPool = MF->getConstantPool();
7567       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
7568       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
7569 
7570       // MachineConstantPool wants an explicit alignment.
7571       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
7572       if (Align == 0)
7573         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
7574       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
7575 
7576       unsigned VReg1 = MRI->createVirtualRegister(TRC);
7577       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
7578                      .addReg(VReg1, RegState::Define)
7579                      .addConstantPoolIndex(Idx));
7580       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
7581                      .addReg(NewVReg1)
7582                      .addReg(VReg1));
7583     }
7584 
7585     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
7586       .addMBB(TrapBB)
7587       .addImm(ARMCC::HI)
7588       .addReg(ARM::CPSR);
7589 
7590     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
7591     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
7592                    .addReg(ARM::CPSR, RegState::Define)
7593                    .addReg(NewVReg1)
7594                    .addImm(2));
7595 
7596     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7597     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
7598                    .addJumpTableIndex(MJTI));
7599 
7600     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
7601     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
7602                    .addReg(ARM::CPSR, RegState::Define)
7603                    .addReg(NewVReg2, RegState::Kill)
7604                    .addReg(NewVReg3));
7605 
7606     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
7607         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
7608 
7609     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
7610     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
7611                    .addReg(NewVReg4, RegState::Kill)
7612                    .addImm(0)
7613                    .addMemOperand(JTMMOLd));
7614 
7615     unsigned NewVReg6 = NewVReg5;
7616     if (IsPositionIndependent) {
7617       NewVReg6 = MRI->createVirtualRegister(TRC);
7618       AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
7619                      .addReg(ARM::CPSR, RegState::Define)
7620                      .addReg(NewVReg5, RegState::Kill)
7621                      .addReg(NewVReg3));
7622     }
7623 
7624     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
7625       .addReg(NewVReg6, RegState::Kill)
7626       .addJumpTableIndex(MJTI);
7627   } else {
7628     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
7629     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
7630                    .addFrameIndex(FI)
7631                    .addImm(4)
7632                    .addMemOperand(FIMMOLd));
7633 
7634     if (NumLPads < 256) {
7635       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
7636                      .addReg(NewVReg1)
7637                      .addImm(NumLPads));
7638     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
7639       unsigned VReg1 = MRI->createVirtualRegister(TRC);
7640       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
7641                      .addImm(NumLPads & 0xFFFF));
7642 
7643       unsigned VReg2 = VReg1;
7644       if ((NumLPads & 0xFFFF0000) != 0) {
7645         VReg2 = MRI->createVirtualRegister(TRC);
7646         AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
7647                        .addReg(VReg1)
7648                        .addImm(NumLPads >> 16));
7649       }
7650 
7651       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
7652                      .addReg(NewVReg1)
7653                      .addReg(VReg2));
7654     } else {
7655       MachineConstantPool *ConstantPool = MF->getConstantPool();
7656       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
7657       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
7658 
7659       // MachineConstantPool wants an explicit alignment.
7660       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
7661       if (Align == 0)
7662         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
7663       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
7664 
7665       unsigned VReg1 = MRI->createVirtualRegister(TRC);
7666       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
7667                      .addReg(VReg1, RegState::Define)
7668                      .addConstantPoolIndex(Idx)
7669                      .addImm(0));
7670       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
7671                      .addReg(NewVReg1)
7672                      .addReg(VReg1, RegState::Kill));
7673     }
7674 
7675     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
7676       .addMBB(TrapBB)
7677       .addImm(ARMCC::HI)
7678       .addReg(ARM::CPSR);
7679 
7680     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
7681     AddDefaultCC(
7682       AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
7683                      .addReg(NewVReg1)
7684                      .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
7685     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
7686     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
7687                    .addJumpTableIndex(MJTI));
7688 
7689     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
7690         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
7691     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
7692     AddDefaultPred(
7693       BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
7694       .addReg(NewVReg3, RegState::Kill)
7695       .addReg(NewVReg4)
7696       .addImm(0)
7697       .addMemOperand(JTMMOLd));
7698 
7699     if (IsPositionIndependent) {
7700       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
7701         .addReg(NewVReg5, RegState::Kill)
7702         .addReg(NewVReg4)
7703         .addJumpTableIndex(MJTI);
7704     } else {
7705       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
7706         .addReg(NewVReg5, RegState::Kill)
7707         .addJumpTableIndex(MJTI);
7708     }
7709   }
7710 
7711   // Add the jump table entries as successors to the MBB.
7712   SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
7713   for (std::vector<MachineBasicBlock*>::iterator
7714          I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
7715     MachineBasicBlock *CurMBB = *I;
7716     if (SeenMBBs.insert(CurMBB).second)
7717       DispContBB->addSuccessor(CurMBB);
7718   }
7719 
7720   // N.B. the order the invoke BBs are processed in doesn't matter here.
7721   const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
7722   SmallVector<MachineBasicBlock*, 64> MBBLPads;
7723   for (MachineBasicBlock *BB : InvokeBBs) {
7724 
7725     // Remove the landing pad successor from the invoke block and replace it
7726     // with the new dispatch block.
7727     SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
7728                                                   BB->succ_end());
7729     while (!Successors.empty()) {
7730       MachineBasicBlock *SMBB = Successors.pop_back_val();
7731       if (SMBB->isEHPad()) {
7732         BB->removeSuccessor(SMBB);
7733         MBBLPads.push_back(SMBB);
7734       }
7735     }
7736 
7737     BB->addSuccessor(DispatchBB, BranchProbability::getZero());
7738     BB->normalizeSuccProbs();
7739 
7740     // Find the invoke call and mark all of the callee-saved registers as
7741     // 'implicit defined' so that they're spilled. This prevents code from
7742     // moving instructions to before the EH block, where they will never be
7743     // executed.
7744     for (MachineBasicBlock::reverse_iterator
7745            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
7746       if (!II->isCall()) continue;
7747 
7748       DenseMap<unsigned, bool> DefRegs;
7749       for (MachineInstr::mop_iterator
7750              OI = II->operands_begin(), OE = II->operands_end();
7751            OI != OE; ++OI) {
7752         if (!OI->isReg()) continue;
7753         DefRegs[OI->getReg()] = true;
7754       }
7755 
7756       MachineInstrBuilder MIB(*MF, &*II);
7757 
7758       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
7759         unsigned Reg = SavedRegs[i];
7760         if (Subtarget->isThumb2() &&
7761             !ARM::tGPRRegClass.contains(Reg) &&
7762             !ARM::hGPRRegClass.contains(Reg))
7763           continue;
7764         if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
7765           continue;
7766         if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
7767           continue;
7768         if (!DefRegs[Reg])
7769           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
7770       }
7771 
7772       break;
7773     }
7774   }
7775 
7776   // Mark all former landing pads as non-landing pads. The dispatch is the only
7777   // landing pad now.
7778   for (SmallVectorImpl<MachineBasicBlock*>::iterator
7779          I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
7780     (*I)->setIsEHPad(false);
7781 
7782   // The instruction is gone now.
7783   MI.eraseFromParent();
7784 }
7785 
7786 static
OtherSucc(MachineBasicBlock * MBB,MachineBasicBlock * Succ)7787 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
7788   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
7789        E = MBB->succ_end(); I != E; ++I)
7790     if (*I != Succ)
7791       return *I;
7792   llvm_unreachable("Expecting a BB with two successors!");
7793 }
7794 
7795 /// Return the load opcode for a given load size. If load size >= 8,
7796 /// neon opcode will be returned.
getLdOpcode(unsigned LdSize,bool IsThumb1,bool IsThumb2)7797 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
7798   if (LdSize >= 8)
7799     return LdSize == 16 ? ARM::VLD1q32wb_fixed
7800                         : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
7801   if (IsThumb1)
7802     return LdSize == 4 ? ARM::tLDRi
7803                        : LdSize == 2 ? ARM::tLDRHi
7804                                      : LdSize == 1 ? ARM::tLDRBi : 0;
7805   if (IsThumb2)
7806     return LdSize == 4 ? ARM::t2LDR_POST
7807                        : LdSize == 2 ? ARM::t2LDRH_POST
7808                                      : LdSize == 1 ? ARM::t2LDRB_POST : 0;
7809   return LdSize == 4 ? ARM::LDR_POST_IMM
7810                      : LdSize == 2 ? ARM::LDRH_POST
7811                                    : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
7812 }
7813 
7814 /// Return the store opcode for a given store size. If store size >= 8,
7815 /// neon opcode will be returned.
getStOpcode(unsigned StSize,bool IsThumb1,bool IsThumb2)7816 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
7817   if (StSize >= 8)
7818     return StSize == 16 ? ARM::VST1q32wb_fixed
7819                         : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
7820   if (IsThumb1)
7821     return StSize == 4 ? ARM::tSTRi
7822                        : StSize == 2 ? ARM::tSTRHi
7823                                      : StSize == 1 ? ARM::tSTRBi : 0;
7824   if (IsThumb2)
7825     return StSize == 4 ? ARM::t2STR_POST
7826                        : StSize == 2 ? ARM::t2STRH_POST
7827                                      : StSize == 1 ? ARM::t2STRB_POST : 0;
7828   return StSize == 4 ? ARM::STR_POST_IMM
7829                      : StSize == 2 ? ARM::STRH_POST
7830                                    : StSize == 1 ? ARM::STRB_POST_IMM : 0;
7831 }
7832 
7833 /// Emit a post-increment load operation with given size. The instructions
7834 /// will be added to BB at Pos.
emitPostLd(MachineBasicBlock * BB,MachineBasicBlock::iterator Pos,const TargetInstrInfo * TII,const DebugLoc & dl,unsigned LdSize,unsigned Data,unsigned AddrIn,unsigned AddrOut,bool IsThumb1,bool IsThumb2)7835 static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
7836                        const TargetInstrInfo *TII, const DebugLoc &dl,
7837                        unsigned LdSize, unsigned Data, unsigned AddrIn,
7838                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
7839   unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
7840   assert(LdOpc != 0 && "Should have a load opcode");
7841   if (LdSize >= 8) {
7842     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
7843                        .addReg(AddrOut, RegState::Define).addReg(AddrIn)
7844                        .addImm(0));
7845   } else if (IsThumb1) {
7846     // load + update AddrIn
7847     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
7848                        .addReg(AddrIn).addImm(0));
7849     MachineInstrBuilder MIB =
7850         BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
7851     MIB = AddDefaultT1CC(MIB);
7852     MIB.addReg(AddrIn).addImm(LdSize);
7853     AddDefaultPred(MIB);
7854   } else if (IsThumb2) {
7855     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
7856                        .addReg(AddrOut, RegState::Define).addReg(AddrIn)
7857                        .addImm(LdSize));
7858   } else { // arm
7859     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
7860                        .addReg(AddrOut, RegState::Define).addReg(AddrIn)
7861                        .addReg(0).addImm(LdSize));
7862   }
7863 }
7864 
7865 /// Emit a post-increment store operation with given size. The instructions
7866 /// will be added to BB at Pos.
emitPostSt(MachineBasicBlock * BB,MachineBasicBlock::iterator Pos,const TargetInstrInfo * TII,const DebugLoc & dl,unsigned StSize,unsigned Data,unsigned AddrIn,unsigned AddrOut,bool IsThumb1,bool IsThumb2)7867 static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
7868                        const TargetInstrInfo *TII, const DebugLoc &dl,
7869                        unsigned StSize, unsigned Data, unsigned AddrIn,
7870                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
7871   unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
7872   assert(StOpc != 0 && "Should have a store opcode");
7873   if (StSize >= 8) {
7874     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
7875                        .addReg(AddrIn).addImm(0).addReg(Data));
7876   } else if (IsThumb1) {
7877     // store + update AddrIn
7878     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc)).addReg(Data)
7879                        .addReg(AddrIn).addImm(0));
7880     MachineInstrBuilder MIB =
7881         BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
7882     MIB = AddDefaultT1CC(MIB);
7883     MIB.addReg(AddrIn).addImm(StSize);
7884     AddDefaultPred(MIB);
7885   } else if (IsThumb2) {
7886     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
7887                        .addReg(Data).addReg(AddrIn).addImm(StSize));
7888   } else { // arm
7889     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
7890                        .addReg(Data).addReg(AddrIn).addReg(0)
7891                        .addImm(StSize));
7892   }
7893 }
7894 
7895 MachineBasicBlock *
EmitStructByval(MachineInstr & MI,MachineBasicBlock * BB) const7896 ARMTargetLowering::EmitStructByval(MachineInstr &MI,
7897                                    MachineBasicBlock *BB) const {
7898   // This pseudo instruction has 3 operands: dst, src, size
7899   // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
7900   // Otherwise, we will generate unrolled scalar copies.
7901   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
7902   const BasicBlock *LLVM_BB = BB->getBasicBlock();
7903   MachineFunction::iterator It = ++BB->getIterator();
7904 
7905   unsigned dest = MI.getOperand(0).getReg();
7906   unsigned src = MI.getOperand(1).getReg();
7907   unsigned SizeVal = MI.getOperand(2).getImm();
7908   unsigned Align = MI.getOperand(3).getImm();
7909   DebugLoc dl = MI.getDebugLoc();
7910 
7911   MachineFunction *MF = BB->getParent();
7912   MachineRegisterInfo &MRI = MF->getRegInfo();
7913   unsigned UnitSize = 0;
7914   const TargetRegisterClass *TRC = nullptr;
7915   const TargetRegisterClass *VecTRC = nullptr;
7916 
7917   bool IsThumb1 = Subtarget->isThumb1Only();
7918   bool IsThumb2 = Subtarget->isThumb2();
7919 
7920   if (Align & 1) {
7921     UnitSize = 1;
7922   } else if (Align & 2) {
7923     UnitSize = 2;
7924   } else {
7925     // Check whether we can use NEON instructions.
7926     if (!MF->getFunction()->hasFnAttribute(Attribute::NoImplicitFloat) &&
7927         Subtarget->hasNEON()) {
7928       if ((Align % 16 == 0) && SizeVal >= 16)
7929         UnitSize = 16;
7930       else if ((Align % 8 == 0) && SizeVal >= 8)
7931         UnitSize = 8;
7932     }
7933     // Can't use NEON instructions.
7934     if (UnitSize == 0)
7935       UnitSize = 4;
7936   }
7937 
7938   // Select the correct opcode and register class for unit size load/store
7939   bool IsNeon = UnitSize >= 8;
7940   TRC = (IsThumb1 || IsThumb2) ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
7941   if (IsNeon)
7942     VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
7943                             : UnitSize == 8 ? &ARM::DPRRegClass
7944                                             : nullptr;
7945 
7946   unsigned BytesLeft = SizeVal % UnitSize;
7947   unsigned LoopSize = SizeVal - BytesLeft;
7948 
7949   if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
7950     // Use LDR and STR to copy.
7951     // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
7952     // [destOut] = STR_POST(scratch, destIn, UnitSize)
7953     unsigned srcIn = src;
7954     unsigned destIn = dest;
7955     for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
7956       unsigned srcOut = MRI.createVirtualRegister(TRC);
7957       unsigned destOut = MRI.createVirtualRegister(TRC);
7958       unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
7959       emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
7960                  IsThumb1, IsThumb2);
7961       emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
7962                  IsThumb1, IsThumb2);
7963       srcIn = srcOut;
7964       destIn = destOut;
7965     }
7966 
7967     // Handle the leftover bytes with LDRB and STRB.
7968     // [scratch, srcOut] = LDRB_POST(srcIn, 1)
7969     // [destOut] = STRB_POST(scratch, destIn, 1)
7970     for (unsigned i = 0; i < BytesLeft; i++) {
7971       unsigned srcOut = MRI.createVirtualRegister(TRC);
7972       unsigned destOut = MRI.createVirtualRegister(TRC);
7973       unsigned scratch = MRI.createVirtualRegister(TRC);
7974       emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
7975                  IsThumb1, IsThumb2);
7976       emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
7977                  IsThumb1, IsThumb2);
7978       srcIn = srcOut;
7979       destIn = destOut;
7980     }
7981     MI.eraseFromParent(); // The instruction is gone now.
7982     return BB;
7983   }
7984 
7985   // Expand the pseudo op to a loop.
7986   // thisMBB:
7987   //   ...
7988   //   movw varEnd, # --> with thumb2
7989   //   movt varEnd, #
7990   //   ldrcp varEnd, idx --> without thumb2
7991   //   fallthrough --> loopMBB
7992   // loopMBB:
7993   //   PHI varPhi, varEnd, varLoop
7994   //   PHI srcPhi, src, srcLoop
7995   //   PHI destPhi, dst, destLoop
7996   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
7997   //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
7998   //   subs varLoop, varPhi, #UnitSize
7999   //   bne loopMBB
8000   //   fallthrough --> exitMBB
8001   // exitMBB:
8002   //   epilogue to handle left-over bytes
8003   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
8004   //   [destOut] = STRB_POST(scratch, destLoop, 1)
8005   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
8006   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
8007   MF->insert(It, loopMBB);
8008   MF->insert(It, exitMBB);
8009 
8010   // Transfer the remainder of BB and its successor edges to exitMBB.
8011   exitMBB->splice(exitMBB->begin(), BB,
8012                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
8013   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
8014 
8015   // Load an immediate to varEnd.
8016   unsigned varEnd = MRI.createVirtualRegister(TRC);
8017   if (Subtarget->useMovt(*MF)) {
8018     unsigned Vtmp = varEnd;
8019     if ((LoopSize & 0xFFFF0000) != 0)
8020       Vtmp = MRI.createVirtualRegister(TRC);
8021     AddDefaultPred(BuildMI(BB, dl,
8022                            TII->get(IsThumb2 ? ARM::t2MOVi16 : ARM::MOVi16),
8023                            Vtmp).addImm(LoopSize & 0xFFFF));
8024 
8025     if ((LoopSize & 0xFFFF0000) != 0)
8026       AddDefaultPred(BuildMI(BB, dl,
8027                              TII->get(IsThumb2 ? ARM::t2MOVTi16 : ARM::MOVTi16),
8028                              varEnd)
8029                          .addReg(Vtmp)
8030                          .addImm(LoopSize >> 16));
8031   } else {
8032     MachineConstantPool *ConstantPool = MF->getConstantPool();
8033     Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
8034     const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
8035 
8036     // MachineConstantPool wants an explicit alignment.
8037     unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
8038     if (Align == 0)
8039       Align = MF->getDataLayout().getTypeAllocSize(C->getType());
8040     unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
8041 
8042     if (IsThumb1)
8043       AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci)).addReg(
8044           varEnd, RegState::Define).addConstantPoolIndex(Idx));
8045     else
8046       AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp)).addReg(
8047           varEnd, RegState::Define).addConstantPoolIndex(Idx).addImm(0));
8048   }
8049   BB->addSuccessor(loopMBB);
8050 
8051   // Generate the loop body:
8052   //   varPhi = PHI(varLoop, varEnd)
8053   //   srcPhi = PHI(srcLoop, src)
8054   //   destPhi = PHI(destLoop, dst)
8055   MachineBasicBlock *entryBB = BB;
8056   BB = loopMBB;
8057   unsigned varLoop = MRI.createVirtualRegister(TRC);
8058   unsigned varPhi = MRI.createVirtualRegister(TRC);
8059   unsigned srcLoop = MRI.createVirtualRegister(TRC);
8060   unsigned srcPhi = MRI.createVirtualRegister(TRC);
8061   unsigned destLoop = MRI.createVirtualRegister(TRC);
8062   unsigned destPhi = MRI.createVirtualRegister(TRC);
8063 
8064   BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
8065     .addReg(varLoop).addMBB(loopMBB)
8066     .addReg(varEnd).addMBB(entryBB);
8067   BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
8068     .addReg(srcLoop).addMBB(loopMBB)
8069     .addReg(src).addMBB(entryBB);
8070   BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
8071     .addReg(destLoop).addMBB(loopMBB)
8072     .addReg(dest).addMBB(entryBB);
8073 
8074   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
8075   //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
8076   unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
8077   emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
8078              IsThumb1, IsThumb2);
8079   emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
8080              IsThumb1, IsThumb2);
8081 
8082   // Decrement loop variable by UnitSize.
8083   if (IsThumb1) {
8084     MachineInstrBuilder MIB =
8085         BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop);
8086     MIB = AddDefaultT1CC(MIB);
8087     MIB.addReg(varPhi).addImm(UnitSize);
8088     AddDefaultPred(MIB);
8089   } else {
8090     MachineInstrBuilder MIB =
8091         BuildMI(*BB, BB->end(), dl,
8092                 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
8093     AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
8094     MIB->getOperand(5).setReg(ARM::CPSR);
8095     MIB->getOperand(5).setIsDef(true);
8096   }
8097   BuildMI(*BB, BB->end(), dl,
8098           TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
8099       .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
8100 
8101   // loopMBB can loop back to loopMBB or fall through to exitMBB.
8102   BB->addSuccessor(loopMBB);
8103   BB->addSuccessor(exitMBB);
8104 
8105   // Add epilogue to handle BytesLeft.
8106   BB = exitMBB;
8107   auto StartOfExit = exitMBB->begin();
8108 
8109   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
8110   //   [destOut] = STRB_POST(scratch, destLoop, 1)
8111   unsigned srcIn = srcLoop;
8112   unsigned destIn = destLoop;
8113   for (unsigned i = 0; i < BytesLeft; i++) {
8114     unsigned srcOut = MRI.createVirtualRegister(TRC);
8115     unsigned destOut = MRI.createVirtualRegister(TRC);
8116     unsigned scratch = MRI.createVirtualRegister(TRC);
8117     emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
8118                IsThumb1, IsThumb2);
8119     emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
8120                IsThumb1, IsThumb2);
8121     srcIn = srcOut;
8122     destIn = destOut;
8123   }
8124 
8125   MI.eraseFromParent(); // The instruction is gone now.
8126   return BB;
8127 }
8128 
8129 MachineBasicBlock *
EmitLowered__chkstk(MachineInstr & MI,MachineBasicBlock * MBB) const8130 ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
8131                                        MachineBasicBlock *MBB) const {
8132   const TargetMachine &TM = getTargetMachine();
8133   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
8134   DebugLoc DL = MI.getDebugLoc();
8135 
8136   assert(Subtarget->isTargetWindows() &&
8137          "__chkstk is only supported on Windows");
8138   assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
8139 
8140   // __chkstk takes the number of words to allocate on the stack in R4, and
8141   // returns the stack adjustment in number of bytes in R4.  This will not
8142   // clober any other registers (other than the obvious lr).
8143   //
8144   // Although, technically, IP should be considered a register which may be
8145   // clobbered, the call itself will not touch it.  Windows on ARM is a pure
8146   // thumb-2 environment, so there is no interworking required.  As a result, we
8147   // do not expect a veneer to be emitted by the linker, clobbering IP.
8148   //
8149   // Each module receives its own copy of __chkstk, so no import thunk is
8150   // required, again, ensuring that IP is not clobbered.
8151   //
8152   // Finally, although some linkers may theoretically provide a trampoline for
8153   // out of range calls (which is quite common due to a 32M range limitation of
8154   // branches for Thumb), we can generate the long-call version via
8155   // -mcmodel=large, alleviating the need for the trampoline which may clobber
8156   // IP.
8157 
8158   switch (TM.getCodeModel()) {
8159   case CodeModel::Small:
8160   case CodeModel::Medium:
8161   case CodeModel::Default:
8162   case CodeModel::Kernel:
8163     BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
8164       .addImm((unsigned)ARMCC::AL).addReg(0)
8165       .addExternalSymbol("__chkstk")
8166       .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
8167       .addReg(ARM::R4, RegState::Implicit | RegState::Define)
8168       .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
8169     break;
8170   case CodeModel::Large:
8171   case CodeModel::JITDefault: {
8172     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
8173     unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
8174 
8175     BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
8176       .addExternalSymbol("__chkstk");
8177     BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
8178       .addImm((unsigned)ARMCC::AL).addReg(0)
8179       .addReg(Reg, RegState::Kill)
8180       .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
8181       .addReg(ARM::R4, RegState::Implicit | RegState::Define)
8182       .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
8183     break;
8184   }
8185   }
8186 
8187   AddDefaultCC(AddDefaultPred(BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr),
8188                                       ARM::SP)
8189                          .addReg(ARM::SP, RegState::Kill)
8190                          .addReg(ARM::R4, RegState::Kill)
8191                          .setMIFlags(MachineInstr::FrameSetup)));
8192 
8193   MI.eraseFromParent();
8194   return MBB;
8195 }
8196 
8197 MachineBasicBlock *
EmitLowered__dbzchk(MachineInstr & MI,MachineBasicBlock * MBB) const8198 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
8199                                        MachineBasicBlock *MBB) const {
8200   DebugLoc DL = MI.getDebugLoc();
8201   MachineFunction *MF = MBB->getParent();
8202   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8203 
8204   MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
8205   MF->insert(++MBB->getIterator(), ContBB);
8206   ContBB->splice(ContBB->begin(), MBB,
8207                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
8208   ContBB->transferSuccessorsAndUpdatePHIs(MBB);
8209 
8210   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
8211   MF->push_back(TrapBB);
8212   BuildMI(TrapBB, DL, TII->get(ARM::t2UDF)).addImm(249);
8213   MBB->addSuccessor(TrapBB);
8214 
8215   BuildMI(*MBB, MI, DL, TII->get(ARM::tCBZ))
8216       .addReg(MI.getOperand(0).getReg())
8217       .addMBB(TrapBB);
8218   AddDefaultPred(BuildMI(*MBB, MI, DL, TII->get(ARM::t2B)).addMBB(ContBB));
8219   MBB->addSuccessor(ContBB);
8220 
8221   MI.eraseFromParent();
8222   return ContBB;
8223 }
8224 
8225 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const8226 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
8227                                                MachineBasicBlock *BB) const {
8228   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
8229   DebugLoc dl = MI.getDebugLoc();
8230   bool isThumb2 = Subtarget->isThumb2();
8231   switch (MI.getOpcode()) {
8232   default: {
8233     MI.dump();
8234     llvm_unreachable("Unexpected instr type to insert");
8235   }
8236   // The Thumb2 pre-indexed stores have the same MI operands, they just
8237   // define them differently in the .td files from the isel patterns, so
8238   // they need pseudos.
8239   case ARM::t2STR_preidx:
8240     MI.setDesc(TII->get(ARM::t2STR_PRE));
8241     return BB;
8242   case ARM::t2STRB_preidx:
8243     MI.setDesc(TII->get(ARM::t2STRB_PRE));
8244     return BB;
8245   case ARM::t2STRH_preidx:
8246     MI.setDesc(TII->get(ARM::t2STRH_PRE));
8247     return BB;
8248 
8249   case ARM::STRi_preidx:
8250   case ARM::STRBi_preidx: {
8251     unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
8252                                                          : ARM::STRB_PRE_IMM;
8253     // Decode the offset.
8254     unsigned Offset = MI.getOperand(4).getImm();
8255     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
8256     Offset = ARM_AM::getAM2Offset(Offset);
8257     if (isSub)
8258       Offset = -Offset;
8259 
8260     MachineMemOperand *MMO = *MI.memoperands_begin();
8261     BuildMI(*BB, MI, dl, TII->get(NewOpc))
8262         .addOperand(MI.getOperand(0)) // Rn_wb
8263         .addOperand(MI.getOperand(1)) // Rt
8264         .addOperand(MI.getOperand(2)) // Rn
8265         .addImm(Offset)               // offset (skip GPR==zero_reg)
8266         .addOperand(MI.getOperand(5)) // pred
8267         .addOperand(MI.getOperand(6))
8268         .addMemOperand(MMO);
8269     MI.eraseFromParent();
8270     return BB;
8271   }
8272   case ARM::STRr_preidx:
8273   case ARM::STRBr_preidx:
8274   case ARM::STRH_preidx: {
8275     unsigned NewOpc;
8276     switch (MI.getOpcode()) {
8277     default: llvm_unreachable("unexpected opcode!");
8278     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
8279     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
8280     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
8281     }
8282     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
8283     for (unsigned i = 0; i < MI.getNumOperands(); ++i)
8284       MIB.addOperand(MI.getOperand(i));
8285     MI.eraseFromParent();
8286     return BB;
8287   }
8288 
8289   case ARM::tMOVCCr_pseudo: {
8290     // To "insert" a SELECT_CC instruction, we actually have to insert the
8291     // diamond control-flow pattern.  The incoming instruction knows the
8292     // destination vreg to set, the condition code register to branch on, the
8293     // true/false values to select between, and a branch opcode to use.
8294     const BasicBlock *LLVM_BB = BB->getBasicBlock();
8295     MachineFunction::iterator It = ++BB->getIterator();
8296 
8297     //  thisMBB:
8298     //  ...
8299     //   TrueVal = ...
8300     //   cmpTY ccX, r1, r2
8301     //   bCC copy1MBB
8302     //   fallthrough --> copy0MBB
8303     MachineBasicBlock *thisMBB  = BB;
8304     MachineFunction *F = BB->getParent();
8305     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
8306     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
8307     F->insert(It, copy0MBB);
8308     F->insert(It, sinkMBB);
8309 
8310     // Transfer the remainder of BB and its successor edges to sinkMBB.
8311     sinkMBB->splice(sinkMBB->begin(), BB,
8312                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
8313     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
8314 
8315     BB->addSuccessor(copy0MBB);
8316     BB->addSuccessor(sinkMBB);
8317 
8318     BuildMI(BB, dl, TII->get(ARM::tBcc))
8319         .addMBB(sinkMBB)
8320         .addImm(MI.getOperand(3).getImm())
8321         .addReg(MI.getOperand(4).getReg());
8322 
8323     //  copy0MBB:
8324     //   %FalseValue = ...
8325     //   # fallthrough to sinkMBB
8326     BB = copy0MBB;
8327 
8328     // Update machine-CFG edges
8329     BB->addSuccessor(sinkMBB);
8330 
8331     //  sinkMBB:
8332     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
8333     //  ...
8334     BB = sinkMBB;
8335     BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
8336         .addReg(MI.getOperand(1).getReg())
8337         .addMBB(copy0MBB)
8338         .addReg(MI.getOperand(2).getReg())
8339         .addMBB(thisMBB);
8340 
8341     MI.eraseFromParent(); // The pseudo instruction is gone now.
8342     return BB;
8343   }
8344 
8345   case ARM::BCCi64:
8346   case ARM::BCCZi64: {
8347     // If there is an unconditional branch to the other successor, remove it.
8348     BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
8349 
8350     // Compare both parts that make up the double comparison separately for
8351     // equality.
8352     bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
8353 
8354     unsigned LHS1 = MI.getOperand(1).getReg();
8355     unsigned LHS2 = MI.getOperand(2).getReg();
8356     if (RHSisZero) {
8357       AddDefaultPred(BuildMI(BB, dl,
8358                              TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
8359                      .addReg(LHS1).addImm(0));
8360       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
8361         .addReg(LHS2).addImm(0)
8362         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
8363     } else {
8364       unsigned RHS1 = MI.getOperand(3).getReg();
8365       unsigned RHS2 = MI.getOperand(4).getReg();
8366       AddDefaultPred(BuildMI(BB, dl,
8367                              TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
8368                      .addReg(LHS1).addReg(RHS1));
8369       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
8370         .addReg(LHS2).addReg(RHS2)
8371         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
8372     }
8373 
8374     MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
8375     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
8376     if (MI.getOperand(0).getImm() == ARMCC::NE)
8377       std::swap(destMBB, exitMBB);
8378 
8379     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
8380       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
8381     if (isThumb2)
8382       AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
8383     else
8384       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
8385 
8386     MI.eraseFromParent(); // The pseudo instruction is gone now.
8387     return BB;
8388   }
8389 
8390   case ARM::Int_eh_sjlj_setjmp:
8391   case ARM::Int_eh_sjlj_setjmp_nofp:
8392   case ARM::tInt_eh_sjlj_setjmp:
8393   case ARM::t2Int_eh_sjlj_setjmp:
8394   case ARM::t2Int_eh_sjlj_setjmp_nofp:
8395     return BB;
8396 
8397   case ARM::Int_eh_sjlj_setup_dispatch:
8398     EmitSjLjDispatchBlock(MI, BB);
8399     return BB;
8400 
8401   case ARM::ABS:
8402   case ARM::t2ABS: {
8403     // To insert an ABS instruction, we have to insert the
8404     // diamond control-flow pattern.  The incoming instruction knows the
8405     // source vreg to test against 0, the destination vreg to set,
8406     // the condition code register to branch on, the
8407     // true/false values to select between, and a branch opcode to use.
8408     // It transforms
8409     //     V1 = ABS V0
8410     // into
8411     //     V2 = MOVS V0
8412     //     BCC                      (branch to SinkBB if V0 >= 0)
8413     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
8414     //     SinkBB: V1 = PHI(V2, V3)
8415     const BasicBlock *LLVM_BB = BB->getBasicBlock();
8416     MachineFunction::iterator BBI = ++BB->getIterator();
8417     MachineFunction *Fn = BB->getParent();
8418     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
8419     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
8420     Fn->insert(BBI, RSBBB);
8421     Fn->insert(BBI, SinkBB);
8422 
8423     unsigned int ABSSrcReg = MI.getOperand(1).getReg();
8424     unsigned int ABSDstReg = MI.getOperand(0).getReg();
8425     bool ABSSrcKIll = MI.getOperand(1).isKill();
8426     bool isThumb2 = Subtarget->isThumb2();
8427     MachineRegisterInfo &MRI = Fn->getRegInfo();
8428     // In Thumb mode S must not be specified if source register is the SP or
8429     // PC and if destination register is the SP, so restrict register class
8430     unsigned NewRsbDstReg =
8431       MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
8432 
8433     // Transfer the remainder of BB and its successor edges to sinkMBB.
8434     SinkBB->splice(SinkBB->begin(), BB,
8435                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
8436     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
8437 
8438     BB->addSuccessor(RSBBB);
8439     BB->addSuccessor(SinkBB);
8440 
8441     // fall through to SinkMBB
8442     RSBBB->addSuccessor(SinkBB);
8443 
8444     // insert a cmp at the end of BB
8445     AddDefaultPred(BuildMI(BB, dl,
8446                            TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
8447                    .addReg(ABSSrcReg).addImm(0));
8448 
8449     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
8450     BuildMI(BB, dl,
8451       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
8452       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
8453 
8454     // insert rsbri in RSBBB
8455     // Note: BCC and rsbri will be converted into predicated rsbmi
8456     // by if-conversion pass
8457     BuildMI(*RSBBB, RSBBB->begin(), dl,
8458       TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
8459       .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
8460       .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
8461 
8462     // insert PHI in SinkBB,
8463     // reuse ABSDstReg to not change uses of ABS instruction
8464     BuildMI(*SinkBB, SinkBB->begin(), dl,
8465       TII->get(ARM::PHI), ABSDstReg)
8466       .addReg(NewRsbDstReg).addMBB(RSBBB)
8467       .addReg(ABSSrcReg).addMBB(BB);
8468 
8469     // remove ABS instruction
8470     MI.eraseFromParent();
8471 
8472     // return last added BB
8473     return SinkBB;
8474   }
8475   case ARM::COPY_STRUCT_BYVAL_I32:
8476     ++NumLoopByVals;
8477     return EmitStructByval(MI, BB);
8478   case ARM::WIN__CHKSTK:
8479     return EmitLowered__chkstk(MI, BB);
8480   case ARM::WIN__DBZCHK:
8481     return EmitLowered__dbzchk(MI, BB);
8482   }
8483 }
8484 
8485 /// \brief Attaches vregs to MEMCPY that it will use as scratch registers
8486 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
8487 /// instead of as a custom inserter because we need the use list from the SDNode.
attachMEMCPYScratchRegs(const ARMSubtarget * Subtarget,MachineInstr & MI,const SDNode * Node)8488 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
8489                                     MachineInstr &MI, const SDNode *Node) {
8490   bool isThumb1 = Subtarget->isThumb1Only();
8491 
8492   DebugLoc DL = MI.getDebugLoc();
8493   MachineFunction *MF = MI.getParent()->getParent();
8494   MachineRegisterInfo &MRI = MF->getRegInfo();
8495   MachineInstrBuilder MIB(*MF, MI);
8496 
8497   // If the new dst/src is unused mark it as dead.
8498   if (!Node->hasAnyUseOfValue(0)) {
8499     MI.getOperand(0).setIsDead(true);
8500   }
8501   if (!Node->hasAnyUseOfValue(1)) {
8502     MI.getOperand(1).setIsDead(true);
8503   }
8504 
8505   // The MEMCPY both defines and kills the scratch registers.
8506   for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
8507     unsigned TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
8508                                                          : &ARM::GPRRegClass);
8509     MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
8510   }
8511 }
8512 
AdjustInstrPostInstrSelection(MachineInstr & MI,SDNode * Node) const8513 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
8514                                                       SDNode *Node) const {
8515   if (MI.getOpcode() == ARM::MEMCPY) {
8516     attachMEMCPYScratchRegs(Subtarget, MI, Node);
8517     return;
8518   }
8519 
8520   const MCInstrDesc *MCID = &MI.getDesc();
8521   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
8522   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
8523   // operand is still set to noreg. If needed, set the optional operand's
8524   // register to CPSR, and remove the redundant implicit def.
8525   //
8526   // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
8527 
8528   // Rename pseudo opcodes.
8529   unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
8530   if (NewOpc) {
8531     const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
8532     MCID = &TII->get(NewOpc);
8533 
8534     assert(MCID->getNumOperands() == MI.getDesc().getNumOperands() + 1 &&
8535            "converted opcode should be the same except for cc_out");
8536 
8537     MI.setDesc(*MCID);
8538 
8539     // Add the optional cc_out operand
8540     MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
8541   }
8542   unsigned ccOutIdx = MCID->getNumOperands() - 1;
8543 
8544   // Any ARM instruction that sets the 's' bit should specify an optional
8545   // "cc_out" operand in the last operand position.
8546   if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
8547     assert(!NewOpc && "Optional cc_out operand required");
8548     return;
8549   }
8550   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
8551   // since we already have an optional CPSR def.
8552   bool definesCPSR = false;
8553   bool deadCPSR = false;
8554   for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
8555        ++i) {
8556     const MachineOperand &MO = MI.getOperand(i);
8557     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
8558       definesCPSR = true;
8559       if (MO.isDead())
8560         deadCPSR = true;
8561       MI.RemoveOperand(i);
8562       break;
8563     }
8564   }
8565   if (!definesCPSR) {
8566     assert(!NewOpc && "Optional cc_out operand required");
8567     return;
8568   }
8569   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
8570   if (deadCPSR) {
8571     assert(!MI.getOperand(ccOutIdx).getReg() &&
8572            "expect uninitialized optional cc_out operand");
8573     return;
8574   }
8575 
8576   // If this instruction was defined with an optional CPSR def and its dag node
8577   // had a live implicit CPSR def, then activate the optional CPSR def.
8578   MachineOperand &MO = MI.getOperand(ccOutIdx);
8579   MO.setReg(ARM::CPSR);
8580   MO.setIsDef(true);
8581 }
8582 
8583 //===----------------------------------------------------------------------===//
8584 //                           ARM Optimization Hooks
8585 //===----------------------------------------------------------------------===//
8586 
8587 // Helper function that checks if N is a null or all ones constant.
isZeroOrAllOnes(SDValue N,bool AllOnes)8588 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
8589   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
8590 }
8591 
8592 // Return true if N is conditionally 0 or all ones.
8593 // Detects these expressions where cc is an i1 value:
8594 //
8595 //   (select cc 0, y)   [AllOnes=0]
8596 //   (select cc y, 0)   [AllOnes=0]
8597 //   (zext cc)          [AllOnes=0]
8598 //   (sext cc)          [AllOnes=0/1]
8599 //   (select cc -1, y)  [AllOnes=1]
8600 //   (select cc y, -1)  [AllOnes=1]
8601 //
8602 // Invert is set when N is the null/all ones constant when CC is false.
8603 // OtherOp is set to the alternative value of N.
isConditionalZeroOrAllOnes(SDNode * N,bool AllOnes,SDValue & CC,bool & Invert,SDValue & OtherOp,SelectionDAG & DAG)8604 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
8605                                        SDValue &CC, bool &Invert,
8606                                        SDValue &OtherOp,
8607                                        SelectionDAG &DAG) {
8608   switch (N->getOpcode()) {
8609   default: return false;
8610   case ISD::SELECT: {
8611     CC = N->getOperand(0);
8612     SDValue N1 = N->getOperand(1);
8613     SDValue N2 = N->getOperand(2);
8614     if (isZeroOrAllOnes(N1, AllOnes)) {
8615       Invert = false;
8616       OtherOp = N2;
8617       return true;
8618     }
8619     if (isZeroOrAllOnes(N2, AllOnes)) {
8620       Invert = true;
8621       OtherOp = N1;
8622       return true;
8623     }
8624     return false;
8625   }
8626   case ISD::ZERO_EXTEND:
8627     // (zext cc) can never be the all ones value.
8628     if (AllOnes)
8629       return false;
8630     // Fall through.
8631   case ISD::SIGN_EXTEND: {
8632     SDLoc dl(N);
8633     EVT VT = N->getValueType(0);
8634     CC = N->getOperand(0);
8635     if (CC.getValueType() != MVT::i1)
8636       return false;
8637     Invert = !AllOnes;
8638     if (AllOnes)
8639       // When looking for an AllOnes constant, N is an sext, and the 'other'
8640       // value is 0.
8641       OtherOp = DAG.getConstant(0, dl, VT);
8642     else if (N->getOpcode() == ISD::ZERO_EXTEND)
8643       // When looking for a 0 constant, N can be zext or sext.
8644       OtherOp = DAG.getConstant(1, dl, VT);
8645     else
8646       OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
8647                                 VT);
8648     return true;
8649   }
8650   }
8651 }
8652 
8653 // Combine a constant select operand into its use:
8654 //
8655 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
8656 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
8657 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
8658 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
8659 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
8660 //
8661 // The transform is rejected if the select doesn't have a constant operand that
8662 // is null, or all ones when AllOnes is set.
8663 //
8664 // Also recognize sext/zext from i1:
8665 //
8666 //   (add (zext cc), x) -> (select cc (add x, 1), x)
8667 //   (add (sext cc), x) -> (select cc (add x, -1), x)
8668 //
8669 // These transformations eventually create predicated instructions.
8670 //
8671 // @param N       The node to transform.
8672 // @param Slct    The N operand that is a select.
8673 // @param OtherOp The other N operand (x above).
8674 // @param DCI     Context.
8675 // @param AllOnes Require the select constant to be all ones instead of null.
8676 // @returns The new node, or SDValue() on failure.
8677 static
combineSelectAndUse(SDNode * N,SDValue Slct,SDValue OtherOp,TargetLowering::DAGCombinerInfo & DCI,bool AllOnes=false)8678 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
8679                             TargetLowering::DAGCombinerInfo &DCI,
8680                             bool AllOnes = false) {
8681   SelectionDAG &DAG = DCI.DAG;
8682   EVT VT = N->getValueType(0);
8683   SDValue NonConstantVal;
8684   SDValue CCOp;
8685   bool SwapSelectOps;
8686   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
8687                                   NonConstantVal, DAG))
8688     return SDValue();
8689 
8690   // Slct is now know to be the desired identity constant when CC is true.
8691   SDValue TrueVal = OtherOp;
8692   SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
8693                                  OtherOp, NonConstantVal);
8694   // Unless SwapSelectOps says CC should be false.
8695   if (SwapSelectOps)
8696     std::swap(TrueVal, FalseVal);
8697 
8698   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
8699                      CCOp, TrueVal, FalseVal);
8700 }
8701 
8702 // Attempt combineSelectAndUse on each operand of a commutative operator N.
8703 static
combineSelectAndUseCommutative(SDNode * N,bool AllOnes,TargetLowering::DAGCombinerInfo & DCI)8704 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
8705                                        TargetLowering::DAGCombinerInfo &DCI) {
8706   SDValue N0 = N->getOperand(0);
8707   SDValue N1 = N->getOperand(1);
8708   if (N0.getNode()->hasOneUse())
8709     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
8710       return Result;
8711   if (N1.getNode()->hasOneUse())
8712     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
8713       return Result;
8714   return SDValue();
8715 }
8716 
8717 // AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
8718 // (only after legalization).
AddCombineToVPADDL(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)8719 static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
8720                                  TargetLowering::DAGCombinerInfo &DCI,
8721                                  const ARMSubtarget *Subtarget) {
8722 
8723   // Only perform optimization if after legalize, and if NEON is available. We
8724   // also expected both operands to be BUILD_VECTORs.
8725   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
8726       || N0.getOpcode() != ISD::BUILD_VECTOR
8727       || N1.getOpcode() != ISD::BUILD_VECTOR)
8728     return SDValue();
8729 
8730   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
8731   EVT VT = N->getValueType(0);
8732   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
8733     return SDValue();
8734 
8735   // Check that the vector operands are of the right form.
8736   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
8737   // operands, where N is the size of the formed vector.
8738   // Each EXTRACT_VECTOR should have the same input vector and odd or even
8739   // index such that we have a pair wise add pattern.
8740 
8741   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
8742   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
8743     return SDValue();
8744   SDValue Vec = N0->getOperand(0)->getOperand(0);
8745   SDNode *V = Vec.getNode();
8746   unsigned nextIndex = 0;
8747 
8748   // For each operands to the ADD which are BUILD_VECTORs,
8749   // check to see if each of their operands are an EXTRACT_VECTOR with
8750   // the same vector and appropriate index.
8751   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
8752     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
8753         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
8754 
8755       SDValue ExtVec0 = N0->getOperand(i);
8756       SDValue ExtVec1 = N1->getOperand(i);
8757 
8758       // First operand is the vector, verify its the same.
8759       if (V != ExtVec0->getOperand(0).getNode() ||
8760           V != ExtVec1->getOperand(0).getNode())
8761         return SDValue();
8762 
8763       // Second is the constant, verify its correct.
8764       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
8765       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
8766 
8767       // For the constant, we want to see all the even or all the odd.
8768       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
8769           || C1->getZExtValue() != nextIndex+1)
8770         return SDValue();
8771 
8772       // Increment index.
8773       nextIndex+=2;
8774     } else
8775       return SDValue();
8776   }
8777 
8778   // Create VPADDL node.
8779   SelectionDAG &DAG = DCI.DAG;
8780   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8781 
8782   SDLoc dl(N);
8783 
8784   // Build operand list.
8785   SmallVector<SDValue, 8> Ops;
8786   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
8787                                 TLI.getPointerTy(DAG.getDataLayout())));
8788 
8789   // Input is the vector.
8790   Ops.push_back(Vec);
8791 
8792   // Get widened type and narrowed type.
8793   MVT widenType;
8794   unsigned numElem = VT.getVectorNumElements();
8795 
8796   EVT inputLaneType = Vec.getValueType().getVectorElementType();
8797   switch (inputLaneType.getSimpleVT().SimpleTy) {
8798     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
8799     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
8800     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
8801     default:
8802       llvm_unreachable("Invalid vector element type for padd optimization.");
8803   }
8804 
8805   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
8806   unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
8807   return DAG.getNode(ExtOp, dl, VT, tmp);
8808 }
8809 
findMUL_LOHI(SDValue V)8810 static SDValue findMUL_LOHI(SDValue V) {
8811   if (V->getOpcode() == ISD::UMUL_LOHI ||
8812       V->getOpcode() == ISD::SMUL_LOHI)
8813     return V;
8814   return SDValue();
8815 }
8816 
AddCombineTo64bitMLAL(SDNode * AddcNode,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)8817 static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
8818                                      TargetLowering::DAGCombinerInfo &DCI,
8819                                      const ARMSubtarget *Subtarget) {
8820 
8821   // Look for multiply add opportunities.
8822   // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
8823   // each add nodes consumes a value from ISD::UMUL_LOHI and there is
8824   // a glue link from the first add to the second add.
8825   // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
8826   // a S/UMLAL instruction.
8827   //                  UMUL_LOHI
8828   //                 / :lo    \ :hi
8829   //                /          \          [no multiline comment]
8830   //    loAdd ->  ADDE         |
8831   //                 \ :glue  /
8832   //                  \      /
8833   //                    ADDC   <- hiAdd
8834   //
8835   assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
8836   SDValue AddcOp0 = AddcNode->getOperand(0);
8837   SDValue AddcOp1 = AddcNode->getOperand(1);
8838 
8839   // Check if the two operands are from the same mul_lohi node.
8840   if (AddcOp0.getNode() == AddcOp1.getNode())
8841     return SDValue();
8842 
8843   assert(AddcNode->getNumValues() == 2 &&
8844          AddcNode->getValueType(0) == MVT::i32 &&
8845          "Expect ADDC with two result values. First: i32");
8846 
8847   // Check that we have a glued ADDC node.
8848   if (AddcNode->getValueType(1) != MVT::Glue)
8849     return SDValue();
8850 
8851   // Check that the ADDC adds the low result of the S/UMUL_LOHI.
8852   if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
8853       AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
8854       AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
8855       AddcOp1->getOpcode() != ISD::SMUL_LOHI)
8856     return SDValue();
8857 
8858   // Look for the glued ADDE.
8859   SDNode* AddeNode = AddcNode->getGluedUser();
8860   if (!AddeNode)
8861     return SDValue();
8862 
8863   // Make sure it is really an ADDE.
8864   if (AddeNode->getOpcode() != ISD::ADDE)
8865     return SDValue();
8866 
8867   assert(AddeNode->getNumOperands() == 3 &&
8868          AddeNode->getOperand(2).getValueType() == MVT::Glue &&
8869          "ADDE node has the wrong inputs");
8870 
8871   // Check for the triangle shape.
8872   SDValue AddeOp0 = AddeNode->getOperand(0);
8873   SDValue AddeOp1 = AddeNode->getOperand(1);
8874 
8875   // Make sure that the ADDE operands are not coming from the same node.
8876   if (AddeOp0.getNode() == AddeOp1.getNode())
8877     return SDValue();
8878 
8879   // Find the MUL_LOHI node walking up ADDE's operands.
8880   bool IsLeftOperandMUL = false;
8881   SDValue MULOp = findMUL_LOHI(AddeOp0);
8882   if (MULOp == SDValue())
8883    MULOp = findMUL_LOHI(AddeOp1);
8884   else
8885     IsLeftOperandMUL = true;
8886   if (MULOp == SDValue())
8887     return SDValue();
8888 
8889   // Figure out the right opcode.
8890   unsigned Opc = MULOp->getOpcode();
8891   unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
8892 
8893   // Figure out the high and low input values to the MLAL node.
8894   SDValue* HiAdd = nullptr;
8895   SDValue* LoMul = nullptr;
8896   SDValue* LowAdd = nullptr;
8897 
8898   // Ensure that ADDE is from high result of ISD::SMUL_LOHI.
8899   if ((AddeOp0 != MULOp.getValue(1)) && (AddeOp1 != MULOp.getValue(1)))
8900     return SDValue();
8901 
8902   if (IsLeftOperandMUL)
8903     HiAdd = &AddeOp1;
8904   else
8905     HiAdd = &AddeOp0;
8906 
8907 
8908   // Ensure that LoMul and LowAdd are taken from correct ISD::SMUL_LOHI node
8909   // whose low result is fed to the ADDC we are checking.
8910 
8911   if (AddcOp0 == MULOp.getValue(0)) {
8912     LoMul = &AddcOp0;
8913     LowAdd = &AddcOp1;
8914   }
8915   if (AddcOp1 == MULOp.getValue(0)) {
8916     LoMul = &AddcOp1;
8917     LowAdd = &AddcOp0;
8918   }
8919 
8920   if (!LoMul)
8921     return SDValue();
8922 
8923   // Create the merged node.
8924   SelectionDAG &DAG = DCI.DAG;
8925 
8926   // Build operand list.
8927   SmallVector<SDValue, 8> Ops;
8928   Ops.push_back(LoMul->getOperand(0));
8929   Ops.push_back(LoMul->getOperand(1));
8930   Ops.push_back(*LowAdd);
8931   Ops.push_back(*HiAdd);
8932 
8933   SDValue MLALNode =  DAG.getNode(FinalOpc, SDLoc(AddcNode),
8934                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
8935 
8936   // Replace the ADDs' nodes uses by the MLA node's values.
8937   SDValue HiMLALResult(MLALNode.getNode(), 1);
8938   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
8939 
8940   SDValue LoMLALResult(MLALNode.getNode(), 0);
8941   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
8942 
8943   // Return original node to notify the driver to stop replacing.
8944   SDValue resNode(AddcNode, 0);
8945   return resNode;
8946 }
8947 
AddCombineTo64bitUMAAL(SDNode * AddcNode,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)8948 static SDValue AddCombineTo64bitUMAAL(SDNode *AddcNode,
8949                                       TargetLowering::DAGCombinerInfo &DCI,
8950                                       const ARMSubtarget *Subtarget) {
8951   // UMAAL is similar to UMLAL except that it adds two unsigned values.
8952   // While trying to combine for the other MLAL nodes, first search for the
8953   // chance to use UMAAL. Check if Addc uses another addc node which can first
8954   // be combined into a UMLAL. The other pattern is AddcNode being combined
8955   // into an UMLAL and then using another addc is handled in ISelDAGToDAG.
8956 
8957   if (!Subtarget->hasV6Ops())
8958     return AddCombineTo64bitMLAL(AddcNode, DCI, Subtarget);
8959 
8960   SDNode *PrevAddc = nullptr;
8961   if (AddcNode->getOperand(0).getOpcode() == ISD::ADDC)
8962     PrevAddc = AddcNode->getOperand(0).getNode();
8963   else if (AddcNode->getOperand(1).getOpcode() == ISD::ADDC)
8964     PrevAddc = AddcNode->getOperand(1).getNode();
8965 
8966   // If there's no addc chains, just return a search for any MLAL.
8967   if (PrevAddc == nullptr)
8968     return AddCombineTo64bitMLAL(AddcNode, DCI, Subtarget);
8969 
8970   // Try to convert the addc operand to an MLAL and if that fails try to
8971   // combine AddcNode.
8972   SDValue MLAL = AddCombineTo64bitMLAL(PrevAddc, DCI, Subtarget);
8973   if (MLAL != SDValue(PrevAddc, 0))
8974     return AddCombineTo64bitMLAL(AddcNode, DCI, Subtarget);
8975 
8976   // Find the converted UMAAL or quit if it doesn't exist.
8977   SDNode *UmlalNode = nullptr;
8978   SDValue AddHi;
8979   if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
8980     UmlalNode = AddcNode->getOperand(0).getNode();
8981     AddHi = AddcNode->getOperand(1);
8982   } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
8983     UmlalNode = AddcNode->getOperand(1).getNode();
8984     AddHi = AddcNode->getOperand(0);
8985   } else {
8986     return SDValue();
8987   }
8988 
8989   // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
8990   // the ADDC as well as Zero.
8991   auto *Zero = dyn_cast<ConstantSDNode>(UmlalNode->getOperand(3));
8992 
8993   if (!Zero || Zero->getZExtValue() != 0)
8994     return SDValue();
8995 
8996   // Check that we have a glued ADDC node.
8997   if (AddcNode->getValueType(1) != MVT::Glue)
8998     return SDValue();
8999 
9000   // Look for the glued ADDE.
9001   SDNode* AddeNode = AddcNode->getGluedUser();
9002   if (!AddeNode)
9003     return SDValue();
9004 
9005   if ((AddeNode->getOperand(0).getNode() == Zero &&
9006        AddeNode->getOperand(1).getNode() == UmlalNode) ||
9007       (AddeNode->getOperand(0).getNode() == UmlalNode &&
9008        AddeNode->getOperand(1).getNode() == Zero)) {
9009 
9010     SelectionDAG &DAG = DCI.DAG;
9011     SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
9012                       UmlalNode->getOperand(2), AddHi };
9013     SDValue UMAAL =  DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
9014                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
9015 
9016     // Replace the ADDs' nodes uses by the UMAAL node's values.
9017     DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
9018     DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
9019 
9020     // Return original node to notify the driver to stop replacing.
9021     return SDValue(AddcNode, 0);
9022   }
9023   return SDValue();
9024 }
9025 
9026 /// PerformADDCCombine - Target-specific dag combine transform from
9027 /// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL or
9028 /// ISD::ADDC, ISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
PerformADDCCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)9029 static SDValue PerformADDCCombine(SDNode *N,
9030                                  TargetLowering::DAGCombinerInfo &DCI,
9031                                  const ARMSubtarget *Subtarget) {
9032 
9033   if (Subtarget->isThumb1Only()) return SDValue();
9034 
9035   // Only perform the checks after legalize when the pattern is available.
9036   if (DCI.isBeforeLegalize()) return SDValue();
9037 
9038   return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
9039 }
9040 
9041 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
9042 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
9043 /// called with the default operands, and if that fails, with commuted
9044 /// operands.
PerformADDCombineWithOperands(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)9045 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
9046                                           TargetLowering::DAGCombinerInfo &DCI,
9047                                           const ARMSubtarget *Subtarget){
9048 
9049   // Attempt to create vpaddl for this add.
9050   if (SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget))
9051     return Result;
9052 
9053   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
9054   if (N0.getNode()->hasOneUse())
9055     if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
9056       return Result;
9057   return SDValue();
9058 }
9059 
9060 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
9061 ///
PerformADDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)9062 static SDValue PerformADDCombine(SDNode *N,
9063                                  TargetLowering::DAGCombinerInfo &DCI,
9064                                  const ARMSubtarget *Subtarget) {
9065   SDValue N0 = N->getOperand(0);
9066   SDValue N1 = N->getOperand(1);
9067 
9068   // First try with the default operand order.
9069   if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
9070     return Result;
9071 
9072   // If that didn't work, try again with the operands commuted.
9073   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
9074 }
9075 
9076 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
9077 ///
PerformSUBCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)9078 static SDValue PerformSUBCombine(SDNode *N,
9079                                  TargetLowering::DAGCombinerInfo &DCI) {
9080   SDValue N0 = N->getOperand(0);
9081   SDValue N1 = N->getOperand(1);
9082 
9083   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
9084   if (N1.getNode()->hasOneUse())
9085     if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
9086       return Result;
9087 
9088   return SDValue();
9089 }
9090 
9091 /// PerformVMULCombine
9092 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
9093 /// special multiplier accumulator forwarding.
9094 ///   vmul d3, d0, d2
9095 ///   vmla d3, d1, d2
9096 /// is faster than
9097 ///   vadd d3, d0, d1
9098 ///   vmul d3, d3, d2
9099 //  However, for (A + B) * (A + B),
9100 //    vadd d2, d0, d1
9101 //    vmul d3, d0, d2
9102 //    vmla d3, d1, d2
9103 //  is slower than
9104 //    vadd d2, d0, d1
9105 //    vmul d3, d2, d2
PerformVMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)9106 static SDValue PerformVMULCombine(SDNode *N,
9107                                   TargetLowering::DAGCombinerInfo &DCI,
9108                                   const ARMSubtarget *Subtarget) {
9109   if (!Subtarget->hasVMLxForwarding())
9110     return SDValue();
9111 
9112   SelectionDAG &DAG = DCI.DAG;
9113   SDValue N0 = N->getOperand(0);
9114   SDValue N1 = N->getOperand(1);
9115   unsigned Opcode = N0.getOpcode();
9116   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
9117       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
9118     Opcode = N1.getOpcode();
9119     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
9120         Opcode != ISD::FADD && Opcode != ISD::FSUB)
9121       return SDValue();
9122     std::swap(N0, N1);
9123   }
9124 
9125   if (N0 == N1)
9126     return SDValue();
9127 
9128   EVT VT = N->getValueType(0);
9129   SDLoc DL(N);
9130   SDValue N00 = N0->getOperand(0);
9131   SDValue N01 = N0->getOperand(1);
9132   return DAG.getNode(Opcode, DL, VT,
9133                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
9134                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
9135 }
9136 
PerformMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)9137 static SDValue PerformMULCombine(SDNode *N,
9138                                  TargetLowering::DAGCombinerInfo &DCI,
9139                                  const ARMSubtarget *Subtarget) {
9140   SelectionDAG &DAG = DCI.DAG;
9141 
9142   if (Subtarget->isThumb1Only())
9143     return SDValue();
9144 
9145   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
9146     return SDValue();
9147 
9148   EVT VT = N->getValueType(0);
9149   if (VT.is64BitVector() || VT.is128BitVector())
9150     return PerformVMULCombine(N, DCI, Subtarget);
9151   if (VT != MVT::i32)
9152     return SDValue();
9153 
9154   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
9155   if (!C)
9156     return SDValue();
9157 
9158   int64_t MulAmt = C->getSExtValue();
9159   unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
9160 
9161   ShiftAmt = ShiftAmt & (32 - 1);
9162   SDValue V = N->getOperand(0);
9163   SDLoc DL(N);
9164 
9165   SDValue Res;
9166   MulAmt >>= ShiftAmt;
9167 
9168   if (MulAmt >= 0) {
9169     if (isPowerOf2_32(MulAmt - 1)) {
9170       // (mul x, 2^N + 1) => (add (shl x, N), x)
9171       Res = DAG.getNode(ISD::ADD, DL, VT,
9172                         V,
9173                         DAG.getNode(ISD::SHL, DL, VT,
9174                                     V,
9175                                     DAG.getConstant(Log2_32(MulAmt - 1), DL,
9176                                                     MVT::i32)));
9177     } else if (isPowerOf2_32(MulAmt + 1)) {
9178       // (mul x, 2^N - 1) => (sub (shl x, N), x)
9179       Res = DAG.getNode(ISD::SUB, DL, VT,
9180                         DAG.getNode(ISD::SHL, DL, VT,
9181                                     V,
9182                                     DAG.getConstant(Log2_32(MulAmt + 1), DL,
9183                                                     MVT::i32)),
9184                         V);
9185     } else
9186       return SDValue();
9187   } else {
9188     uint64_t MulAmtAbs = -MulAmt;
9189     if (isPowerOf2_32(MulAmtAbs + 1)) {
9190       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
9191       Res = DAG.getNode(ISD::SUB, DL, VT,
9192                         V,
9193                         DAG.getNode(ISD::SHL, DL, VT,
9194                                     V,
9195                                     DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
9196                                                     MVT::i32)));
9197     } else if (isPowerOf2_32(MulAmtAbs - 1)) {
9198       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
9199       Res = DAG.getNode(ISD::ADD, DL, VT,
9200                         V,
9201                         DAG.getNode(ISD::SHL, DL, VT,
9202                                     V,
9203                                     DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
9204                                                     MVT::i32)));
9205       Res = DAG.getNode(ISD::SUB, DL, VT,
9206                         DAG.getConstant(0, DL, MVT::i32), Res);
9207 
9208     } else
9209       return SDValue();
9210   }
9211 
9212   if (ShiftAmt != 0)
9213     Res = DAG.getNode(ISD::SHL, DL, VT,
9214                       Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
9215 
9216   // Do not add new nodes to DAG combiner worklist.
9217   DCI.CombineTo(N, Res, false);
9218   return SDValue();
9219 }
9220 
PerformANDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)9221 static SDValue PerformANDCombine(SDNode *N,
9222                                  TargetLowering::DAGCombinerInfo &DCI,
9223                                  const ARMSubtarget *Subtarget) {
9224 
9225   // Attempt to use immediate-form VBIC
9226   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
9227   SDLoc dl(N);
9228   EVT VT = N->getValueType(0);
9229   SelectionDAG &DAG = DCI.DAG;
9230 
9231   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9232     return SDValue();
9233 
9234   APInt SplatBits, SplatUndef;
9235   unsigned SplatBitSize;
9236   bool HasAnyUndefs;
9237   if (BVN &&
9238       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
9239     if (SplatBitSize <= 64) {
9240       EVT VbicVT;
9241       SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
9242                                       SplatUndef.getZExtValue(), SplatBitSize,
9243                                       DAG, dl, VbicVT, VT.is128BitVector(),
9244                                       OtherModImm);
9245       if (Val.getNode()) {
9246         SDValue Input =
9247           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
9248         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
9249         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
9250       }
9251     }
9252   }
9253 
9254   if (!Subtarget->isThumb1Only()) {
9255     // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
9256     if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
9257       return Result;
9258   }
9259 
9260   return SDValue();
9261 }
9262 
9263 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
PerformORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)9264 static SDValue PerformORCombine(SDNode *N,
9265                                 TargetLowering::DAGCombinerInfo &DCI,
9266                                 const ARMSubtarget *Subtarget) {
9267   // Attempt to use immediate-form VORR
9268   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
9269   SDLoc dl(N);
9270   EVT VT = N->getValueType(0);
9271   SelectionDAG &DAG = DCI.DAG;
9272 
9273   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9274     return SDValue();
9275 
9276   APInt SplatBits, SplatUndef;
9277   unsigned SplatBitSize;
9278   bool HasAnyUndefs;
9279   if (BVN && Subtarget->hasNEON() &&
9280       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
9281     if (SplatBitSize <= 64) {
9282       EVT VorrVT;
9283       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
9284                                       SplatUndef.getZExtValue(), SplatBitSize,
9285                                       DAG, dl, VorrVT, VT.is128BitVector(),
9286                                       OtherModImm);
9287       if (Val.getNode()) {
9288         SDValue Input =
9289           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
9290         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
9291         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
9292       }
9293     }
9294   }
9295 
9296   if (!Subtarget->isThumb1Only()) {
9297     // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
9298     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
9299       return Result;
9300   }
9301 
9302   // The code below optimizes (or (and X, Y), Z).
9303   // The AND operand needs to have a single user to make these optimizations
9304   // profitable.
9305   SDValue N0 = N->getOperand(0);
9306   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
9307     return SDValue();
9308   SDValue N1 = N->getOperand(1);
9309 
9310   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
9311   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
9312       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
9313     APInt SplatUndef;
9314     unsigned SplatBitSize;
9315     bool HasAnyUndefs;
9316 
9317     APInt SplatBits0, SplatBits1;
9318     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
9319     BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
9320     // Ensure that the second operand of both ands are constants
9321     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
9322                                       HasAnyUndefs) && !HasAnyUndefs) {
9323         if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
9324                                           HasAnyUndefs) && !HasAnyUndefs) {
9325             // Ensure that the bit width of the constants are the same and that
9326             // the splat arguments are logical inverses as per the pattern we
9327             // are trying to simplify.
9328             if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
9329                 SplatBits0 == ~SplatBits1) {
9330                 // Canonicalize the vector type to make instruction selection
9331                 // simpler.
9332                 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
9333                 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
9334                                              N0->getOperand(1),
9335                                              N0->getOperand(0),
9336                                              N1->getOperand(0));
9337                 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
9338             }
9339         }
9340     }
9341   }
9342 
9343   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
9344   // reasonable.
9345 
9346   // BFI is only available on V6T2+
9347   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
9348     return SDValue();
9349 
9350   SDLoc DL(N);
9351   // 1) or (and A, mask), val => ARMbfi A, val, mask
9352   //      iff (val & mask) == val
9353   //
9354   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
9355   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
9356   //          && mask == ~mask2
9357   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
9358   //          && ~mask == mask2
9359   //  (i.e., copy a bitfield value into another bitfield of the same width)
9360 
9361   if (VT != MVT::i32)
9362     return SDValue();
9363 
9364   SDValue N00 = N0.getOperand(0);
9365 
9366   // The value and the mask need to be constants so we can verify this is
9367   // actually a bitfield set. If the mask is 0xffff, we can do better
9368   // via a movt instruction, so don't use BFI in that case.
9369   SDValue MaskOp = N0.getOperand(1);
9370   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
9371   if (!MaskC)
9372     return SDValue();
9373   unsigned Mask = MaskC->getZExtValue();
9374   if (Mask == 0xffff)
9375     return SDValue();
9376   SDValue Res;
9377   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
9378   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
9379   if (N1C) {
9380     unsigned Val = N1C->getZExtValue();
9381     if ((Val & ~Mask) != Val)
9382       return SDValue();
9383 
9384     if (ARM::isBitFieldInvertedMask(Mask)) {
9385       Val >>= countTrailingZeros(~Mask);
9386 
9387       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
9388                         DAG.getConstant(Val, DL, MVT::i32),
9389                         DAG.getConstant(Mask, DL, MVT::i32));
9390 
9391       // Do not add new nodes to DAG combiner worklist.
9392       DCI.CombineTo(N, Res, false);
9393       return SDValue();
9394     }
9395   } else if (N1.getOpcode() == ISD::AND) {
9396     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
9397     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
9398     if (!N11C)
9399       return SDValue();
9400     unsigned Mask2 = N11C->getZExtValue();
9401 
9402     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
9403     // as is to match.
9404     if (ARM::isBitFieldInvertedMask(Mask) &&
9405         (Mask == ~Mask2)) {
9406       // The pack halfword instruction works better for masks that fit it,
9407       // so use that when it's available.
9408       if (Subtarget->hasT2ExtractPack() &&
9409           (Mask == 0xffff || Mask == 0xffff0000))
9410         return SDValue();
9411       // 2a
9412       unsigned amt = countTrailingZeros(Mask2);
9413       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
9414                         DAG.getConstant(amt, DL, MVT::i32));
9415       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
9416                         DAG.getConstant(Mask, DL, MVT::i32));
9417       // Do not add new nodes to DAG combiner worklist.
9418       DCI.CombineTo(N, Res, false);
9419       return SDValue();
9420     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
9421                (~Mask == Mask2)) {
9422       // The pack halfword instruction works better for masks that fit it,
9423       // so use that when it's available.
9424       if (Subtarget->hasT2ExtractPack() &&
9425           (Mask2 == 0xffff || Mask2 == 0xffff0000))
9426         return SDValue();
9427       // 2b
9428       unsigned lsb = countTrailingZeros(Mask);
9429       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
9430                         DAG.getConstant(lsb, DL, MVT::i32));
9431       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
9432                         DAG.getConstant(Mask2, DL, MVT::i32));
9433       // Do not add new nodes to DAG combiner worklist.
9434       DCI.CombineTo(N, Res, false);
9435       return SDValue();
9436     }
9437   }
9438 
9439   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
9440       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
9441       ARM::isBitFieldInvertedMask(~Mask)) {
9442     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
9443     // where lsb(mask) == #shamt and masked bits of B are known zero.
9444     SDValue ShAmt = N00.getOperand(1);
9445     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
9446     unsigned LSB = countTrailingZeros(Mask);
9447     if (ShAmtC != LSB)
9448       return SDValue();
9449 
9450     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
9451                       DAG.getConstant(~Mask, DL, MVT::i32));
9452 
9453     // Do not add new nodes to DAG combiner worklist.
9454     DCI.CombineTo(N, Res, false);
9455   }
9456 
9457   return SDValue();
9458 }
9459 
PerformXORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)9460 static SDValue PerformXORCombine(SDNode *N,
9461                                  TargetLowering::DAGCombinerInfo &DCI,
9462                                  const ARMSubtarget *Subtarget) {
9463   EVT VT = N->getValueType(0);
9464   SelectionDAG &DAG = DCI.DAG;
9465 
9466   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
9467     return SDValue();
9468 
9469   if (!Subtarget->isThumb1Only()) {
9470     // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
9471     if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
9472       return Result;
9473   }
9474 
9475   return SDValue();
9476 }
9477 
9478 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
9479 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
9480 // their position in "to" (Rd).
ParseBFI(SDNode * N,APInt & ToMask,APInt & FromMask)9481 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
9482   assert(N->getOpcode() == ARMISD::BFI);
9483 
9484   SDValue From = N->getOperand(1);
9485   ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
9486   FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
9487 
9488   // If the Base came from a SHR #C, we can deduce that it is really testing bit
9489   // #C in the base of the SHR.
9490   if (From->getOpcode() == ISD::SRL &&
9491       isa<ConstantSDNode>(From->getOperand(1))) {
9492     APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
9493     assert(Shift.getLimitedValue() < 32 && "Shift too large!");
9494     FromMask <<= Shift.getLimitedValue(31);
9495     From = From->getOperand(0);
9496   }
9497 
9498   return From;
9499 }
9500 
9501 // If A and B contain one contiguous set of bits, does A | B == A . B?
9502 //
9503 // Neither A nor B must be zero.
BitsProperlyConcatenate(const APInt & A,const APInt & B)9504 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
9505   unsigned LastActiveBitInA =  A.countTrailingZeros();
9506   unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
9507   return LastActiveBitInA - 1 == FirstActiveBitInB;
9508 }
9509 
FindBFIToCombineWith(SDNode * N)9510 static SDValue FindBFIToCombineWith(SDNode *N) {
9511   // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
9512   // if one exists.
9513   APInt ToMask, FromMask;
9514   SDValue From = ParseBFI(N, ToMask, FromMask);
9515   SDValue To = N->getOperand(0);
9516 
9517   // Now check for a compatible BFI to merge with. We can pass through BFIs that
9518   // aren't compatible, but not if they set the same bit in their destination as
9519   // we do (or that of any BFI we're going to combine with).
9520   SDValue V = To;
9521   APInt CombinedToMask = ToMask;
9522   while (V.getOpcode() == ARMISD::BFI) {
9523     APInt NewToMask, NewFromMask;
9524     SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
9525     if (NewFrom != From) {
9526       // This BFI has a different base. Keep going.
9527       CombinedToMask |= NewToMask;
9528       V = V.getOperand(0);
9529       continue;
9530     }
9531 
9532     // Do the written bits conflict with any we've seen so far?
9533     if ((NewToMask & CombinedToMask).getBoolValue())
9534       // Conflicting bits - bail out because going further is unsafe.
9535       return SDValue();
9536 
9537     // Are the new bits contiguous when combined with the old bits?
9538     if (BitsProperlyConcatenate(ToMask, NewToMask) &&
9539         BitsProperlyConcatenate(FromMask, NewFromMask))
9540       return V;
9541     if (BitsProperlyConcatenate(NewToMask, ToMask) &&
9542         BitsProperlyConcatenate(NewFromMask, FromMask))
9543       return V;
9544 
9545     // We've seen a write to some bits, so track it.
9546     CombinedToMask |= NewToMask;
9547     // Keep going...
9548     V = V.getOperand(0);
9549   }
9550 
9551   return SDValue();
9552 }
9553 
PerformBFICombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)9554 static SDValue PerformBFICombine(SDNode *N,
9555                                  TargetLowering::DAGCombinerInfo &DCI) {
9556   SDValue N1 = N->getOperand(1);
9557   if (N1.getOpcode() == ISD::AND) {
9558     // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
9559     // the bits being cleared by the AND are not demanded by the BFI.
9560     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
9561     if (!N11C)
9562       return SDValue();
9563     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
9564     unsigned LSB = countTrailingZeros(~InvMask);
9565     unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
9566     assert(Width <
9567                static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
9568            "undefined behavior");
9569     unsigned Mask = (1u << Width) - 1;
9570     unsigned Mask2 = N11C->getZExtValue();
9571     if ((Mask & (~Mask2)) == 0)
9572       return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
9573                              N->getOperand(0), N1.getOperand(0),
9574                              N->getOperand(2));
9575   } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
9576     // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
9577     // Keep track of any consecutive bits set that all come from the same base
9578     // value. We can combine these together into a single BFI.
9579     SDValue CombineBFI = FindBFIToCombineWith(N);
9580     if (CombineBFI == SDValue())
9581       return SDValue();
9582 
9583     // We've found a BFI.
9584     APInt ToMask1, FromMask1;
9585     SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
9586 
9587     APInt ToMask2, FromMask2;
9588     SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
9589     assert(From1 == From2);
9590     (void)From2;
9591 
9592     // First, unlink CombineBFI.
9593     DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
9594     // Then create a new BFI, combining the two together.
9595     APInt NewFromMask = FromMask1 | FromMask2;
9596     APInt NewToMask = ToMask1 | ToMask2;
9597 
9598     EVT VT = N->getValueType(0);
9599     SDLoc dl(N);
9600 
9601     if (NewFromMask[0] == 0)
9602       From1 = DCI.DAG.getNode(
9603         ISD::SRL, dl, VT, From1,
9604         DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
9605     return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
9606                            DCI.DAG.getConstant(~NewToMask, dl, VT));
9607   }
9608   return SDValue();
9609 }
9610 
9611 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
9612 /// ARMISD::VMOVRRD.
PerformVMOVRRDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)9613 static SDValue PerformVMOVRRDCombine(SDNode *N,
9614                                      TargetLowering::DAGCombinerInfo &DCI,
9615                                      const ARMSubtarget *Subtarget) {
9616   // vmovrrd(vmovdrr x, y) -> x,y
9617   SDValue InDouble = N->getOperand(0);
9618   if (InDouble.getOpcode() == ARMISD::VMOVDRR && !Subtarget->isFPOnlySP())
9619     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
9620 
9621   // vmovrrd(load f64) -> (load i32), (load i32)
9622   SDNode *InNode = InDouble.getNode();
9623   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
9624       InNode->getValueType(0) == MVT::f64 &&
9625       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
9626       !cast<LoadSDNode>(InNode)->isVolatile()) {
9627     // TODO: Should this be done for non-FrameIndex operands?
9628     LoadSDNode *LD = cast<LoadSDNode>(InNode);
9629 
9630     SelectionDAG &DAG = DCI.DAG;
9631     SDLoc DL(LD);
9632     SDValue BasePtr = LD->getBasePtr();
9633     SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
9634                                  LD->getPointerInfo(), LD->isVolatile(),
9635                                  LD->isNonTemporal(), LD->isInvariant(),
9636                                  LD->getAlignment());
9637 
9638     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
9639                                     DAG.getConstant(4, DL, MVT::i32));
9640     SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
9641                                  LD->getPointerInfo(), LD->isVolatile(),
9642                                  LD->isNonTemporal(), LD->isInvariant(),
9643                                  std::min(4U, LD->getAlignment() / 2));
9644 
9645     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
9646     if (DCI.DAG.getDataLayout().isBigEndian())
9647       std::swap (NewLD1, NewLD2);
9648     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
9649     return Result;
9650   }
9651 
9652   return SDValue();
9653 }
9654 
9655 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
9656 /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
PerformVMOVDRRCombine(SDNode * N,SelectionDAG & DAG)9657 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
9658   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
9659   SDValue Op0 = N->getOperand(0);
9660   SDValue Op1 = N->getOperand(1);
9661   if (Op0.getOpcode() == ISD::BITCAST)
9662     Op0 = Op0.getOperand(0);
9663   if (Op1.getOpcode() == ISD::BITCAST)
9664     Op1 = Op1.getOperand(0);
9665   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
9666       Op0.getNode() == Op1.getNode() &&
9667       Op0.getResNo() == 0 && Op1.getResNo() == 1)
9668     return DAG.getNode(ISD::BITCAST, SDLoc(N),
9669                        N->getValueType(0), Op0.getOperand(0));
9670   return SDValue();
9671 }
9672 
9673 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
9674 /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
9675 /// i64 vector to have f64 elements, since the value can then be loaded
9676 /// directly into a VFP register.
hasNormalLoadOperand(SDNode * N)9677 static bool hasNormalLoadOperand(SDNode *N) {
9678   unsigned NumElts = N->getValueType(0).getVectorNumElements();
9679   for (unsigned i = 0; i < NumElts; ++i) {
9680     SDNode *Elt = N->getOperand(i).getNode();
9681     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
9682       return true;
9683   }
9684   return false;
9685 }
9686 
9687 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
9688 /// ISD::BUILD_VECTOR.
PerformBUILD_VECTORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)9689 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
9690                                           TargetLowering::DAGCombinerInfo &DCI,
9691                                           const ARMSubtarget *Subtarget) {
9692   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
9693   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
9694   // into a pair of GPRs, which is fine when the value is used as a scalar,
9695   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
9696   SelectionDAG &DAG = DCI.DAG;
9697   if (N->getNumOperands() == 2)
9698     if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
9699       return RV;
9700 
9701   // Load i64 elements as f64 values so that type legalization does not split
9702   // them up into i32 values.
9703   EVT VT = N->getValueType(0);
9704   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
9705     return SDValue();
9706   SDLoc dl(N);
9707   SmallVector<SDValue, 8> Ops;
9708   unsigned NumElts = VT.getVectorNumElements();
9709   for (unsigned i = 0; i < NumElts; ++i) {
9710     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
9711     Ops.push_back(V);
9712     // Make the DAGCombiner fold the bitcast.
9713     DCI.AddToWorklist(V.getNode());
9714   }
9715   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
9716   SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
9717   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
9718 }
9719 
9720 /// \brief Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
9721 static SDValue
PerformARMBUILD_VECTORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)9722 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
9723   // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
9724   // At that time, we may have inserted bitcasts from integer to float.
9725   // If these bitcasts have survived DAGCombine, change the lowering of this
9726   // BUILD_VECTOR in something more vector friendly, i.e., that does not
9727   // force to use floating point types.
9728 
9729   // Make sure we can change the type of the vector.
9730   // This is possible iff:
9731   // 1. The vector is only used in a bitcast to a integer type. I.e.,
9732   //    1.1. Vector is used only once.
9733   //    1.2. Use is a bit convert to an integer type.
9734   // 2. The size of its operands are 32-bits (64-bits are not legal).
9735   EVT VT = N->getValueType(0);
9736   EVT EltVT = VT.getVectorElementType();
9737 
9738   // Check 1.1. and 2.
9739   if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
9740     return SDValue();
9741 
9742   // By construction, the input type must be float.
9743   assert(EltVT == MVT::f32 && "Unexpected type!");
9744 
9745   // Check 1.2.
9746   SDNode *Use = *N->use_begin();
9747   if (Use->getOpcode() != ISD::BITCAST ||
9748       Use->getValueType(0).isFloatingPoint())
9749     return SDValue();
9750 
9751   // Check profitability.
9752   // Model is, if more than half of the relevant operands are bitcast from
9753   // i32, turn the build_vector into a sequence of insert_vector_elt.
9754   // Relevant operands are everything that is not statically
9755   // (i.e., at compile time) bitcasted.
9756   unsigned NumOfBitCastedElts = 0;
9757   unsigned NumElts = VT.getVectorNumElements();
9758   unsigned NumOfRelevantElts = NumElts;
9759   for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
9760     SDValue Elt = N->getOperand(Idx);
9761     if (Elt->getOpcode() == ISD::BITCAST) {
9762       // Assume only bit cast to i32 will go away.
9763       if (Elt->getOperand(0).getValueType() == MVT::i32)
9764         ++NumOfBitCastedElts;
9765     } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
9766       // Constants are statically casted, thus do not count them as
9767       // relevant operands.
9768       --NumOfRelevantElts;
9769   }
9770 
9771   // Check if more than half of the elements require a non-free bitcast.
9772   if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
9773     return SDValue();
9774 
9775   SelectionDAG &DAG = DCI.DAG;
9776   // Create the new vector type.
9777   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
9778   // Check if the type is legal.
9779   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9780   if (!TLI.isTypeLegal(VecVT))
9781     return SDValue();
9782 
9783   // Combine:
9784   // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
9785   // => BITCAST INSERT_VECTOR_ELT
9786   //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
9787   //                      (BITCAST EN), N.
9788   SDValue Vec = DAG.getUNDEF(VecVT);
9789   SDLoc dl(N);
9790   for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
9791     SDValue V = N->getOperand(Idx);
9792     if (V.isUndef())
9793       continue;
9794     if (V.getOpcode() == ISD::BITCAST &&
9795         V->getOperand(0).getValueType() == MVT::i32)
9796       // Fold obvious case.
9797       V = V.getOperand(0);
9798     else {
9799       V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
9800       // Make the DAGCombiner fold the bitcasts.
9801       DCI.AddToWorklist(V.getNode());
9802     }
9803     SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
9804     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
9805   }
9806   Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
9807   // Make the DAGCombiner fold the bitcasts.
9808   DCI.AddToWorklist(Vec.getNode());
9809   return Vec;
9810 }
9811 
9812 /// PerformInsertEltCombine - Target-specific dag combine xforms for
9813 /// ISD::INSERT_VECTOR_ELT.
PerformInsertEltCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)9814 static SDValue PerformInsertEltCombine(SDNode *N,
9815                                        TargetLowering::DAGCombinerInfo &DCI) {
9816   // Bitcast an i64 load inserted into a vector to f64.
9817   // Otherwise, the i64 value will be legalized to a pair of i32 values.
9818   EVT VT = N->getValueType(0);
9819   SDNode *Elt = N->getOperand(1).getNode();
9820   if (VT.getVectorElementType() != MVT::i64 ||
9821       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
9822     return SDValue();
9823 
9824   SelectionDAG &DAG = DCI.DAG;
9825   SDLoc dl(N);
9826   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
9827                                  VT.getVectorNumElements());
9828   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
9829   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
9830   // Make the DAGCombiner fold the bitcasts.
9831   DCI.AddToWorklist(Vec.getNode());
9832   DCI.AddToWorklist(V.getNode());
9833   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
9834                                Vec, V, N->getOperand(2));
9835   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
9836 }
9837 
9838 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
9839 /// ISD::VECTOR_SHUFFLE.
PerformVECTOR_SHUFFLECombine(SDNode * N,SelectionDAG & DAG)9840 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
9841   // The LLVM shufflevector instruction does not require the shuffle mask
9842   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
9843   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
9844   // operands do not match the mask length, they are extended by concatenating
9845   // them with undef vectors.  That is probably the right thing for other
9846   // targets, but for NEON it is better to concatenate two double-register
9847   // size vector operands into a single quad-register size vector.  Do that
9848   // transformation here:
9849   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
9850   //   shuffle(concat(v1, v2), undef)
9851   SDValue Op0 = N->getOperand(0);
9852   SDValue Op1 = N->getOperand(1);
9853   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
9854       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
9855       Op0.getNumOperands() != 2 ||
9856       Op1.getNumOperands() != 2)
9857     return SDValue();
9858   SDValue Concat0Op1 = Op0.getOperand(1);
9859   SDValue Concat1Op1 = Op1.getOperand(1);
9860   if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
9861     return SDValue();
9862   // Skip the transformation if any of the types are illegal.
9863   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9864   EVT VT = N->getValueType(0);
9865   if (!TLI.isTypeLegal(VT) ||
9866       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
9867       !TLI.isTypeLegal(Concat1Op1.getValueType()))
9868     return SDValue();
9869 
9870   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
9871                                   Op0.getOperand(0), Op1.getOperand(0));
9872   // Translate the shuffle mask.
9873   SmallVector<int, 16> NewMask;
9874   unsigned NumElts = VT.getVectorNumElements();
9875   unsigned HalfElts = NumElts/2;
9876   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
9877   for (unsigned n = 0; n < NumElts; ++n) {
9878     int MaskElt = SVN->getMaskElt(n);
9879     int NewElt = -1;
9880     if (MaskElt < (int)HalfElts)
9881       NewElt = MaskElt;
9882     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
9883       NewElt = HalfElts + MaskElt - NumElts;
9884     NewMask.push_back(NewElt);
9885   }
9886   return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
9887                               DAG.getUNDEF(VT), NewMask);
9888 }
9889 
9890 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
9891 /// NEON load/store intrinsics, and generic vector load/stores, to merge
9892 /// base address updates.
9893 /// For generic load/stores, the memory type is assumed to be a vector.
9894 /// The caller is assumed to have checked legality.
CombineBaseUpdate(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)9895 static SDValue CombineBaseUpdate(SDNode *N,
9896                                  TargetLowering::DAGCombinerInfo &DCI) {
9897   SelectionDAG &DAG = DCI.DAG;
9898   const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
9899                             N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
9900   const bool isStore = N->getOpcode() == ISD::STORE;
9901   const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
9902   SDValue Addr = N->getOperand(AddrOpIdx);
9903   MemSDNode *MemN = cast<MemSDNode>(N);
9904   SDLoc dl(N);
9905 
9906   // Search for a use of the address operand that is an increment.
9907   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
9908          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
9909     SDNode *User = *UI;
9910     if (User->getOpcode() != ISD::ADD ||
9911         UI.getUse().getResNo() != Addr.getResNo())
9912       continue;
9913 
9914     // Check that the add is independent of the load/store.  Otherwise, folding
9915     // it would create a cycle.
9916     if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
9917       continue;
9918 
9919     // Find the new opcode for the updating load/store.
9920     bool isLoadOp = true;
9921     bool isLaneOp = false;
9922     unsigned NewOpc = 0;
9923     unsigned NumVecs = 0;
9924     if (isIntrinsic) {
9925       unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
9926       switch (IntNo) {
9927       default: llvm_unreachable("unexpected intrinsic for Neon base update");
9928       case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
9929         NumVecs = 1; break;
9930       case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
9931         NumVecs = 2; break;
9932       case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
9933         NumVecs = 3; break;
9934       case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
9935         NumVecs = 4; break;
9936       case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
9937         NumVecs = 2; isLaneOp = true; break;
9938       case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
9939         NumVecs = 3; isLaneOp = true; break;
9940       case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
9941         NumVecs = 4; isLaneOp = true; break;
9942       case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
9943         NumVecs = 1; isLoadOp = false; break;
9944       case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
9945         NumVecs = 2; isLoadOp = false; break;
9946       case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
9947         NumVecs = 3; isLoadOp = false; break;
9948       case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
9949         NumVecs = 4; isLoadOp = false; break;
9950       case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
9951         NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
9952       case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
9953         NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
9954       case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
9955         NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
9956       }
9957     } else {
9958       isLaneOp = true;
9959       switch (N->getOpcode()) {
9960       default: llvm_unreachable("unexpected opcode for Neon base update");
9961       case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
9962       case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
9963       case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
9964       case ISD::LOAD:       NewOpc = ARMISD::VLD1_UPD;
9965         NumVecs = 1; isLaneOp = false; break;
9966       case ISD::STORE:      NewOpc = ARMISD::VST1_UPD;
9967         NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
9968       }
9969     }
9970 
9971     // Find the size of memory referenced by the load/store.
9972     EVT VecTy;
9973     if (isLoadOp) {
9974       VecTy = N->getValueType(0);
9975     } else if (isIntrinsic) {
9976       VecTy = N->getOperand(AddrOpIdx+1).getValueType();
9977     } else {
9978       assert(isStore && "Node has to be a load, a store, or an intrinsic!");
9979       VecTy = N->getOperand(1).getValueType();
9980     }
9981 
9982     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
9983     if (isLaneOp)
9984       NumBytes /= VecTy.getVectorNumElements();
9985 
9986     // If the increment is a constant, it must match the memory ref size.
9987     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
9988     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
9989       uint64_t IncVal = CInc->getZExtValue();
9990       if (IncVal != NumBytes)
9991         continue;
9992     } else if (NumBytes >= 3 * 16) {
9993       // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
9994       // separate instructions that make it harder to use a non-constant update.
9995       continue;
9996     }
9997 
9998     // OK, we found an ADD we can fold into the base update.
9999     // Now, create a _UPD node, taking care of not breaking alignment.
10000 
10001     EVT AlignedVecTy = VecTy;
10002     unsigned Alignment = MemN->getAlignment();
10003 
10004     // If this is a less-than-standard-aligned load/store, change the type to
10005     // match the standard alignment.
10006     // The alignment is overlooked when selecting _UPD variants; and it's
10007     // easier to introduce bitcasts here than fix that.
10008     // There are 3 ways to get to this base-update combine:
10009     // - intrinsics: they are assumed to be properly aligned (to the standard
10010     //   alignment of the memory type), so we don't need to do anything.
10011     // - ARMISD::VLDx nodes: they are only generated from the aforementioned
10012     //   intrinsics, so, likewise, there's nothing to do.
10013     // - generic load/store instructions: the alignment is specified as an
10014     //   explicit operand, rather than implicitly as the standard alignment
10015     //   of the memory type (like the intrisics).  We need to change the
10016     //   memory type to match the explicit alignment.  That way, we don't
10017     //   generate non-standard-aligned ARMISD::VLDx nodes.
10018     if (isa<LSBaseSDNode>(N)) {
10019       if (Alignment == 0)
10020         Alignment = 1;
10021       if (Alignment < VecTy.getScalarSizeInBits() / 8) {
10022         MVT EltTy = MVT::getIntegerVT(Alignment * 8);
10023         assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
10024         assert(!isLaneOp && "Unexpected generic load/store lane.");
10025         unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
10026         AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
10027       }
10028       // Don't set an explicit alignment on regular load/stores that we want
10029       // to transform to VLD/VST 1_UPD nodes.
10030       // This matches the behavior of regular load/stores, which only get an
10031       // explicit alignment if the MMO alignment is larger than the standard
10032       // alignment of the memory type.
10033       // Intrinsics, however, always get an explicit alignment, set to the
10034       // alignment of the MMO.
10035       Alignment = 1;
10036     }
10037 
10038     // Create the new updating load/store node.
10039     // First, create an SDVTList for the new updating node's results.
10040     EVT Tys[6];
10041     unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
10042     unsigned n;
10043     for (n = 0; n < NumResultVecs; ++n)
10044       Tys[n] = AlignedVecTy;
10045     Tys[n++] = MVT::i32;
10046     Tys[n] = MVT::Other;
10047     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
10048 
10049     // Then, gather the new node's operands.
10050     SmallVector<SDValue, 8> Ops;
10051     Ops.push_back(N->getOperand(0)); // incoming chain
10052     Ops.push_back(N->getOperand(AddrOpIdx));
10053     Ops.push_back(Inc);
10054 
10055     if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
10056       // Try to match the intrinsic's signature
10057       Ops.push_back(StN->getValue());
10058     } else {
10059       // Loads (and of course intrinsics) match the intrinsics' signature,
10060       // so just add all but the alignment operand.
10061       for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
10062         Ops.push_back(N->getOperand(i));
10063     }
10064 
10065     // For all node types, the alignment operand is always the last one.
10066     Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
10067 
10068     // If this is a non-standard-aligned STORE, the penultimate operand is the
10069     // stored value.  Bitcast it to the aligned type.
10070     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
10071       SDValue &StVal = Ops[Ops.size()-2];
10072       StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
10073     }
10074 
10075     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys,
10076                                            Ops, AlignedVecTy,
10077                                            MemN->getMemOperand());
10078 
10079     // Update the uses.
10080     SmallVector<SDValue, 5> NewResults;
10081     for (unsigned i = 0; i < NumResultVecs; ++i)
10082       NewResults.push_back(SDValue(UpdN.getNode(), i));
10083 
10084     // If this is an non-standard-aligned LOAD, the first result is the loaded
10085     // value.  Bitcast it to the expected result type.
10086     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
10087       SDValue &LdVal = NewResults[0];
10088       LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
10089     }
10090 
10091     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
10092     DCI.CombineTo(N, NewResults);
10093     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
10094 
10095     break;
10096   }
10097   return SDValue();
10098 }
10099 
PerformVLDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)10100 static SDValue PerformVLDCombine(SDNode *N,
10101                                  TargetLowering::DAGCombinerInfo &DCI) {
10102   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
10103     return SDValue();
10104 
10105   return CombineBaseUpdate(N, DCI);
10106 }
10107 
10108 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
10109 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
10110 /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
10111 /// return true.
CombineVLDDUP(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)10112 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
10113   SelectionDAG &DAG = DCI.DAG;
10114   EVT VT = N->getValueType(0);
10115   // vldN-dup instructions only support 64-bit vectors for N > 1.
10116   if (!VT.is64BitVector())
10117     return false;
10118 
10119   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
10120   SDNode *VLD = N->getOperand(0).getNode();
10121   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
10122     return false;
10123   unsigned NumVecs = 0;
10124   unsigned NewOpc = 0;
10125   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
10126   if (IntNo == Intrinsic::arm_neon_vld2lane) {
10127     NumVecs = 2;
10128     NewOpc = ARMISD::VLD2DUP;
10129   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
10130     NumVecs = 3;
10131     NewOpc = ARMISD::VLD3DUP;
10132   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
10133     NumVecs = 4;
10134     NewOpc = ARMISD::VLD4DUP;
10135   } else {
10136     return false;
10137   }
10138 
10139   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
10140   // numbers match the load.
10141   unsigned VLDLaneNo =
10142     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
10143   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
10144        UI != UE; ++UI) {
10145     // Ignore uses of the chain result.
10146     if (UI.getUse().getResNo() == NumVecs)
10147       continue;
10148     SDNode *User = *UI;
10149     if (User->getOpcode() != ARMISD::VDUPLANE ||
10150         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
10151       return false;
10152   }
10153 
10154   // Create the vldN-dup node.
10155   EVT Tys[5];
10156   unsigned n;
10157   for (n = 0; n < NumVecs; ++n)
10158     Tys[n] = VT;
10159   Tys[n] = MVT::Other;
10160   SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
10161   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
10162   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
10163   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
10164                                            Ops, VLDMemInt->getMemoryVT(),
10165                                            VLDMemInt->getMemOperand());
10166 
10167   // Update the uses.
10168   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
10169        UI != UE; ++UI) {
10170     unsigned ResNo = UI.getUse().getResNo();
10171     // Ignore uses of the chain result.
10172     if (ResNo == NumVecs)
10173       continue;
10174     SDNode *User = *UI;
10175     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
10176   }
10177 
10178   // Now the vldN-lane intrinsic is dead except for its chain result.
10179   // Update uses of the chain.
10180   std::vector<SDValue> VLDDupResults;
10181   for (unsigned n = 0; n < NumVecs; ++n)
10182     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
10183   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
10184   DCI.CombineTo(VLD, VLDDupResults);
10185 
10186   return true;
10187 }
10188 
10189 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
10190 /// ARMISD::VDUPLANE.
PerformVDUPLANECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)10191 static SDValue PerformVDUPLANECombine(SDNode *N,
10192                                       TargetLowering::DAGCombinerInfo &DCI) {
10193   SDValue Op = N->getOperand(0);
10194 
10195   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
10196   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
10197   if (CombineVLDDUP(N, DCI))
10198     return SDValue(N, 0);
10199 
10200   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
10201   // redundant.  Ignore bit_converts for now; element sizes are checked below.
10202   while (Op.getOpcode() == ISD::BITCAST)
10203     Op = Op.getOperand(0);
10204   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
10205     return SDValue();
10206 
10207   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
10208   unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
10209   // The canonical VMOV for a zero vector uses a 32-bit element size.
10210   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
10211   unsigned EltBits;
10212   if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
10213     EltSize = 8;
10214   EVT VT = N->getValueType(0);
10215   if (EltSize > VT.getVectorElementType().getSizeInBits())
10216     return SDValue();
10217 
10218   return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
10219 }
10220 
PerformLOADCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)10221 static SDValue PerformLOADCombine(SDNode *N,
10222                                   TargetLowering::DAGCombinerInfo &DCI) {
10223   EVT VT = N->getValueType(0);
10224 
10225   // If this is a legal vector load, try to combine it into a VLD1_UPD.
10226   if (ISD::isNormalLoad(N) && VT.isVector() &&
10227       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
10228     return CombineBaseUpdate(N, DCI);
10229 
10230   return SDValue();
10231 }
10232 
10233 /// PerformSTORECombine - Target-specific dag combine xforms for
10234 /// ISD::STORE.
PerformSTORECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)10235 static SDValue PerformSTORECombine(SDNode *N,
10236                                    TargetLowering::DAGCombinerInfo &DCI) {
10237   StoreSDNode *St = cast<StoreSDNode>(N);
10238   if (St->isVolatile())
10239     return SDValue();
10240 
10241   // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
10242   // pack all of the elements in one place.  Next, store to memory in fewer
10243   // chunks.
10244   SDValue StVal = St->getValue();
10245   EVT VT = StVal.getValueType();
10246   if (St->isTruncatingStore() && VT.isVector()) {
10247     SelectionDAG &DAG = DCI.DAG;
10248     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10249     EVT StVT = St->getMemoryVT();
10250     unsigned NumElems = VT.getVectorNumElements();
10251     assert(StVT != VT && "Cannot truncate to the same type");
10252     unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
10253     unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
10254 
10255     // From, To sizes and ElemCount must be pow of two
10256     if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
10257 
10258     // We are going to use the original vector elt for storing.
10259     // Accumulated smaller vector elements must be a multiple of the store size.
10260     if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
10261 
10262     unsigned SizeRatio  = FromEltSz / ToEltSz;
10263     assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
10264 
10265     // Create a type on which we perform the shuffle.
10266     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
10267                                      NumElems*SizeRatio);
10268     assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
10269 
10270     SDLoc DL(St);
10271     SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
10272     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
10273     for (unsigned i = 0; i < NumElems; ++i)
10274       ShuffleVec[i] = DAG.getDataLayout().isBigEndian()
10275                           ? (i + 1) * SizeRatio - 1
10276                           : i * SizeRatio;
10277 
10278     // Can't shuffle using an illegal type.
10279     if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
10280 
10281     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
10282                                 DAG.getUNDEF(WideVec.getValueType()),
10283                                 ShuffleVec);
10284     // At this point all of the data is stored at the bottom of the
10285     // register. We now need to save it to mem.
10286 
10287     // Find the largest store unit
10288     MVT StoreType = MVT::i8;
10289     for (MVT Tp : MVT::integer_valuetypes()) {
10290       if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
10291         StoreType = Tp;
10292     }
10293     // Didn't find a legal store type.
10294     if (!TLI.isTypeLegal(StoreType))
10295       return SDValue();
10296 
10297     // Bitcast the original vector into a vector of store-size units
10298     EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
10299             StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
10300     assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
10301     SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
10302     SmallVector<SDValue, 8> Chains;
10303     SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
10304                                         TLI.getPointerTy(DAG.getDataLayout()));
10305     SDValue BasePtr = St->getBasePtr();
10306 
10307     // Perform one or more big stores into memory.
10308     unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
10309     for (unsigned I = 0; I < E; I++) {
10310       SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
10311                                    StoreType, ShuffWide,
10312                                    DAG.getIntPtrConstant(I, DL));
10313       SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
10314                                 St->getPointerInfo(), St->isVolatile(),
10315                                 St->isNonTemporal(), St->getAlignment());
10316       BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
10317                             Increment);
10318       Chains.push_back(Ch);
10319     }
10320     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
10321   }
10322 
10323   if (!ISD::isNormalStore(St))
10324     return SDValue();
10325 
10326   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
10327   // ARM stores of arguments in the same cache line.
10328   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
10329       StVal.getNode()->hasOneUse()) {
10330     SelectionDAG  &DAG = DCI.DAG;
10331     bool isBigEndian = DAG.getDataLayout().isBigEndian();
10332     SDLoc DL(St);
10333     SDValue BasePtr = St->getBasePtr();
10334     SDValue NewST1 = DAG.getStore(St->getChain(), DL,
10335                                   StVal.getNode()->getOperand(isBigEndian ? 1 : 0 ),
10336                                   BasePtr, St->getPointerInfo(), St->isVolatile(),
10337                                   St->isNonTemporal(), St->getAlignment());
10338 
10339     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
10340                                     DAG.getConstant(4, DL, MVT::i32));
10341     return DAG.getStore(NewST1.getValue(0), DL,
10342                         StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
10343                         OffsetPtr, St->getPointerInfo(), St->isVolatile(),
10344                         St->isNonTemporal(),
10345                         std::min(4U, St->getAlignment() / 2));
10346   }
10347 
10348   if (StVal.getValueType() == MVT::i64 &&
10349       StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
10350 
10351     // Bitcast an i64 store extracted from a vector to f64.
10352     // Otherwise, the i64 value will be legalized to a pair of i32 values.
10353     SelectionDAG &DAG = DCI.DAG;
10354     SDLoc dl(StVal);
10355     SDValue IntVec = StVal.getOperand(0);
10356     EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
10357                                    IntVec.getValueType().getVectorNumElements());
10358     SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
10359     SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
10360                                  Vec, StVal.getOperand(1));
10361     dl = SDLoc(N);
10362     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
10363     // Make the DAGCombiner fold the bitcasts.
10364     DCI.AddToWorklist(Vec.getNode());
10365     DCI.AddToWorklist(ExtElt.getNode());
10366     DCI.AddToWorklist(V.getNode());
10367     return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
10368                         St->getPointerInfo(), St->isVolatile(),
10369                         St->isNonTemporal(), St->getAlignment(),
10370                         St->getAAInfo());
10371   }
10372 
10373   // If this is a legal vector store, try to combine it into a VST1_UPD.
10374   if (ISD::isNormalStore(N) && VT.isVector() &&
10375       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
10376     return CombineBaseUpdate(N, DCI);
10377 
10378   return SDValue();
10379 }
10380 
10381 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
10382 /// can replace combinations of VMUL and VCVT (floating-point to integer)
10383 /// when the VMUL has a constant operand that is a power of 2.
10384 ///
10385 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
10386 ///  vmul.f32        d16, d17, d16
10387 ///  vcvt.s32.f32    d16, d16
10388 /// becomes:
10389 ///  vcvt.s32.f32    d16, d16, #3
PerformVCVTCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)10390 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
10391                                   const ARMSubtarget *Subtarget) {
10392   if (!Subtarget->hasNEON())
10393     return SDValue();
10394 
10395   SDValue Op = N->getOperand(0);
10396   if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
10397       Op.getOpcode() != ISD::FMUL)
10398     return SDValue();
10399 
10400   SDValue ConstVec = Op->getOperand(1);
10401   if (!isa<BuildVectorSDNode>(ConstVec))
10402     return SDValue();
10403 
10404   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
10405   uint32_t FloatBits = FloatTy.getSizeInBits();
10406   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
10407   uint32_t IntBits = IntTy.getSizeInBits();
10408   unsigned NumLanes = Op.getValueType().getVectorNumElements();
10409   if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
10410     // These instructions only exist converting from f32 to i32. We can handle
10411     // smaller integers by generating an extra truncate, but larger ones would
10412     // be lossy. We also can't handle more then 4 lanes, since these intructions
10413     // only support v2i32/v4i32 types.
10414     return SDValue();
10415   }
10416 
10417   BitVector UndefElements;
10418   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
10419   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
10420   if (C == -1 || C == 0 || C > 32)
10421     return SDValue();
10422 
10423   SDLoc dl(N);
10424   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
10425   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
10426     Intrinsic::arm_neon_vcvtfp2fxu;
10427   SDValue FixConv = DAG.getNode(
10428       ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
10429       DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
10430       DAG.getConstant(C, dl, MVT::i32));
10431 
10432   if (IntBits < FloatBits)
10433     FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
10434 
10435   return FixConv;
10436 }
10437 
10438 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
10439 /// can replace combinations of VCVT (integer to floating-point) and VDIV
10440 /// when the VDIV has a constant operand that is a power of 2.
10441 ///
10442 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
10443 ///  vcvt.f32.s32    d16, d16
10444 ///  vdiv.f32        d16, d17, d16
10445 /// becomes:
10446 ///  vcvt.f32.s32    d16, d16, #3
PerformVDIVCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)10447 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
10448                                   const ARMSubtarget *Subtarget) {
10449   if (!Subtarget->hasNEON())
10450     return SDValue();
10451 
10452   SDValue Op = N->getOperand(0);
10453   unsigned OpOpcode = Op.getNode()->getOpcode();
10454   if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
10455       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
10456     return SDValue();
10457 
10458   SDValue ConstVec = N->getOperand(1);
10459   if (!isa<BuildVectorSDNode>(ConstVec))
10460     return SDValue();
10461 
10462   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
10463   uint32_t FloatBits = FloatTy.getSizeInBits();
10464   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
10465   uint32_t IntBits = IntTy.getSizeInBits();
10466   unsigned NumLanes = Op.getValueType().getVectorNumElements();
10467   if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
10468     // These instructions only exist converting from i32 to f32. We can handle
10469     // smaller integers by generating an extra extend, but larger ones would
10470     // be lossy. We also can't handle more then 4 lanes, since these intructions
10471     // only support v2i32/v4i32 types.
10472     return SDValue();
10473   }
10474 
10475   BitVector UndefElements;
10476   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
10477   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
10478   if (C == -1 || C == 0 || C > 32)
10479     return SDValue();
10480 
10481   SDLoc dl(N);
10482   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
10483   SDValue ConvInput = Op.getOperand(0);
10484   if (IntBits < FloatBits)
10485     ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
10486                             dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
10487                             ConvInput);
10488 
10489   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
10490     Intrinsic::arm_neon_vcvtfxu2fp;
10491   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
10492                      Op.getValueType(),
10493                      DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
10494                      ConvInput, DAG.getConstant(C, dl, MVT::i32));
10495 }
10496 
10497 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
10498 /// operand of a vector shift operation, where all the elements of the
10499 /// build_vector must have the same constant integer value.
getVShiftImm(SDValue Op,unsigned ElementBits,int64_t & Cnt)10500 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
10501   // Ignore bit_converts.
10502   while (Op.getOpcode() == ISD::BITCAST)
10503     Op = Op.getOperand(0);
10504   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
10505   APInt SplatBits, SplatUndef;
10506   unsigned SplatBitSize;
10507   bool HasAnyUndefs;
10508   if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
10509                                       HasAnyUndefs, ElementBits) ||
10510       SplatBitSize > ElementBits)
10511     return false;
10512   Cnt = SplatBits.getSExtValue();
10513   return true;
10514 }
10515 
10516 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
10517 /// operand of a vector shift left operation.  That value must be in the range:
10518 ///   0 <= Value < ElementBits for a left shift; or
10519 ///   0 <= Value <= ElementBits for a long left shift.
isVShiftLImm(SDValue Op,EVT VT,bool isLong,int64_t & Cnt)10520 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
10521   assert(VT.isVector() && "vector shift count is not a vector type");
10522   int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
10523   if (! getVShiftImm(Op, ElementBits, Cnt))
10524     return false;
10525   return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
10526 }
10527 
10528 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
10529 /// operand of a vector shift right operation.  For a shift opcode, the value
10530 /// is positive, but for an intrinsic the value count must be negative. The
10531 /// absolute value must be in the range:
10532 ///   1 <= |Value| <= ElementBits for a right shift; or
10533 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
isVShiftRImm(SDValue Op,EVT VT,bool isNarrow,bool isIntrinsic,int64_t & Cnt)10534 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
10535                          int64_t &Cnt) {
10536   assert(VT.isVector() && "vector shift count is not a vector type");
10537   int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
10538   if (! getVShiftImm(Op, ElementBits, Cnt))
10539     return false;
10540   if (!isIntrinsic)
10541     return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
10542   if (Cnt >= -(isNarrow ? ElementBits/2 : ElementBits) && Cnt <= -1) {
10543     Cnt = -Cnt;
10544     return true;
10545   }
10546   return false;
10547 }
10548 
10549 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
PerformIntrinsicCombine(SDNode * N,SelectionDAG & DAG)10550 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
10551   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
10552   switch (IntNo) {
10553   default:
10554     // Don't do anything for most intrinsics.
10555     break;
10556 
10557   // Vector shifts: check for immediate versions and lower them.
10558   // Note: This is done during DAG combining instead of DAG legalizing because
10559   // the build_vectors for 64-bit vector element shift counts are generally
10560   // not legal, and it is hard to see their values after they get legalized to
10561   // loads from a constant pool.
10562   case Intrinsic::arm_neon_vshifts:
10563   case Intrinsic::arm_neon_vshiftu:
10564   case Intrinsic::arm_neon_vrshifts:
10565   case Intrinsic::arm_neon_vrshiftu:
10566   case Intrinsic::arm_neon_vrshiftn:
10567   case Intrinsic::arm_neon_vqshifts:
10568   case Intrinsic::arm_neon_vqshiftu:
10569   case Intrinsic::arm_neon_vqshiftsu:
10570   case Intrinsic::arm_neon_vqshiftns:
10571   case Intrinsic::arm_neon_vqshiftnu:
10572   case Intrinsic::arm_neon_vqshiftnsu:
10573   case Intrinsic::arm_neon_vqrshiftns:
10574   case Intrinsic::arm_neon_vqrshiftnu:
10575   case Intrinsic::arm_neon_vqrshiftnsu: {
10576     EVT VT = N->getOperand(1).getValueType();
10577     int64_t Cnt;
10578     unsigned VShiftOpc = 0;
10579 
10580     switch (IntNo) {
10581     case Intrinsic::arm_neon_vshifts:
10582     case Intrinsic::arm_neon_vshiftu:
10583       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
10584         VShiftOpc = ARMISD::VSHL;
10585         break;
10586       }
10587       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
10588         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
10589                      ARMISD::VSHRs : ARMISD::VSHRu);
10590         break;
10591       }
10592       return SDValue();
10593 
10594     case Intrinsic::arm_neon_vrshifts:
10595     case Intrinsic::arm_neon_vrshiftu:
10596       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
10597         break;
10598       return SDValue();
10599 
10600     case Intrinsic::arm_neon_vqshifts:
10601     case Intrinsic::arm_neon_vqshiftu:
10602       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
10603         break;
10604       return SDValue();
10605 
10606     case Intrinsic::arm_neon_vqshiftsu:
10607       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
10608         break;
10609       llvm_unreachable("invalid shift count for vqshlu intrinsic");
10610 
10611     case Intrinsic::arm_neon_vrshiftn:
10612     case Intrinsic::arm_neon_vqshiftns:
10613     case Intrinsic::arm_neon_vqshiftnu:
10614     case Intrinsic::arm_neon_vqshiftnsu:
10615     case Intrinsic::arm_neon_vqrshiftns:
10616     case Intrinsic::arm_neon_vqrshiftnu:
10617     case Intrinsic::arm_neon_vqrshiftnsu:
10618       // Narrowing shifts require an immediate right shift.
10619       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
10620         break;
10621       llvm_unreachable("invalid shift count for narrowing vector shift "
10622                        "intrinsic");
10623 
10624     default:
10625       llvm_unreachable("unhandled vector shift");
10626     }
10627 
10628     switch (IntNo) {
10629     case Intrinsic::arm_neon_vshifts:
10630     case Intrinsic::arm_neon_vshiftu:
10631       // Opcode already set above.
10632       break;
10633     case Intrinsic::arm_neon_vrshifts:
10634       VShiftOpc = ARMISD::VRSHRs; break;
10635     case Intrinsic::arm_neon_vrshiftu:
10636       VShiftOpc = ARMISD::VRSHRu; break;
10637     case Intrinsic::arm_neon_vrshiftn:
10638       VShiftOpc = ARMISD::VRSHRN; break;
10639     case Intrinsic::arm_neon_vqshifts:
10640       VShiftOpc = ARMISD::VQSHLs; break;
10641     case Intrinsic::arm_neon_vqshiftu:
10642       VShiftOpc = ARMISD::VQSHLu; break;
10643     case Intrinsic::arm_neon_vqshiftsu:
10644       VShiftOpc = ARMISD::VQSHLsu; break;
10645     case Intrinsic::arm_neon_vqshiftns:
10646       VShiftOpc = ARMISD::VQSHRNs; break;
10647     case Intrinsic::arm_neon_vqshiftnu:
10648       VShiftOpc = ARMISD::VQSHRNu; break;
10649     case Intrinsic::arm_neon_vqshiftnsu:
10650       VShiftOpc = ARMISD::VQSHRNsu; break;
10651     case Intrinsic::arm_neon_vqrshiftns:
10652       VShiftOpc = ARMISD::VQRSHRNs; break;
10653     case Intrinsic::arm_neon_vqrshiftnu:
10654       VShiftOpc = ARMISD::VQRSHRNu; break;
10655     case Intrinsic::arm_neon_vqrshiftnsu:
10656       VShiftOpc = ARMISD::VQRSHRNsu; break;
10657     }
10658 
10659     SDLoc dl(N);
10660     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
10661                        N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
10662   }
10663 
10664   case Intrinsic::arm_neon_vshiftins: {
10665     EVT VT = N->getOperand(1).getValueType();
10666     int64_t Cnt;
10667     unsigned VShiftOpc = 0;
10668 
10669     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
10670       VShiftOpc = ARMISD::VSLI;
10671     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
10672       VShiftOpc = ARMISD::VSRI;
10673     else {
10674       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
10675     }
10676 
10677     SDLoc dl(N);
10678     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
10679                        N->getOperand(1), N->getOperand(2),
10680                        DAG.getConstant(Cnt, dl, MVT::i32));
10681   }
10682 
10683   case Intrinsic::arm_neon_vqrshifts:
10684   case Intrinsic::arm_neon_vqrshiftu:
10685     // No immediate versions of these to check for.
10686     break;
10687   }
10688 
10689   return SDValue();
10690 }
10691 
10692 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
10693 /// lowers them.  As with the vector shift intrinsics, this is done during DAG
10694 /// combining instead of DAG legalizing because the build_vectors for 64-bit
10695 /// vector element shift counts are generally not legal, and it is hard to see
10696 /// their values after they get legalized to loads from a constant pool.
PerformShiftCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)10697 static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
10698                                    const ARMSubtarget *ST) {
10699   EVT VT = N->getValueType(0);
10700   if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
10701     // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
10702     // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
10703     SDValue N1 = N->getOperand(1);
10704     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
10705       SDValue N0 = N->getOperand(0);
10706       if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
10707           DAG.MaskedValueIsZero(N0.getOperand(0),
10708                                 APInt::getHighBitsSet(32, 16)))
10709         return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
10710     }
10711   }
10712 
10713   // Nothing to be done for scalar shifts.
10714   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10715   if (!VT.isVector() || !TLI.isTypeLegal(VT))
10716     return SDValue();
10717 
10718   assert(ST->hasNEON() && "unexpected vector shift");
10719   int64_t Cnt;
10720 
10721   switch (N->getOpcode()) {
10722   default: llvm_unreachable("unexpected shift opcode");
10723 
10724   case ISD::SHL:
10725     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
10726       SDLoc dl(N);
10727       return DAG.getNode(ARMISD::VSHL, dl, VT, N->getOperand(0),
10728                          DAG.getConstant(Cnt, dl, MVT::i32));
10729     }
10730     break;
10731 
10732   case ISD::SRA:
10733   case ISD::SRL:
10734     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
10735       unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
10736                             ARMISD::VSHRs : ARMISD::VSHRu);
10737       SDLoc dl(N);
10738       return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
10739                          DAG.getConstant(Cnt, dl, MVT::i32));
10740     }
10741   }
10742   return SDValue();
10743 }
10744 
10745 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
10746 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
PerformExtendCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)10747 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
10748                                     const ARMSubtarget *ST) {
10749   SDValue N0 = N->getOperand(0);
10750 
10751   // Check for sign- and zero-extensions of vector extract operations of 8-
10752   // and 16-bit vector elements.  NEON supports these directly.  They are
10753   // handled during DAG combining because type legalization will promote them
10754   // to 32-bit types and it is messy to recognize the operations after that.
10755   if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
10756     SDValue Vec = N0.getOperand(0);
10757     SDValue Lane = N0.getOperand(1);
10758     EVT VT = N->getValueType(0);
10759     EVT EltVT = N0.getValueType();
10760     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10761 
10762     if (VT == MVT::i32 &&
10763         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
10764         TLI.isTypeLegal(Vec.getValueType()) &&
10765         isa<ConstantSDNode>(Lane)) {
10766 
10767       unsigned Opc = 0;
10768       switch (N->getOpcode()) {
10769       default: llvm_unreachable("unexpected opcode");
10770       case ISD::SIGN_EXTEND:
10771         Opc = ARMISD::VGETLANEs;
10772         break;
10773       case ISD::ZERO_EXTEND:
10774       case ISD::ANY_EXTEND:
10775         Opc = ARMISD::VGETLANEu;
10776         break;
10777       }
10778       return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
10779     }
10780   }
10781 
10782   return SDValue();
10783 }
10784 
computeKnownBits(SelectionDAG & DAG,SDValue Op,APInt & KnownZero,APInt & KnownOne)10785 static void computeKnownBits(SelectionDAG &DAG, SDValue Op, APInt &KnownZero,
10786                              APInt &KnownOne) {
10787   if (Op.getOpcode() == ARMISD::BFI) {
10788     // Conservatively, we can recurse down the first operand
10789     // and just mask out all affected bits.
10790     computeKnownBits(DAG, Op.getOperand(0), KnownZero, KnownOne);
10791 
10792     // The operand to BFI is already a mask suitable for removing the bits it
10793     // sets.
10794     ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
10795     const APInt &Mask = CI->getAPIntValue();
10796     KnownZero &= Mask;
10797     KnownOne &= Mask;
10798     return;
10799   }
10800   if (Op.getOpcode() == ARMISD::CMOV) {
10801     APInt KZ2(KnownZero.getBitWidth(), 0);
10802     APInt KO2(KnownOne.getBitWidth(), 0);
10803     computeKnownBits(DAG, Op.getOperand(1), KnownZero, KnownOne);
10804     computeKnownBits(DAG, Op.getOperand(2), KZ2, KO2);
10805 
10806     KnownZero &= KZ2;
10807     KnownOne &= KO2;
10808     return;
10809   }
10810   return DAG.computeKnownBits(Op, KnownZero, KnownOne);
10811 }
10812 
PerformCMOVToBFICombine(SDNode * CMOV,SelectionDAG & DAG) const10813 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
10814   // If we have a CMOV, OR and AND combination such as:
10815   //   if (x & CN)
10816   //     y |= CM;
10817   //
10818   // And:
10819   //   * CN is a single bit;
10820   //   * All bits covered by CM are known zero in y
10821   //
10822   // Then we can convert this into a sequence of BFI instructions. This will
10823   // always be a win if CM is a single bit, will always be no worse than the
10824   // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
10825   // three bits (due to the extra IT instruction).
10826 
10827   SDValue Op0 = CMOV->getOperand(0);
10828   SDValue Op1 = CMOV->getOperand(1);
10829   auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
10830   auto CC = CCNode->getAPIntValue().getLimitedValue();
10831   SDValue CmpZ = CMOV->getOperand(4);
10832 
10833   // The compare must be against zero.
10834   if (!isNullConstant(CmpZ->getOperand(1)))
10835     return SDValue();
10836 
10837   assert(CmpZ->getOpcode() == ARMISD::CMPZ);
10838   SDValue And = CmpZ->getOperand(0);
10839   if (And->getOpcode() != ISD::AND)
10840     return SDValue();
10841   ConstantSDNode *AndC = dyn_cast<ConstantSDNode>(And->getOperand(1));
10842   if (!AndC || !AndC->getAPIntValue().isPowerOf2())
10843     return SDValue();
10844   SDValue X = And->getOperand(0);
10845 
10846   if (CC == ARMCC::EQ) {
10847     // We're performing an "equal to zero" compare. Swap the operands so we
10848     // canonicalize on a "not equal to zero" compare.
10849     std::swap(Op0, Op1);
10850   } else {
10851     assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
10852   }
10853 
10854   if (Op1->getOpcode() != ISD::OR)
10855     return SDValue();
10856 
10857   ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
10858   if (!OrC)
10859     return SDValue();
10860   SDValue Y = Op1->getOperand(0);
10861 
10862   if (Op0 != Y)
10863     return SDValue();
10864 
10865   // Now, is it profitable to continue?
10866   APInt OrCI = OrC->getAPIntValue();
10867   unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
10868   if (OrCI.countPopulation() > Heuristic)
10869     return SDValue();
10870 
10871   // Lastly, can we determine that the bits defined by OrCI
10872   // are zero in Y?
10873   APInt KnownZero, KnownOne;
10874   computeKnownBits(DAG, Y, KnownZero, KnownOne);
10875   if ((OrCI & KnownZero) != OrCI)
10876     return SDValue();
10877 
10878   // OK, we can do the combine.
10879   SDValue V = Y;
10880   SDLoc dl(X);
10881   EVT VT = X.getValueType();
10882   unsigned BitInX = AndC->getAPIntValue().logBase2();
10883 
10884   if (BitInX != 0) {
10885     // We must shift X first.
10886     X = DAG.getNode(ISD::SRL, dl, VT, X,
10887                     DAG.getConstant(BitInX, dl, VT));
10888   }
10889 
10890   for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
10891        BitInY < NumActiveBits; ++BitInY) {
10892     if (OrCI[BitInY] == 0)
10893       continue;
10894     APInt Mask(VT.getSizeInBits(), 0);
10895     Mask.setBit(BitInY);
10896     V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
10897                     // Confusingly, the operand is an *inverted* mask.
10898                     DAG.getConstant(~Mask, dl, VT));
10899   }
10900 
10901   return V;
10902 }
10903 
10904 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
10905 SDValue
PerformBRCONDCombine(SDNode * N,SelectionDAG & DAG) const10906 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
10907   SDValue Cmp = N->getOperand(4);
10908   if (Cmp.getOpcode() != ARMISD::CMPZ)
10909     // Only looking at NE cases.
10910     return SDValue();
10911 
10912   EVT VT = N->getValueType(0);
10913   SDLoc dl(N);
10914   SDValue LHS = Cmp.getOperand(0);
10915   SDValue RHS = Cmp.getOperand(1);
10916   SDValue Chain = N->getOperand(0);
10917   SDValue BB = N->getOperand(1);
10918   SDValue ARMcc = N->getOperand(2);
10919   ARMCC::CondCodes CC =
10920     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
10921 
10922   // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
10923   // -> (brcond Chain BB CC CPSR Cmp)
10924   if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
10925       LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
10926       LHS->getOperand(0)->hasOneUse()) {
10927     auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
10928     auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
10929     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
10930     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
10931     if ((LHS00C && LHS00C->getZExtValue() == 0) &&
10932         (LHS01C && LHS01C->getZExtValue() == 1) &&
10933         (LHS1C && LHS1C->getZExtValue() == 1) &&
10934         (RHSC && RHSC->getZExtValue() == 0)) {
10935       return DAG.getNode(
10936           ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
10937           LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
10938     }
10939   }
10940 
10941   return SDValue();
10942 }
10943 
10944 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
10945 SDValue
PerformCMOVCombine(SDNode * N,SelectionDAG & DAG) const10946 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
10947   SDValue Cmp = N->getOperand(4);
10948   if (Cmp.getOpcode() != ARMISD::CMPZ)
10949     // Only looking at EQ and NE cases.
10950     return SDValue();
10951 
10952   EVT VT = N->getValueType(0);
10953   SDLoc dl(N);
10954   SDValue LHS = Cmp.getOperand(0);
10955   SDValue RHS = Cmp.getOperand(1);
10956   SDValue FalseVal = N->getOperand(0);
10957   SDValue TrueVal = N->getOperand(1);
10958   SDValue ARMcc = N->getOperand(2);
10959   ARMCC::CondCodes CC =
10960     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
10961 
10962   // BFI is only available on V6T2+.
10963   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
10964     SDValue R = PerformCMOVToBFICombine(N, DAG);
10965     if (R)
10966       return R;
10967   }
10968 
10969   // Simplify
10970   //   mov     r1, r0
10971   //   cmp     r1, x
10972   //   mov     r0, y
10973   //   moveq   r0, x
10974   // to
10975   //   cmp     r0, x
10976   //   movne   r0, y
10977   //
10978   //   mov     r1, r0
10979   //   cmp     r1, x
10980   //   mov     r0, x
10981   //   movne   r0, y
10982   // to
10983   //   cmp     r0, x
10984   //   movne   r0, y
10985   /// FIXME: Turn this into a target neutral optimization?
10986   SDValue Res;
10987   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
10988     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
10989                       N->getOperand(3), Cmp);
10990   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
10991     SDValue ARMcc;
10992     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
10993     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
10994                       N->getOperand(3), NewCmp);
10995   }
10996 
10997   // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
10998   // -> (cmov F T CC CPSR Cmp)
10999   if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
11000     auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
11001     auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
11002     auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
11003     if ((LHS0C && LHS0C->getZExtValue() == 0) &&
11004         (LHS1C && LHS1C->getZExtValue() == 1) &&
11005         (RHSC && RHSC->getZExtValue() == 0)) {
11006       return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
11007                          LHS->getOperand(2), LHS->getOperand(3),
11008                          LHS->getOperand(4));
11009     }
11010   }
11011 
11012   if (Res.getNode()) {
11013     APInt KnownZero, KnownOne;
11014     DAG.computeKnownBits(SDValue(N,0), KnownZero, KnownOne);
11015     // Capture demanded bits information that would be otherwise lost.
11016     if (KnownZero == 0xfffffffe)
11017       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
11018                         DAG.getValueType(MVT::i1));
11019     else if (KnownZero == 0xffffff00)
11020       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
11021                         DAG.getValueType(MVT::i8));
11022     else if (KnownZero == 0xffff0000)
11023       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
11024                         DAG.getValueType(MVT::i16));
11025   }
11026 
11027   return Res;
11028 }
11029 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const11030 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
11031                                              DAGCombinerInfo &DCI) const {
11032   switch (N->getOpcode()) {
11033   default: break;
11034   case ISD::ADDC:       return PerformADDCCombine(N, DCI, Subtarget);
11035   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
11036   case ISD::SUB:        return PerformSUBCombine(N, DCI);
11037   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
11038   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
11039   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
11040   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
11041   case ARMISD::BFI:     return PerformBFICombine(N, DCI);
11042   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
11043   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
11044   case ISD::STORE:      return PerformSTORECombine(N, DCI);
11045   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
11046   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
11047   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
11048   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
11049   case ISD::FP_TO_SINT:
11050   case ISD::FP_TO_UINT:
11051     return PerformVCVTCombine(N, DCI.DAG, Subtarget);
11052   case ISD::FDIV:
11053     return PerformVDIVCombine(N, DCI.DAG, Subtarget);
11054   case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
11055   case ISD::SHL:
11056   case ISD::SRA:
11057   case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
11058   case ISD::SIGN_EXTEND:
11059   case ISD::ZERO_EXTEND:
11060   case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
11061   case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
11062   case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
11063   case ISD::LOAD:       return PerformLOADCombine(N, DCI);
11064   case ARMISD::VLD2DUP:
11065   case ARMISD::VLD3DUP:
11066   case ARMISD::VLD4DUP:
11067     return PerformVLDCombine(N, DCI);
11068   case ARMISD::BUILD_VECTOR:
11069     return PerformARMBUILD_VECTORCombine(N, DCI);
11070   case ISD::INTRINSIC_VOID:
11071   case ISD::INTRINSIC_W_CHAIN:
11072     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
11073     case Intrinsic::arm_neon_vld1:
11074     case Intrinsic::arm_neon_vld2:
11075     case Intrinsic::arm_neon_vld3:
11076     case Intrinsic::arm_neon_vld4:
11077     case Intrinsic::arm_neon_vld2lane:
11078     case Intrinsic::arm_neon_vld3lane:
11079     case Intrinsic::arm_neon_vld4lane:
11080     case Intrinsic::arm_neon_vst1:
11081     case Intrinsic::arm_neon_vst2:
11082     case Intrinsic::arm_neon_vst3:
11083     case Intrinsic::arm_neon_vst4:
11084     case Intrinsic::arm_neon_vst2lane:
11085     case Intrinsic::arm_neon_vst3lane:
11086     case Intrinsic::arm_neon_vst4lane:
11087       return PerformVLDCombine(N, DCI);
11088     default: break;
11089     }
11090     break;
11091   }
11092   return SDValue();
11093 }
11094 
isDesirableToTransformToIntegerOp(unsigned Opc,EVT VT) const11095 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
11096                                                           EVT VT) const {
11097   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
11098 }
11099 
allowsMisalignedMemoryAccesses(EVT VT,unsigned,unsigned,bool * Fast) const11100 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
11101                                                        unsigned,
11102                                                        unsigned,
11103                                                        bool *Fast) const {
11104   // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
11105   bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
11106 
11107   switch (VT.getSimpleVT().SimpleTy) {
11108   default:
11109     return false;
11110   case MVT::i8:
11111   case MVT::i16:
11112   case MVT::i32: {
11113     // Unaligned access can use (for example) LRDB, LRDH, LDR
11114     if (AllowsUnaligned) {
11115       if (Fast)
11116         *Fast = Subtarget->hasV7Ops();
11117       return true;
11118     }
11119     return false;
11120   }
11121   case MVT::f64:
11122   case MVT::v2f64: {
11123     // For any little-endian targets with neon, we can support unaligned ld/st
11124     // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
11125     // A big-endian target may also explicitly support unaligned accesses
11126     if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
11127       if (Fast)
11128         *Fast = true;
11129       return true;
11130     }
11131     return false;
11132   }
11133   }
11134 }
11135 
memOpAlign(unsigned DstAlign,unsigned SrcAlign,unsigned AlignCheck)11136 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
11137                        unsigned AlignCheck) {
11138   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
11139           (DstAlign == 0 || DstAlign % AlignCheck == 0));
11140 }
11141 
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsMemset,bool ZeroMemset,bool MemcpyStrSrc,MachineFunction & MF) const11142 EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
11143                                            unsigned DstAlign, unsigned SrcAlign,
11144                                            bool IsMemset, bool ZeroMemset,
11145                                            bool MemcpyStrSrc,
11146                                            MachineFunction &MF) const {
11147   const Function *F = MF.getFunction();
11148 
11149   // See if we can use NEON instructions for this...
11150   if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
11151       !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
11152     bool Fast;
11153     if (Size >= 16 &&
11154         (memOpAlign(SrcAlign, DstAlign, 16) ||
11155          (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, &Fast) && Fast))) {
11156       return MVT::v2f64;
11157     } else if (Size >= 8 &&
11158                (memOpAlign(SrcAlign, DstAlign, 8) ||
11159                 (allowsMisalignedMemoryAccesses(MVT::f64, 0, 1, &Fast) &&
11160                  Fast))) {
11161       return MVT::f64;
11162     }
11163   }
11164 
11165   // Lowering to i32/i16 if the size permits.
11166   if (Size >= 4)
11167     return MVT::i32;
11168   else if (Size >= 2)
11169     return MVT::i16;
11170 
11171   // Let the target-independent logic figure it out.
11172   return MVT::Other;
11173 }
11174 
isZExtFree(SDValue Val,EVT VT2) const11175 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
11176   if (Val.getOpcode() != ISD::LOAD)
11177     return false;
11178 
11179   EVT VT1 = Val.getValueType();
11180   if (!VT1.isSimple() || !VT1.isInteger() ||
11181       !VT2.isSimple() || !VT2.isInteger())
11182     return false;
11183 
11184   switch (VT1.getSimpleVT().SimpleTy) {
11185   default: break;
11186   case MVT::i1:
11187   case MVT::i8:
11188   case MVT::i16:
11189     // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
11190     return true;
11191   }
11192 
11193   return false;
11194 }
11195 
isVectorLoadExtDesirable(SDValue ExtVal) const11196 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
11197   EVT VT = ExtVal.getValueType();
11198 
11199   if (!isTypeLegal(VT))
11200     return false;
11201 
11202   // Don't create a loadext if we can fold the extension into a wide/long
11203   // instruction.
11204   // If there's more than one user instruction, the loadext is desirable no
11205   // matter what.  There can be two uses by the same instruction.
11206   if (ExtVal->use_empty() ||
11207       !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
11208     return true;
11209 
11210   SDNode *U = *ExtVal->use_begin();
11211   if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
11212        U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHL))
11213     return false;
11214 
11215   return true;
11216 }
11217 
allowTruncateForTailCall(Type * Ty1,Type * Ty2) const11218 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
11219   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
11220     return false;
11221 
11222   if (!isTypeLegal(EVT::getEVT(Ty1)))
11223     return false;
11224 
11225   assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
11226 
11227   // Assuming the caller doesn't have a zeroext or signext return parameter,
11228   // truncation all the way down to i1 is valid.
11229   return true;
11230 }
11231 
11232 
isLegalT1AddressImmediate(int64_t V,EVT VT)11233 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
11234   if (V < 0)
11235     return false;
11236 
11237   unsigned Scale = 1;
11238   switch (VT.getSimpleVT().SimpleTy) {
11239   default: return false;
11240   case MVT::i1:
11241   case MVT::i8:
11242     // Scale == 1;
11243     break;
11244   case MVT::i16:
11245     // Scale == 2;
11246     Scale = 2;
11247     break;
11248   case MVT::i32:
11249     // Scale == 4;
11250     Scale = 4;
11251     break;
11252   }
11253 
11254   if ((V & (Scale - 1)) != 0)
11255     return false;
11256   V /= Scale;
11257   return V == (V & ((1LL << 5) - 1));
11258 }
11259 
isLegalT2AddressImmediate(int64_t V,EVT VT,const ARMSubtarget * Subtarget)11260 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
11261                                       const ARMSubtarget *Subtarget) {
11262   bool isNeg = false;
11263   if (V < 0) {
11264     isNeg = true;
11265     V = - V;
11266   }
11267 
11268   switch (VT.getSimpleVT().SimpleTy) {
11269   default: return false;
11270   case MVT::i1:
11271   case MVT::i8:
11272   case MVT::i16:
11273   case MVT::i32:
11274     // + imm12 or - imm8
11275     if (isNeg)
11276       return V == (V & ((1LL << 8) - 1));
11277     return V == (V & ((1LL << 12) - 1));
11278   case MVT::f32:
11279   case MVT::f64:
11280     // Same as ARM mode. FIXME: NEON?
11281     if (!Subtarget->hasVFP2())
11282       return false;
11283     if ((V & 3) != 0)
11284       return false;
11285     V >>= 2;
11286     return V == (V & ((1LL << 8) - 1));
11287   }
11288 }
11289 
11290 /// isLegalAddressImmediate - Return true if the integer value can be used
11291 /// as the offset of the target addressing mode for load / store of the
11292 /// given type.
isLegalAddressImmediate(int64_t V,EVT VT,const ARMSubtarget * Subtarget)11293 static bool isLegalAddressImmediate(int64_t V, EVT VT,
11294                                     const ARMSubtarget *Subtarget) {
11295   if (V == 0)
11296     return true;
11297 
11298   if (!VT.isSimple())
11299     return false;
11300 
11301   if (Subtarget->isThumb1Only())
11302     return isLegalT1AddressImmediate(V, VT);
11303   else if (Subtarget->isThumb2())
11304     return isLegalT2AddressImmediate(V, VT, Subtarget);
11305 
11306   // ARM mode.
11307   if (V < 0)
11308     V = - V;
11309   switch (VT.getSimpleVT().SimpleTy) {
11310   default: return false;
11311   case MVT::i1:
11312   case MVT::i8:
11313   case MVT::i32:
11314     // +- imm12
11315     return V == (V & ((1LL << 12) - 1));
11316   case MVT::i16:
11317     // +- imm8
11318     return V == (V & ((1LL << 8) - 1));
11319   case MVT::f32:
11320   case MVT::f64:
11321     if (!Subtarget->hasVFP2()) // FIXME: NEON?
11322       return false;
11323     if ((V & 3) != 0)
11324       return false;
11325     V >>= 2;
11326     return V == (V & ((1LL << 8) - 1));
11327   }
11328 }
11329 
isLegalT2ScaledAddressingMode(const AddrMode & AM,EVT VT) const11330 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
11331                                                       EVT VT) const {
11332   int Scale = AM.Scale;
11333   if (Scale < 0)
11334     return false;
11335 
11336   switch (VT.getSimpleVT().SimpleTy) {
11337   default: return false;
11338   case MVT::i1:
11339   case MVT::i8:
11340   case MVT::i16:
11341   case MVT::i32:
11342     if (Scale == 1)
11343       return true;
11344     // r + r << imm
11345     Scale = Scale & ~1;
11346     return Scale == 2 || Scale == 4 || Scale == 8;
11347   case MVT::i64:
11348     // r + r
11349     if (((unsigned)AM.HasBaseReg + Scale) <= 2)
11350       return true;
11351     return false;
11352   case MVT::isVoid:
11353     // Note, we allow "void" uses (basically, uses that aren't loads or
11354     // stores), because arm allows folding a scale into many arithmetic
11355     // operations.  This should be made more precise and revisited later.
11356 
11357     // Allow r << imm, but the imm has to be a multiple of two.
11358     if (Scale & 1) return false;
11359     return isPowerOf2_32(Scale);
11360   }
11361 }
11362 
11363 /// isLegalAddressingMode - Return true if the addressing mode represented
11364 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const11365 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
11366                                               const AddrMode &AM, Type *Ty,
11367                                               unsigned AS) const {
11368   EVT VT = getValueType(DL, Ty, true);
11369   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
11370     return false;
11371 
11372   // Can never fold addr of global into load/store.
11373   if (AM.BaseGV)
11374     return false;
11375 
11376   switch (AM.Scale) {
11377   case 0:  // no scale reg, must be "r+i" or "r", or "i".
11378     break;
11379   case 1:
11380     if (Subtarget->isThumb1Only())
11381       return false;
11382     // FALL THROUGH.
11383   default:
11384     // ARM doesn't support any R+R*scale+imm addr modes.
11385     if (AM.BaseOffs)
11386       return false;
11387 
11388     if (!VT.isSimple())
11389       return false;
11390 
11391     if (Subtarget->isThumb2())
11392       return isLegalT2ScaledAddressingMode(AM, VT);
11393 
11394     int Scale = AM.Scale;
11395     switch (VT.getSimpleVT().SimpleTy) {
11396     default: return false;
11397     case MVT::i1:
11398     case MVT::i8:
11399     case MVT::i32:
11400       if (Scale < 0) Scale = -Scale;
11401       if (Scale == 1)
11402         return true;
11403       // r + r << imm
11404       return isPowerOf2_32(Scale & ~1);
11405     case MVT::i16:
11406     case MVT::i64:
11407       // r + r
11408       if (((unsigned)AM.HasBaseReg + Scale) <= 2)
11409         return true;
11410       return false;
11411 
11412     case MVT::isVoid:
11413       // Note, we allow "void" uses (basically, uses that aren't loads or
11414       // stores), because arm allows folding a scale into many arithmetic
11415       // operations.  This should be made more precise and revisited later.
11416 
11417       // Allow r << imm, but the imm has to be a multiple of two.
11418       if (Scale & 1) return false;
11419       return isPowerOf2_32(Scale);
11420     }
11421   }
11422   return true;
11423 }
11424 
11425 /// isLegalICmpImmediate - Return true if the specified immediate is legal
11426 /// icmp immediate, that is the target has icmp instructions which can compare
11427 /// a register against the immediate without having to materialize the
11428 /// immediate into a register.
isLegalICmpImmediate(int64_t Imm) const11429 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
11430   // Thumb2 and ARM modes can use cmn for negative immediates.
11431   if (!Subtarget->isThumb())
11432     return ARM_AM::getSOImmVal(std::abs(Imm)) != -1;
11433   if (Subtarget->isThumb2())
11434     return ARM_AM::getT2SOImmVal(std::abs(Imm)) != -1;
11435   // Thumb1 doesn't have cmn, and only 8-bit immediates.
11436   return Imm >= 0 && Imm <= 255;
11437 }
11438 
11439 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
11440 /// *or sub* immediate, that is the target has add or sub instructions which can
11441 /// add a register with the immediate without having to materialize the
11442 /// immediate into a register.
isLegalAddImmediate(int64_t Imm) const11443 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
11444   // Same encoding for add/sub, just flip the sign.
11445   int64_t AbsImm = std::abs(Imm);
11446   if (!Subtarget->isThumb())
11447     return ARM_AM::getSOImmVal(AbsImm) != -1;
11448   if (Subtarget->isThumb2())
11449     return ARM_AM::getT2SOImmVal(AbsImm) != -1;
11450   // Thumb1 only has 8-bit unsigned immediate.
11451   return AbsImm >= 0 && AbsImm <= 255;
11452 }
11453 
getARMIndexedAddressParts(SDNode * Ptr,EVT VT,bool isSEXTLoad,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)11454 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
11455                                       bool isSEXTLoad, SDValue &Base,
11456                                       SDValue &Offset, bool &isInc,
11457                                       SelectionDAG &DAG) {
11458   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
11459     return false;
11460 
11461   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
11462     // AddressingMode 3
11463     Base = Ptr->getOperand(0);
11464     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
11465       int RHSC = (int)RHS->getZExtValue();
11466       if (RHSC < 0 && RHSC > -256) {
11467         assert(Ptr->getOpcode() == ISD::ADD);
11468         isInc = false;
11469         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
11470         return true;
11471       }
11472     }
11473     isInc = (Ptr->getOpcode() == ISD::ADD);
11474     Offset = Ptr->getOperand(1);
11475     return true;
11476   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
11477     // AddressingMode 2
11478     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
11479       int RHSC = (int)RHS->getZExtValue();
11480       if (RHSC < 0 && RHSC > -0x1000) {
11481         assert(Ptr->getOpcode() == ISD::ADD);
11482         isInc = false;
11483         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
11484         Base = Ptr->getOperand(0);
11485         return true;
11486       }
11487     }
11488 
11489     if (Ptr->getOpcode() == ISD::ADD) {
11490       isInc = true;
11491       ARM_AM::ShiftOpc ShOpcVal=
11492         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
11493       if (ShOpcVal != ARM_AM::no_shift) {
11494         Base = Ptr->getOperand(1);
11495         Offset = Ptr->getOperand(0);
11496       } else {
11497         Base = Ptr->getOperand(0);
11498         Offset = Ptr->getOperand(1);
11499       }
11500       return true;
11501     }
11502 
11503     isInc = (Ptr->getOpcode() == ISD::ADD);
11504     Base = Ptr->getOperand(0);
11505     Offset = Ptr->getOperand(1);
11506     return true;
11507   }
11508 
11509   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
11510   return false;
11511 }
11512 
getT2IndexedAddressParts(SDNode * Ptr,EVT VT,bool isSEXTLoad,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)11513 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
11514                                      bool isSEXTLoad, SDValue &Base,
11515                                      SDValue &Offset, bool &isInc,
11516                                      SelectionDAG &DAG) {
11517   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
11518     return false;
11519 
11520   Base = Ptr->getOperand(0);
11521   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
11522     int RHSC = (int)RHS->getZExtValue();
11523     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
11524       assert(Ptr->getOpcode() == ISD::ADD);
11525       isInc = false;
11526       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
11527       return true;
11528     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
11529       isInc = Ptr->getOpcode() == ISD::ADD;
11530       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
11531       return true;
11532     }
11533   }
11534 
11535   return false;
11536 }
11537 
11538 /// getPreIndexedAddressParts - returns true by value, base pointer and
11539 /// offset pointer and addressing mode by reference if the node's address
11540 /// can be legally represented as pre-indexed load / store address.
11541 bool
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const11542 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
11543                                              SDValue &Offset,
11544                                              ISD::MemIndexedMode &AM,
11545                                              SelectionDAG &DAG) const {
11546   if (Subtarget->isThumb1Only())
11547     return false;
11548 
11549   EVT VT;
11550   SDValue Ptr;
11551   bool isSEXTLoad = false;
11552   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
11553     Ptr = LD->getBasePtr();
11554     VT  = LD->getMemoryVT();
11555     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
11556   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
11557     Ptr = ST->getBasePtr();
11558     VT  = ST->getMemoryVT();
11559   } else
11560     return false;
11561 
11562   bool isInc;
11563   bool isLegal = false;
11564   if (Subtarget->isThumb2())
11565     isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
11566                                        Offset, isInc, DAG);
11567   else
11568     isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
11569                                         Offset, isInc, DAG);
11570   if (!isLegal)
11571     return false;
11572 
11573   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
11574   return true;
11575 }
11576 
11577 /// getPostIndexedAddressParts - returns true by value, base pointer and
11578 /// offset pointer and addressing mode by reference if this node can be
11579 /// combined with a load / store to form a post-indexed load / store.
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const11580 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
11581                                                    SDValue &Base,
11582                                                    SDValue &Offset,
11583                                                    ISD::MemIndexedMode &AM,
11584                                                    SelectionDAG &DAG) const {
11585   if (Subtarget->isThumb1Only())
11586     return false;
11587 
11588   EVT VT;
11589   SDValue Ptr;
11590   bool isSEXTLoad = false;
11591   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
11592     VT  = LD->getMemoryVT();
11593     Ptr = LD->getBasePtr();
11594     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
11595   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
11596     VT  = ST->getMemoryVT();
11597     Ptr = ST->getBasePtr();
11598   } else
11599     return false;
11600 
11601   bool isInc;
11602   bool isLegal = false;
11603   if (Subtarget->isThumb2())
11604     isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
11605                                        isInc, DAG);
11606   else
11607     isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
11608                                         isInc, DAG);
11609   if (!isLegal)
11610     return false;
11611 
11612   if (Ptr != Base) {
11613     // Swap base ptr and offset to catch more post-index load / store when
11614     // it's legal. In Thumb2 mode, offset must be an immediate.
11615     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
11616         !Subtarget->isThumb2())
11617       std::swap(Base, Offset);
11618 
11619     // Post-indexed load / store update the base pointer.
11620     if (Ptr != Base)
11621       return false;
11622   }
11623 
11624   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
11625   return true;
11626 }
11627 
computeKnownBitsForTargetNode(const SDValue Op,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const11628 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
11629                                                       APInt &KnownZero,
11630                                                       APInt &KnownOne,
11631                                                       const SelectionDAG &DAG,
11632                                                       unsigned Depth) const {
11633   unsigned BitWidth = KnownOne.getBitWidth();
11634   KnownZero = KnownOne = APInt(BitWidth, 0);
11635   switch (Op.getOpcode()) {
11636   default: break;
11637   case ARMISD::ADDC:
11638   case ARMISD::ADDE:
11639   case ARMISD::SUBC:
11640   case ARMISD::SUBE:
11641     // These nodes' second result is a boolean
11642     if (Op.getResNo() == 0)
11643       break;
11644     KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
11645     break;
11646   case ARMISD::CMOV: {
11647     // Bits are known zero/one if known on the LHS and RHS.
11648     DAG.computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
11649     if (KnownZero == 0 && KnownOne == 0) return;
11650 
11651     APInt KnownZeroRHS, KnownOneRHS;
11652     DAG.computeKnownBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
11653     KnownZero &= KnownZeroRHS;
11654     KnownOne  &= KnownOneRHS;
11655     return;
11656   }
11657   case ISD::INTRINSIC_W_CHAIN: {
11658     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
11659     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
11660     switch (IntID) {
11661     default: return;
11662     case Intrinsic::arm_ldaex:
11663     case Intrinsic::arm_ldrex: {
11664       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
11665       unsigned MemBits = VT.getScalarType().getSizeInBits();
11666       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
11667       return;
11668     }
11669     }
11670   }
11671   }
11672 }
11673 
11674 //===----------------------------------------------------------------------===//
11675 //                           ARM Inline Assembly Support
11676 //===----------------------------------------------------------------------===//
11677 
ExpandInlineAsm(CallInst * CI) const11678 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
11679   // Looking for "rev" which is V6+.
11680   if (!Subtarget->hasV6Ops())
11681     return false;
11682 
11683   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
11684   std::string AsmStr = IA->getAsmString();
11685   SmallVector<StringRef, 4> AsmPieces;
11686   SplitString(AsmStr, AsmPieces, ";\n");
11687 
11688   switch (AsmPieces.size()) {
11689   default: return false;
11690   case 1:
11691     AsmStr = AsmPieces[0];
11692     AsmPieces.clear();
11693     SplitString(AsmStr, AsmPieces, " \t,");
11694 
11695     // rev $0, $1
11696     if (AsmPieces.size() == 3 &&
11697         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
11698         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
11699       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
11700       if (Ty && Ty->getBitWidth() == 32)
11701         return IntrinsicLowering::LowerToByteSwap(CI);
11702     }
11703     break;
11704   }
11705 
11706   return false;
11707 }
11708 
LowerXConstraint(EVT ConstraintVT) const11709 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
11710   // At this point, we have to lower this constraint to something else, so we
11711   // lower it to an "r" or "w". However, by doing this we will force the result
11712   // to be in register, while the X constraint is much more permissive.
11713   //
11714   // Although we are correct (we are free to emit anything, without
11715   // constraints), we might break use cases that would expect us to be more
11716   // efficient and emit something else.
11717   if (!Subtarget->hasVFP2())
11718     return "r";
11719   if (ConstraintVT.isFloatingPoint())
11720     return "w";
11721   if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
11722      (ConstraintVT.getSizeInBits() == 64 ||
11723       ConstraintVT.getSizeInBits() == 128))
11724     return "w";
11725 
11726   return "r";
11727 }
11728 
11729 /// getConstraintType - Given a constraint letter, return the type of
11730 /// constraint it is for this target.
11731 ARMTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const11732 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
11733   if (Constraint.size() == 1) {
11734     switch (Constraint[0]) {
11735     default:  break;
11736     case 'l': return C_RegisterClass;
11737     case 'w': return C_RegisterClass;
11738     case 'h': return C_RegisterClass;
11739     case 'x': return C_RegisterClass;
11740     case 't': return C_RegisterClass;
11741     case 'j': return C_Other; // Constant for movw.
11742       // An address with a single base register. Due to the way we
11743       // currently handle addresses it is the same as an 'r' memory constraint.
11744     case 'Q': return C_Memory;
11745     }
11746   } else if (Constraint.size() == 2) {
11747     switch (Constraint[0]) {
11748     default: break;
11749     // All 'U+' constraints are addresses.
11750     case 'U': return C_Memory;
11751     }
11752   }
11753   return TargetLowering::getConstraintType(Constraint);
11754 }
11755 
11756 /// Examine constraint type and operand type and determine a weight value.
11757 /// This object must already have been set up with the operand type
11758 /// and the current alternative constraint selected.
11759 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const11760 ARMTargetLowering::getSingleConstraintMatchWeight(
11761     AsmOperandInfo &info, const char *constraint) const {
11762   ConstraintWeight weight = CW_Invalid;
11763   Value *CallOperandVal = info.CallOperandVal;
11764     // If we don't have a value, we can't do a match,
11765     // but allow it at the lowest weight.
11766   if (!CallOperandVal)
11767     return CW_Default;
11768   Type *type = CallOperandVal->getType();
11769   // Look at the constraint type.
11770   switch (*constraint) {
11771   default:
11772     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
11773     break;
11774   case 'l':
11775     if (type->isIntegerTy()) {
11776       if (Subtarget->isThumb())
11777         weight = CW_SpecificReg;
11778       else
11779         weight = CW_Register;
11780     }
11781     break;
11782   case 'w':
11783     if (type->isFloatingPointTy())
11784       weight = CW_Register;
11785     break;
11786   }
11787   return weight;
11788 }
11789 
11790 typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const11791 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
11792     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
11793   if (Constraint.size() == 1) {
11794     // GCC ARM Constraint Letters
11795     switch (Constraint[0]) {
11796     case 'l': // Low regs or general regs.
11797       if (Subtarget->isThumb())
11798         return RCPair(0U, &ARM::tGPRRegClass);
11799       return RCPair(0U, &ARM::GPRRegClass);
11800     case 'h': // High regs or no regs.
11801       if (Subtarget->isThumb())
11802         return RCPair(0U, &ARM::hGPRRegClass);
11803       break;
11804     case 'r':
11805       if (Subtarget->isThumb1Only())
11806         return RCPair(0U, &ARM::tGPRRegClass);
11807       return RCPair(0U, &ARM::GPRRegClass);
11808     case 'w':
11809       if (VT == MVT::Other)
11810         break;
11811       if (VT == MVT::f32)
11812         return RCPair(0U, &ARM::SPRRegClass);
11813       if (VT.getSizeInBits() == 64)
11814         return RCPair(0U, &ARM::DPRRegClass);
11815       if (VT.getSizeInBits() == 128)
11816         return RCPair(0U, &ARM::QPRRegClass);
11817       break;
11818     case 'x':
11819       if (VT == MVT::Other)
11820         break;
11821       if (VT == MVT::f32)
11822         return RCPair(0U, &ARM::SPR_8RegClass);
11823       if (VT.getSizeInBits() == 64)
11824         return RCPair(0U, &ARM::DPR_8RegClass);
11825       if (VT.getSizeInBits() == 128)
11826         return RCPair(0U, &ARM::QPR_8RegClass);
11827       break;
11828     case 't':
11829       if (VT == MVT::f32)
11830         return RCPair(0U, &ARM::SPRRegClass);
11831       break;
11832     }
11833   }
11834   if (StringRef("{cc}").equals_lower(Constraint))
11835     return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
11836 
11837   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
11838 }
11839 
11840 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
11841 /// vector.  If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const11842 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
11843                                                      std::string &Constraint,
11844                                                      std::vector<SDValue>&Ops,
11845                                                      SelectionDAG &DAG) const {
11846   SDValue Result;
11847 
11848   // Currently only support length 1 constraints.
11849   if (Constraint.length() != 1) return;
11850 
11851   char ConstraintLetter = Constraint[0];
11852   switch (ConstraintLetter) {
11853   default: break;
11854   case 'j':
11855   case 'I': case 'J': case 'K': case 'L':
11856   case 'M': case 'N': case 'O':
11857     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
11858     if (!C)
11859       return;
11860 
11861     int64_t CVal64 = C->getSExtValue();
11862     int CVal = (int) CVal64;
11863     // None of these constraints allow values larger than 32 bits.  Check
11864     // that the value fits in an int.
11865     if (CVal != CVal64)
11866       return;
11867 
11868     switch (ConstraintLetter) {
11869       case 'j':
11870         // Constant suitable for movw, must be between 0 and
11871         // 65535.
11872         if (Subtarget->hasV6T2Ops())
11873           if (CVal >= 0 && CVal <= 65535)
11874             break;
11875         return;
11876       case 'I':
11877         if (Subtarget->isThumb1Only()) {
11878           // This must be a constant between 0 and 255, for ADD
11879           // immediates.
11880           if (CVal >= 0 && CVal <= 255)
11881             break;
11882         } else if (Subtarget->isThumb2()) {
11883           // A constant that can be used as an immediate value in a
11884           // data-processing instruction.
11885           if (ARM_AM::getT2SOImmVal(CVal) != -1)
11886             break;
11887         } else {
11888           // A constant that can be used as an immediate value in a
11889           // data-processing instruction.
11890           if (ARM_AM::getSOImmVal(CVal) != -1)
11891             break;
11892         }
11893         return;
11894 
11895       case 'J':
11896         if (Subtarget->isThumb1Only()) {
11897           // This must be a constant between -255 and -1, for negated ADD
11898           // immediates. This can be used in GCC with an "n" modifier that
11899           // prints the negated value, for use with SUB instructions. It is
11900           // not useful otherwise but is implemented for compatibility.
11901           if (CVal >= -255 && CVal <= -1)
11902             break;
11903         } else {
11904           // This must be a constant between -4095 and 4095. It is not clear
11905           // what this constraint is intended for. Implemented for
11906           // compatibility with GCC.
11907           if (CVal >= -4095 && CVal <= 4095)
11908             break;
11909         }
11910         return;
11911 
11912       case 'K':
11913         if (Subtarget->isThumb1Only()) {
11914           // A 32-bit value where only one byte has a nonzero value. Exclude
11915           // zero to match GCC. This constraint is used by GCC internally for
11916           // constants that can be loaded with a move/shift combination.
11917           // It is not useful otherwise but is implemented for compatibility.
11918           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
11919             break;
11920         } else if (Subtarget->isThumb2()) {
11921           // A constant whose bitwise inverse can be used as an immediate
11922           // value in a data-processing instruction. This can be used in GCC
11923           // with a "B" modifier that prints the inverted value, for use with
11924           // BIC and MVN instructions. It is not useful otherwise but is
11925           // implemented for compatibility.
11926           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
11927             break;
11928         } else {
11929           // A constant whose bitwise inverse can be used as an immediate
11930           // value in a data-processing instruction. This can be used in GCC
11931           // with a "B" modifier that prints the inverted value, for use with
11932           // BIC and MVN instructions. It is not useful otherwise but is
11933           // implemented for compatibility.
11934           if (ARM_AM::getSOImmVal(~CVal) != -1)
11935             break;
11936         }
11937         return;
11938 
11939       case 'L':
11940         if (Subtarget->isThumb1Only()) {
11941           // This must be a constant between -7 and 7,
11942           // for 3-operand ADD/SUB immediate instructions.
11943           if (CVal >= -7 && CVal < 7)
11944             break;
11945         } else if (Subtarget->isThumb2()) {
11946           // A constant whose negation can be used as an immediate value in a
11947           // data-processing instruction. This can be used in GCC with an "n"
11948           // modifier that prints the negated value, for use with SUB
11949           // instructions. It is not useful otherwise but is implemented for
11950           // compatibility.
11951           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
11952             break;
11953         } else {
11954           // A constant whose negation can be used as an immediate value in a
11955           // data-processing instruction. This can be used in GCC with an "n"
11956           // modifier that prints the negated value, for use with SUB
11957           // instructions. It is not useful otherwise but is implemented for
11958           // compatibility.
11959           if (ARM_AM::getSOImmVal(-CVal) != -1)
11960             break;
11961         }
11962         return;
11963 
11964       case 'M':
11965         if (Subtarget->isThumb1Only()) {
11966           // This must be a multiple of 4 between 0 and 1020, for
11967           // ADD sp + immediate.
11968           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
11969             break;
11970         } else {
11971           // A power of two or a constant between 0 and 32.  This is used in
11972           // GCC for the shift amount on shifted register operands, but it is
11973           // useful in general for any shift amounts.
11974           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
11975             break;
11976         }
11977         return;
11978 
11979       case 'N':
11980         if (Subtarget->isThumb()) {  // FIXME thumb2
11981           // This must be a constant between 0 and 31, for shift amounts.
11982           if (CVal >= 0 && CVal <= 31)
11983             break;
11984         }
11985         return;
11986 
11987       case 'O':
11988         if (Subtarget->isThumb()) {  // FIXME thumb2
11989           // This must be a multiple of 4 between -508 and 508, for
11990           // ADD/SUB sp = sp + immediate.
11991           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
11992             break;
11993         }
11994         return;
11995     }
11996     Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
11997     break;
11998   }
11999 
12000   if (Result.getNode()) {
12001     Ops.push_back(Result);
12002     return;
12003   }
12004   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
12005 }
12006 
getDivRemLibcall(const SDNode * N,MVT::SimpleValueType SVT)12007 static RTLIB::Libcall getDivRemLibcall(
12008     const SDNode *N, MVT::SimpleValueType SVT) {
12009   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
12010           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
12011          "Unhandled Opcode in getDivRemLibcall");
12012   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
12013                   N->getOpcode() == ISD::SREM;
12014   RTLIB::Libcall LC;
12015   switch (SVT) {
12016   default: llvm_unreachable("Unexpected request for libcall!");
12017   case MVT::i8:  LC = isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
12018   case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
12019   case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
12020   case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
12021   }
12022   return LC;
12023 }
12024 
getDivRemArgList(const SDNode * N,LLVMContext * Context)12025 static TargetLowering::ArgListTy getDivRemArgList(
12026     const SDNode *N, LLVMContext *Context) {
12027   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
12028           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
12029          "Unhandled Opcode in getDivRemArgList");
12030   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
12031                   N->getOpcode() == ISD::SREM;
12032   TargetLowering::ArgListTy Args;
12033   TargetLowering::ArgListEntry Entry;
12034   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
12035     EVT ArgVT = N->getOperand(i).getValueType();
12036     Type *ArgTy = ArgVT.getTypeForEVT(*Context);
12037     Entry.Node = N->getOperand(i);
12038     Entry.Ty = ArgTy;
12039     Entry.isSExt = isSigned;
12040     Entry.isZExt = !isSigned;
12041     Args.push_back(Entry);
12042   }
12043   return Args;
12044 }
12045 
LowerDivRem(SDValue Op,SelectionDAG & DAG) const12046 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
12047   assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
12048           Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI()) &&
12049          "Register-based DivRem lowering only");
12050   unsigned Opcode = Op->getOpcode();
12051   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
12052          "Invalid opcode for Div/Rem lowering");
12053   bool isSigned = (Opcode == ISD::SDIVREM);
12054   EVT VT = Op->getValueType(0);
12055   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
12056 
12057   RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
12058                                        VT.getSimpleVT().SimpleTy);
12059   SDValue InChain = DAG.getEntryNode();
12060 
12061   TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
12062                                                     DAG.getContext());
12063 
12064   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
12065                                          getPointerTy(DAG.getDataLayout()));
12066 
12067   Type *RetTy = (Type*)StructType::get(Ty, Ty, nullptr);
12068 
12069   SDLoc dl(Op);
12070   TargetLowering::CallLoweringInfo CLI(DAG);
12071   CLI.setDebugLoc(dl).setChain(InChain)
12072     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
12073     .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
12074 
12075   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
12076   return CallInfo.first;
12077 }
12078 
12079 // Lowers REM using divmod helpers
12080 // see RTABI section 4.2/4.3
LowerREM(SDNode * N,SelectionDAG & DAG) const12081 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
12082   // Build return types (div and rem)
12083   std::vector<Type*> RetTyParams;
12084   Type *RetTyElement;
12085 
12086   switch (N->getValueType(0).getSimpleVT().SimpleTy) {
12087   default: llvm_unreachable("Unexpected request for libcall!");
12088   case MVT::i8:   RetTyElement = Type::getInt8Ty(*DAG.getContext());  break;
12089   case MVT::i16:  RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
12090   case MVT::i32:  RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
12091   case MVT::i64:  RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
12092   }
12093 
12094   RetTyParams.push_back(RetTyElement);
12095   RetTyParams.push_back(RetTyElement);
12096   ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
12097   Type *RetTy = StructType::get(*DAG.getContext(), ret);
12098 
12099   RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
12100                                                              SimpleTy);
12101   SDValue InChain = DAG.getEntryNode();
12102   TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext());
12103   bool isSigned = N->getOpcode() == ISD::SREM;
12104   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
12105                                          getPointerTy(DAG.getDataLayout()));
12106 
12107   // Lower call
12108   CallLoweringInfo CLI(DAG);
12109   CLI.setChain(InChain)
12110      .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
12111      .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
12112   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
12113 
12114   // Return second (rem) result operand (first contains div)
12115   SDNode *ResNode = CallResult.first.getNode();
12116   assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
12117   return ResNode->getOperand(1);
12118 }
12119 
12120 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const12121 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
12122   assert(Subtarget->isTargetWindows() && "unsupported target platform");
12123   SDLoc DL(Op);
12124 
12125   // Get the inputs.
12126   SDValue Chain = Op.getOperand(0);
12127   SDValue Size  = Op.getOperand(1);
12128 
12129   SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
12130                               DAG.getConstant(2, DL, MVT::i32));
12131 
12132   SDValue Flag;
12133   Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
12134   Flag = Chain.getValue(1);
12135 
12136   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
12137   Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
12138 
12139   SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
12140   Chain = NewSP.getValue(1);
12141 
12142   SDValue Ops[2] = { NewSP, Chain };
12143   return DAG.getMergeValues(Ops, DL);
12144 }
12145 
LowerFP_EXTEND(SDValue Op,SelectionDAG & DAG) const12146 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
12147   assert(Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() &&
12148          "Unexpected type for custom-lowering FP_EXTEND");
12149 
12150   RTLIB::Libcall LC;
12151   LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
12152 
12153   SDValue SrcVal = Op.getOperand(0);
12154   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
12155                      SDLoc(Op)).first;
12156 }
12157 
LowerFP_ROUND(SDValue Op,SelectionDAG & DAG) const12158 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
12159   assert(Op.getOperand(0).getValueType() == MVT::f64 &&
12160          Subtarget->isFPOnlySP() &&
12161          "Unexpected type for custom-lowering FP_ROUND");
12162 
12163   RTLIB::Libcall LC;
12164   LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
12165 
12166   SDValue SrcVal = Op.getOperand(0);
12167   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
12168                      SDLoc(Op)).first;
12169 }
12170 
12171 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const12172 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
12173   // The ARM target isn't yet aware of offsets.
12174   return false;
12175 }
12176 
isBitFieldInvertedMask(unsigned v)12177 bool ARM::isBitFieldInvertedMask(unsigned v) {
12178   if (v == 0xffffffff)
12179     return false;
12180 
12181   // there can be 1's on either or both "outsides", all the "inside"
12182   // bits must be 0's
12183   return isShiftedMask_32(~v);
12184 }
12185 
12186 /// isFPImmLegal - Returns true if the target can instruction select the
12187 /// specified FP immediate natively. If false, the legalizer will
12188 /// materialize the FP immediate as a load from a constant pool.
isFPImmLegal(const APFloat & Imm,EVT VT) const12189 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
12190   if (!Subtarget->hasVFP3())
12191     return false;
12192   if (VT == MVT::f32)
12193     return ARM_AM::getFP32Imm(Imm) != -1;
12194   if (VT == MVT::f64 && !Subtarget->isFPOnlySP())
12195     return ARM_AM::getFP64Imm(Imm) != -1;
12196   return false;
12197 }
12198 
12199 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
12200 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
12201 /// specified in the intrinsic calls.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,unsigned Intrinsic) const12202 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
12203                                            const CallInst &I,
12204                                            unsigned Intrinsic) const {
12205   switch (Intrinsic) {
12206   case Intrinsic::arm_neon_vld1:
12207   case Intrinsic::arm_neon_vld2:
12208   case Intrinsic::arm_neon_vld3:
12209   case Intrinsic::arm_neon_vld4:
12210   case Intrinsic::arm_neon_vld2lane:
12211   case Intrinsic::arm_neon_vld3lane:
12212   case Intrinsic::arm_neon_vld4lane: {
12213     Info.opc = ISD::INTRINSIC_W_CHAIN;
12214     // Conservatively set memVT to the entire set of vectors loaded.
12215     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
12216     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
12217     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
12218     Info.ptrVal = I.getArgOperand(0);
12219     Info.offset = 0;
12220     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
12221     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
12222     Info.vol = false; // volatile loads with NEON intrinsics not supported
12223     Info.readMem = true;
12224     Info.writeMem = false;
12225     return true;
12226   }
12227   case Intrinsic::arm_neon_vst1:
12228   case Intrinsic::arm_neon_vst2:
12229   case Intrinsic::arm_neon_vst3:
12230   case Intrinsic::arm_neon_vst4:
12231   case Intrinsic::arm_neon_vst2lane:
12232   case Intrinsic::arm_neon_vst3lane:
12233   case Intrinsic::arm_neon_vst4lane: {
12234     Info.opc = ISD::INTRINSIC_VOID;
12235     // Conservatively set memVT to the entire set of vectors stored.
12236     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
12237     unsigned NumElts = 0;
12238     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
12239       Type *ArgTy = I.getArgOperand(ArgI)->getType();
12240       if (!ArgTy->isVectorTy())
12241         break;
12242       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
12243     }
12244     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
12245     Info.ptrVal = I.getArgOperand(0);
12246     Info.offset = 0;
12247     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
12248     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
12249     Info.vol = false; // volatile stores with NEON intrinsics not supported
12250     Info.readMem = false;
12251     Info.writeMem = true;
12252     return true;
12253   }
12254   case Intrinsic::arm_ldaex:
12255   case Intrinsic::arm_ldrex: {
12256     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
12257     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
12258     Info.opc = ISD::INTRINSIC_W_CHAIN;
12259     Info.memVT = MVT::getVT(PtrTy->getElementType());
12260     Info.ptrVal = I.getArgOperand(0);
12261     Info.offset = 0;
12262     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
12263     Info.vol = true;
12264     Info.readMem = true;
12265     Info.writeMem = false;
12266     return true;
12267   }
12268   case Intrinsic::arm_stlex:
12269   case Intrinsic::arm_strex: {
12270     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
12271     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
12272     Info.opc = ISD::INTRINSIC_W_CHAIN;
12273     Info.memVT = MVT::getVT(PtrTy->getElementType());
12274     Info.ptrVal = I.getArgOperand(1);
12275     Info.offset = 0;
12276     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
12277     Info.vol = true;
12278     Info.readMem = false;
12279     Info.writeMem = true;
12280     return true;
12281   }
12282   case Intrinsic::arm_stlexd:
12283   case Intrinsic::arm_strexd: {
12284     Info.opc = ISD::INTRINSIC_W_CHAIN;
12285     Info.memVT = MVT::i64;
12286     Info.ptrVal = I.getArgOperand(2);
12287     Info.offset = 0;
12288     Info.align = 8;
12289     Info.vol = true;
12290     Info.readMem = false;
12291     Info.writeMem = true;
12292     return true;
12293   }
12294   case Intrinsic::arm_ldaexd:
12295   case Intrinsic::arm_ldrexd: {
12296     Info.opc = ISD::INTRINSIC_W_CHAIN;
12297     Info.memVT = MVT::i64;
12298     Info.ptrVal = I.getArgOperand(0);
12299     Info.offset = 0;
12300     Info.align = 8;
12301     Info.vol = true;
12302     Info.readMem = true;
12303     Info.writeMem = false;
12304     return true;
12305   }
12306   default:
12307     break;
12308   }
12309 
12310   return false;
12311 }
12312 
12313 /// \brief Returns true if it is beneficial to convert a load of a constant
12314 /// to just the constant itself.
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const12315 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
12316                                                           Type *Ty) const {
12317   assert(Ty->isIntegerTy());
12318 
12319   unsigned Bits = Ty->getPrimitiveSizeInBits();
12320   if (Bits == 0 || Bits > 32)
12321     return false;
12322   return true;
12323 }
12324 
makeDMB(IRBuilder<> & Builder,ARM_MB::MemBOpt Domain) const12325 Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
12326                                         ARM_MB::MemBOpt Domain) const {
12327   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
12328 
12329   // First, if the target has no DMB, see what fallback we can use.
12330   if (!Subtarget->hasDataBarrier()) {
12331     // Some ARMv6 cpus can support data barriers with an mcr instruction.
12332     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
12333     // here.
12334     if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
12335       Function *MCR = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
12336       Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
12337                         Builder.getInt32(0), Builder.getInt32(7),
12338                         Builder.getInt32(10), Builder.getInt32(5)};
12339       return Builder.CreateCall(MCR, args);
12340     } else {
12341       // Instead of using barriers, atomic accesses on these subtargets use
12342       // libcalls.
12343       llvm_unreachable("makeDMB on a target so old that it has no barriers");
12344     }
12345   } else {
12346     Function *DMB = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
12347     // Only a full system barrier exists in the M-class architectures.
12348     Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
12349     Constant *CDomain = Builder.getInt32(Domain);
12350     return Builder.CreateCall(DMB, CDomain);
12351   }
12352 }
12353 
12354 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
emitLeadingFence(IRBuilder<> & Builder,AtomicOrdering Ord,bool IsStore,bool IsLoad) const12355 Instruction* ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
12356                                          AtomicOrdering Ord, bool IsStore,
12357                                          bool IsLoad) const {
12358   switch (Ord) {
12359   case AtomicOrdering::NotAtomic:
12360   case AtomicOrdering::Unordered:
12361     llvm_unreachable("Invalid fence: unordered/non-atomic");
12362   case AtomicOrdering::Monotonic:
12363   case AtomicOrdering::Acquire:
12364     return nullptr; // Nothing to do
12365   case AtomicOrdering::SequentiallyConsistent:
12366     if (!IsStore)
12367       return nullptr; // Nothing to do
12368     /*FALLTHROUGH*/
12369   case AtomicOrdering::Release:
12370   case AtomicOrdering::AcquireRelease:
12371     if (Subtarget->preferISHSTBarriers())
12372       return makeDMB(Builder, ARM_MB::ISHST);
12373     // FIXME: add a comment with a link to documentation justifying this.
12374     else
12375       return makeDMB(Builder, ARM_MB::ISH);
12376   }
12377   llvm_unreachable("Unknown fence ordering in emitLeadingFence");
12378 }
12379 
emitTrailingFence(IRBuilder<> & Builder,AtomicOrdering Ord,bool IsStore,bool IsLoad) const12380 Instruction* ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
12381                                           AtomicOrdering Ord, bool IsStore,
12382                                           bool IsLoad) const {
12383   switch (Ord) {
12384   case AtomicOrdering::NotAtomic:
12385   case AtomicOrdering::Unordered:
12386     llvm_unreachable("Invalid fence: unordered/not-atomic");
12387   case AtomicOrdering::Monotonic:
12388   case AtomicOrdering::Release:
12389     return nullptr; // Nothing to do
12390   case AtomicOrdering::Acquire:
12391   case AtomicOrdering::AcquireRelease:
12392   case AtomicOrdering::SequentiallyConsistent:
12393     return makeDMB(Builder, ARM_MB::ISH);
12394   }
12395   llvm_unreachable("Unknown fence ordering in emitTrailingFence");
12396 }
12397 
12398 // Loads and stores less than 64-bits are already atomic; ones above that
12399 // are doomed anyway, so defer to the default libcall and blame the OS when
12400 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
12401 // anything for those.
shouldExpandAtomicStoreInIR(StoreInst * SI) const12402 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
12403   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
12404   return (Size == 64) && !Subtarget->isMClass();
12405 }
12406 
12407 // Loads and stores less than 64-bits are already atomic; ones above that
12408 // are doomed anyway, so defer to the default libcall and blame the OS when
12409 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
12410 // anything for those.
12411 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
12412 // guarantee, see DDI0406C ARM architecture reference manual,
12413 // sections A8.8.72-74 LDRD)
12414 TargetLowering::AtomicExpansionKind
shouldExpandAtomicLoadInIR(LoadInst * LI) const12415 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
12416   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
12417   return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
12418                                                   : AtomicExpansionKind::None;
12419 }
12420 
12421 // For the real atomic operations, we have ldrex/strex up to 32 bits,
12422 // and up to 64 bits on the non-M profiles
12423 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const12424 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
12425   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
12426   return (Size <= (Subtarget->isMClass() ? 32U : 64U))
12427              ? AtomicExpansionKind::LLSC
12428              : AtomicExpansionKind::None;
12429 }
12430 
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI) const12431 bool ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(
12432     AtomicCmpXchgInst *AI) const {
12433   // At -O0, fast-regalloc cannot cope with the live vregs necessary to
12434   // implement cmpxchg without spilling. If the address being exchanged is also
12435   // on the stack and close enough to the spill slot, this can lead to a
12436   // situation where the monitor always gets cleared and the atomic operation
12437   // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
12438   return getTargetMachine().getOptLevel() != 0;
12439 }
12440 
shouldInsertFencesForAtomic(const Instruction * I) const12441 bool ARMTargetLowering::shouldInsertFencesForAtomic(
12442     const Instruction *I) const {
12443   return InsertFencesForAtomic;
12444 }
12445 
12446 // This has so far only been implemented for MachO.
useLoadStackGuardNode() const12447 bool ARMTargetLowering::useLoadStackGuardNode() const {
12448   return Subtarget->isTargetMachO();
12449 }
12450 
canCombineStoreAndExtract(Type * VectorTy,Value * Idx,unsigned & Cost) const12451 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
12452                                                   unsigned &Cost) const {
12453   // If we do not have NEON, vector types are not natively supported.
12454   if (!Subtarget->hasNEON())
12455     return false;
12456 
12457   // Floating point values and vector values map to the same register file.
12458   // Therefore, although we could do a store extract of a vector type, this is
12459   // better to leave at float as we have more freedom in the addressing mode for
12460   // those.
12461   if (VectorTy->isFPOrFPVectorTy())
12462     return false;
12463 
12464   // If the index is unknown at compile time, this is very expensive to lower
12465   // and it is not possible to combine the store with the extract.
12466   if (!isa<ConstantInt>(Idx))
12467     return false;
12468 
12469   assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
12470   unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
12471   // We can do a store + vector extract on any vector that fits perfectly in a D
12472   // or Q register.
12473   if (BitWidth == 64 || BitWidth == 128) {
12474     Cost = 0;
12475     return true;
12476   }
12477   return false;
12478 }
12479 
isCheapToSpeculateCttz() const12480 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
12481   return Subtarget->hasV6T2Ops();
12482 }
12483 
isCheapToSpeculateCtlz() const12484 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
12485   return Subtarget->hasV6T2Ops();
12486 }
12487 
emitLoadLinked(IRBuilder<> & Builder,Value * Addr,AtomicOrdering Ord) const12488 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
12489                                          AtomicOrdering Ord) const {
12490   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
12491   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
12492   bool IsAcquire = isAcquireOrStronger(Ord);
12493 
12494   // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
12495   // intrinsic must return {i32, i32} and we have to recombine them into a
12496   // single i64 here.
12497   if (ValTy->getPrimitiveSizeInBits() == 64) {
12498     Intrinsic::ID Int =
12499         IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
12500     Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int);
12501 
12502     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
12503     Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
12504 
12505     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
12506     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
12507     if (!Subtarget->isLittle())
12508       std::swap (Lo, Hi);
12509     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
12510     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
12511     return Builder.CreateOr(
12512         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
12513   }
12514 
12515   Type *Tys[] = { Addr->getType() };
12516   Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
12517   Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int, Tys);
12518 
12519   return Builder.CreateTruncOrBitCast(
12520       Builder.CreateCall(Ldrex, Addr),
12521       cast<PointerType>(Addr->getType())->getElementType());
12522 }
12523 
emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> & Builder) const12524 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
12525     IRBuilder<> &Builder) const {
12526   if (!Subtarget->hasV7Ops())
12527     return;
12528   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
12529   Builder.CreateCall(llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
12530 }
12531 
emitStoreConditional(IRBuilder<> & Builder,Value * Val,Value * Addr,AtomicOrdering Ord) const12532 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
12533                                                Value *Addr,
12534                                                AtomicOrdering Ord) const {
12535   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
12536   bool IsRelease = isReleaseOrStronger(Ord);
12537 
12538   // Since the intrinsics must have legal type, the i64 intrinsics take two
12539   // parameters: "i32, i32". We must marshal Val into the appropriate form
12540   // before the call.
12541   if (Val->getType()->getPrimitiveSizeInBits() == 64) {
12542     Intrinsic::ID Int =
12543         IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
12544     Function *Strex = Intrinsic::getDeclaration(M, Int);
12545     Type *Int32Ty = Type::getInt32Ty(M->getContext());
12546 
12547     Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
12548     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
12549     if (!Subtarget->isLittle())
12550       std::swap (Lo, Hi);
12551     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
12552     return Builder.CreateCall(Strex, {Lo, Hi, Addr});
12553   }
12554 
12555   Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
12556   Type *Tys[] = { Addr->getType() };
12557   Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
12558 
12559   return Builder.CreateCall(
12560       Strex, {Builder.CreateZExtOrBitCast(
12561                   Val, Strex->getFunctionType()->getParamType(0)),
12562               Addr});
12563 }
12564 
12565 /// \brief Lower an interleaved load into a vldN intrinsic.
12566 ///
12567 /// E.g. Lower an interleaved load (Factor = 2):
12568 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
12569 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
12570 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
12571 ///
12572 ///      Into:
12573 ///        %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
12574 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
12575 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
lowerInterleavedLoad(LoadInst * LI,ArrayRef<ShuffleVectorInst * > Shuffles,ArrayRef<unsigned> Indices,unsigned Factor) const12576 bool ARMTargetLowering::lowerInterleavedLoad(
12577     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
12578     ArrayRef<unsigned> Indices, unsigned Factor) const {
12579   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
12580          "Invalid interleave factor");
12581   assert(!Shuffles.empty() && "Empty shufflevector input");
12582   assert(Shuffles.size() == Indices.size() &&
12583          "Unmatched number of shufflevectors and indices");
12584 
12585   VectorType *VecTy = Shuffles[0]->getType();
12586   Type *EltTy = VecTy->getVectorElementType();
12587 
12588   const DataLayout &DL = LI->getModule()->getDataLayout();
12589   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
12590   bool EltIs64Bits = DL.getTypeSizeInBits(EltTy) == 64;
12591 
12592   // Skip if we do not have NEON and skip illegal vector types and vector types
12593   // with i64/f64 elements (vldN doesn't support i64/f64 elements).
12594   if (!Subtarget->hasNEON() || (VecSize != 64 && VecSize != 128) || EltIs64Bits)
12595     return false;
12596 
12597   // A pointer vector can not be the return type of the ldN intrinsics. Need to
12598   // load integer vectors first and then convert to pointer vectors.
12599   if (EltTy->isPointerTy())
12600     VecTy =
12601         VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
12602 
12603   static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
12604                                             Intrinsic::arm_neon_vld3,
12605                                             Intrinsic::arm_neon_vld4};
12606 
12607   IRBuilder<> Builder(LI);
12608   SmallVector<Value *, 2> Ops;
12609 
12610   Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
12611   Ops.push_back(Builder.CreateBitCast(LI->getPointerOperand(), Int8Ptr));
12612   Ops.push_back(Builder.getInt32(LI->getAlignment()));
12613 
12614   Type *Tys[] = { VecTy, Int8Ptr };
12615   Function *VldnFunc =
12616       Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
12617   CallInst *VldN = Builder.CreateCall(VldnFunc, Ops, "vldN");
12618 
12619   // Replace uses of each shufflevector with the corresponding vector loaded
12620   // by ldN.
12621   for (unsigned i = 0; i < Shuffles.size(); i++) {
12622     ShuffleVectorInst *SV = Shuffles[i];
12623     unsigned Index = Indices[i];
12624 
12625     Value *SubVec = Builder.CreateExtractValue(VldN, Index);
12626 
12627     // Convert the integer vector to pointer vector if the element is pointer.
12628     if (EltTy->isPointerTy())
12629       SubVec = Builder.CreateIntToPtr(SubVec, SV->getType());
12630 
12631     SV->replaceAllUsesWith(SubVec);
12632   }
12633 
12634   return true;
12635 }
12636 
12637 /// \brief Get a mask consisting of sequential integers starting from \p Start.
12638 ///
12639 /// I.e. <Start, Start + 1, ..., Start + NumElts - 1>
getSequentialMask(IRBuilder<> & Builder,unsigned Start,unsigned NumElts)12640 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned Start,
12641                                    unsigned NumElts) {
12642   SmallVector<Constant *, 16> Mask;
12643   for (unsigned i = 0; i < NumElts; i++)
12644     Mask.push_back(Builder.getInt32(Start + i));
12645 
12646   return ConstantVector::get(Mask);
12647 }
12648 
12649 /// \brief Lower an interleaved store into a vstN intrinsic.
12650 ///
12651 /// E.g. Lower an interleaved store (Factor = 3):
12652 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
12653 ///                                  <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
12654 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
12655 ///
12656 ///      Into:
12657 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
12658 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
12659 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
12660 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
12661 ///
12662 /// Note that the new shufflevectors will be removed and we'll only generate one
12663 /// vst3 instruction in CodeGen.
lowerInterleavedStore(StoreInst * SI,ShuffleVectorInst * SVI,unsigned Factor) const12664 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
12665                                               ShuffleVectorInst *SVI,
12666                                               unsigned Factor) const {
12667   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
12668          "Invalid interleave factor");
12669 
12670   VectorType *VecTy = SVI->getType();
12671   assert(VecTy->getVectorNumElements() % Factor == 0 &&
12672          "Invalid interleaved store");
12673 
12674   unsigned NumSubElts = VecTy->getVectorNumElements() / Factor;
12675   Type *EltTy = VecTy->getVectorElementType();
12676   VectorType *SubVecTy = VectorType::get(EltTy, NumSubElts);
12677 
12678   const DataLayout &DL = SI->getModule()->getDataLayout();
12679   unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
12680   bool EltIs64Bits = DL.getTypeSizeInBits(EltTy) == 64;
12681 
12682   // Skip if we do not have NEON and skip illegal vector types and vector types
12683   // with i64/f64 elements (vstN doesn't support i64/f64 elements).
12684   if (!Subtarget->hasNEON() || (SubVecSize != 64 && SubVecSize != 128) ||
12685       EltIs64Bits)
12686     return false;
12687 
12688   Value *Op0 = SVI->getOperand(0);
12689   Value *Op1 = SVI->getOperand(1);
12690   IRBuilder<> Builder(SI);
12691 
12692   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
12693   // vectors to integer vectors.
12694   if (EltTy->isPointerTy()) {
12695     Type *IntTy = DL.getIntPtrType(EltTy);
12696 
12697     // Convert to the corresponding integer vector.
12698     Type *IntVecTy =
12699         VectorType::get(IntTy, Op0->getType()->getVectorNumElements());
12700     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
12701     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
12702 
12703     SubVecTy = VectorType::get(IntTy, NumSubElts);
12704   }
12705 
12706   static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
12707                                              Intrinsic::arm_neon_vst3,
12708                                              Intrinsic::arm_neon_vst4};
12709   SmallVector<Value *, 6> Ops;
12710 
12711   Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
12712   Ops.push_back(Builder.CreateBitCast(SI->getPointerOperand(), Int8Ptr));
12713 
12714   Type *Tys[] = { Int8Ptr, SubVecTy };
12715   Function *VstNFunc = Intrinsic::getDeclaration(
12716       SI->getModule(), StoreInts[Factor - 2], Tys);
12717 
12718   // Split the shufflevector operands into sub vectors for the new vstN call.
12719   for (unsigned i = 0; i < Factor; i++)
12720     Ops.push_back(Builder.CreateShuffleVector(
12721         Op0, Op1, getSequentialMask(Builder, NumSubElts * i, NumSubElts)));
12722 
12723   Ops.push_back(Builder.getInt32(SI->getAlignment()));
12724   Builder.CreateCall(VstNFunc, Ops);
12725   return true;
12726 }
12727 
12728 enum HABaseType {
12729   HA_UNKNOWN = 0,
12730   HA_FLOAT,
12731   HA_DOUBLE,
12732   HA_VECT64,
12733   HA_VECT128
12734 };
12735 
isHomogeneousAggregate(Type * Ty,HABaseType & Base,uint64_t & Members)12736 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
12737                                    uint64_t &Members) {
12738   if (auto *ST = dyn_cast<StructType>(Ty)) {
12739     for (unsigned i = 0; i < ST->getNumElements(); ++i) {
12740       uint64_t SubMembers = 0;
12741       if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
12742         return false;
12743       Members += SubMembers;
12744     }
12745   } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
12746     uint64_t SubMembers = 0;
12747     if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
12748       return false;
12749     Members += SubMembers * AT->getNumElements();
12750   } else if (Ty->isFloatTy()) {
12751     if (Base != HA_UNKNOWN && Base != HA_FLOAT)
12752       return false;
12753     Members = 1;
12754     Base = HA_FLOAT;
12755   } else if (Ty->isDoubleTy()) {
12756     if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
12757       return false;
12758     Members = 1;
12759     Base = HA_DOUBLE;
12760   } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
12761     Members = 1;
12762     switch (Base) {
12763     case HA_FLOAT:
12764     case HA_DOUBLE:
12765       return false;
12766     case HA_VECT64:
12767       return VT->getBitWidth() == 64;
12768     case HA_VECT128:
12769       return VT->getBitWidth() == 128;
12770     case HA_UNKNOWN:
12771       switch (VT->getBitWidth()) {
12772       case 64:
12773         Base = HA_VECT64;
12774         return true;
12775       case 128:
12776         Base = HA_VECT128;
12777         return true;
12778       default:
12779         return false;
12780       }
12781     }
12782   }
12783 
12784   return (Members > 0 && Members <= 4);
12785 }
12786 
12787 /// \brief Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
12788 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
12789 /// passing according to AAPCS rules.
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg) const12790 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
12791     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
12792   if (getEffectiveCallingConv(CallConv, isVarArg) !=
12793       CallingConv::ARM_AAPCS_VFP)
12794     return false;
12795 
12796   HABaseType Base = HA_UNKNOWN;
12797   uint64_t Members = 0;
12798   bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
12799   DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
12800 
12801   bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
12802   return IsHA || IsIntArray;
12803 }
12804 
getExceptionPointerRegister(const Constant * PersonalityFn) const12805 unsigned ARMTargetLowering::getExceptionPointerRegister(
12806     const Constant *PersonalityFn) const {
12807   // Platforms which do not use SjLj EH may return values in these registers
12808   // via the personality function.
12809   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0;
12810 }
12811 
getExceptionSelectorRegister(const Constant * PersonalityFn) const12812 unsigned ARMTargetLowering::getExceptionSelectorRegister(
12813     const Constant *PersonalityFn) const {
12814   // Platforms which do not use SjLj EH may return values in these registers
12815   // via the personality function.
12816   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1;
12817 }
12818 
initializeSplitCSR(MachineBasicBlock * Entry) const12819 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
12820   // Update IsSplitCSR in ARMFunctionInfo.
12821   ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
12822   AFI->setIsSplitCSR(true);
12823 }
12824 
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits) const12825 void ARMTargetLowering::insertCopiesSplitCSR(
12826     MachineBasicBlock *Entry,
12827     const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
12828   const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
12829   const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
12830   if (!IStart)
12831     return;
12832 
12833   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
12834   MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
12835   MachineBasicBlock::iterator MBBI = Entry->begin();
12836   for (const MCPhysReg *I = IStart; *I; ++I) {
12837     const TargetRegisterClass *RC = nullptr;
12838     if (ARM::GPRRegClass.contains(*I))
12839       RC = &ARM::GPRRegClass;
12840     else if (ARM::DPRRegClass.contains(*I))
12841       RC = &ARM::DPRRegClass;
12842     else
12843       llvm_unreachable("Unexpected register class in CSRsViaCopy!");
12844 
12845     unsigned NewVR = MRI->createVirtualRegister(RC);
12846     // Create copy from CSR to a virtual register.
12847     // FIXME: this currently does not emit CFI pseudo-instructions, it works
12848     // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
12849     // nounwind. If we want to generalize this later, we may need to emit
12850     // CFI pseudo-instructions.
12851     assert(Entry->getParent()->getFunction()->hasFnAttribute(
12852                Attribute::NoUnwind) &&
12853            "Function should be nounwind in insertCopiesSplitCSR!");
12854     Entry->addLiveIn(*I);
12855     BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
12856         .addReg(*I);
12857 
12858     // Insert the copy-back instructions right before the terminator.
12859     for (auto *Exit : Exits)
12860       BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
12861               TII->get(TargetOpcode::COPY), *I)
12862           .addReg(NewVR);
12863   }
12864 }
12865